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A note on an Abel-Grassmann's 3-band

Qaiser Mushtaq and Madad Khan

Abstract
An Abel-Grassmann's groupoid is discussed in several papers. In this paper
we have investigated AG-3-band and ideal theory on it. An AG-3-band S

has associative powers and is fully idempotent. A subset of an AG-3-band
is a left ideal if and only it is right and every ideal of S is prime if and only
if the set of all ideals of S is totally ordered under inclusion. An ideal of S

is prime if and only if it is strongly irreducible. The set of ideals of S is a
semilattice.

1. Introduction
An left almost semigroup [3], abbreviated as an LA-semigroup, is a groupoid
S whose elements satisfy for all a, b, c ∈ S the invertive law :

(ab)c = (cb)a. (1)

In [[1], the same structure is called a left invertive groupoid and in [7] it
is called an AG-groupoid. It is a useful non-associative algebraic structure,
midway between a groupoid and a commutative semigroup, with wide ap-
plications in the theory of �ocks and has a character similar to commutative
semigroup.

An AG-groupoid S is medial [3], that is,

(ab)(cd) = (ac)(bd) (2)

holds for all a, b, c, d,∈ S.
If an AG-groupoid S satis�es for all a, b, c, d,∈ S one of the following

properties
(ab)c = b(ca), (3)

2000 Mathematics Subject Classi�cation: 20M10, 20N99
Keywords: LA-semigroup, AG-3-band, invertive law, medial law, paramedial and
prime ideals.



296 Q. Mushtaq and M. Khan

(ab)c = b(ac), (4)
then it is called an AG∗-groupoid [9]. It is easy to see that the conditions
(3) and (4) are equivalent.

In AG∗-groupoid S holds all permutation identities of a next type [9],

(x1x2)(x3x4) = (xp(1)xp(2))(xp(3)xp(4)) (5)

where {p(1), p(2), p(3), p(4)} means any permutation of the set {1, 2, 3, 4}.
An AG-groupoid satisfying the identity

a(bc) = b(ac) (6)

is called an AG∗∗-groupoid [6]. An AG-groupoid in which (aa)a = a(aa) = a
holds for all a is called an AG-3-band [9]. In an AG-3-band S we have
S2 = S, (Sa)S = S(aS) and (SS)S = S(SS).

It has been shown in [9], that (aa)a = a(aa) = a and (bb)b = b(bb) = b
imply

ab = (ab)((ab)(ab)) = ((ab)(ab))(ab).

2. AG-3-bands
By an AG∗∗-3-band we mean an AG-3-band satisfying identity (6). An
AG∗∗-3-band S is a commutative semigroup because using (2), (6) and (1),
we get

xy = (xy)((xy)(xy)) = (xy)((xx)(yy)) = (xx)((xy)(yy))

= (xx)((yy)y)x) = ((yy)y)((xx)x) = yx

for all x, y ∈ S. The commutativity and (1) leads us to the associativity.
By an AG∗-3-band we mean an AG-3-band satisfying (3). If S is an

AG-3-band, then S = S2 and by virtue of identity (5), a non-associative
AG∗-3-band does not exist.

An AG-groupoid S is paramedial [2], that is,

(ab)(cd) = (db)(ca)

holds for all a, b, c, d,∈ S.
A paramedial AG-3-band becomes a commutative semigroup because

ab = (ab)((ab)(ab)) = (ab)((ba)(ba)) = ((ba)(ba))(ba) = ba.
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Lemma 1. Every left identity in an AG-3-band is a right identity.
Proof. Let e be a left identity and a be any element in an AG-3-band S.
Then using (1), we get

ae = (a(aa))e = (e(aa))a = (aa)a = a.

Hence e is right identity.

As a consequence of Lemma 1, one can see that an AG-3-band with a
left identity becomes a commutative monoid, because it has been shown in
[5] that every right identity is the unique identity in an AG-groupoid and
the identity implies commutativity which further implies associativity.
Lemma 2. An AG-3-band S is a commutative semigroup if and only if
(xy)2 = (yx)2 holds for all x, y ∈ S.
Proof. Indeed, using (1), (2), we get

sa = ((ss)s)a = (as)(ss) = ((a(aa))s)(ss) = (as)((aa)s)s)

= (as)((ss)(aa)) = (as)((aa)(ss)) = (a(aa))(s(ss)) = as.

The converse is easy.

Lemma 3. If S is an AG-3-band, then aS ⊆ Sa for all a in S.
Proof. Using (1) and (2), we get

as = (a(aa))(xy) = (ax)((aa)y) = (ax)(ya)a)

= (a(ya))(xa) = ((xa)(ya))a,

which completes the proof.

It is easy fact that (aS)S = Sa, S(aS) = (Sa)S, (Sa)S ⊆ S(Sa) and
Sa ⊆ (Sa)S.
Lemma 4. If S is an AG-3-band, then an = a and an+1 = a2, where n is
a positive odd integer.
Proof. Obviously a3 = (aa)a = a(aa). Let the result be true for an odd
integer k, that is ak = a. Then using (1), we obtain ak+2 = ak+1+1 =
ak+1a1 = (aka)a = a2ak = a2a = a3 = a. Hence an = a for all odd
integers n. This proves the �rst identity. To prove the second, observe that
a4 = a3a = aa = a2 and assume that as = a2 is true for an even integer s.
Then using (1), we get as+2 = a2as = a2a2 = a4 = a2, which proves that
an+1 = a2 is true for a positive odd integer n.
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Lemma 5. An AG-3-band has associative powers.

Proof. The proof is easy.

As a consequence of Lemmas 4 and 5, one can easily see that the se-
quence of the powers of a has an element a at odd position and a2 at even
position that is, a, a2, a, a2....

The following proposition can be proved easily.

Proposition 1. In an AG-3-band S for all a, b ∈ S and all positive integers
m, n we have

aman = am+n, (ab)n = anbn, (am)n = amn.

Let {Sα : α ∈ I} be a family of AG-3-bands containing a zero element.
We may denote all the zeros elements by common symbol 0. The disjoint
union of {0} and all Sα\{0} becomes an AG-3-band if we de�ne the product
of x and y as their product in Sα, if they are in the same Sα, and zero
otherwise.

An AG-groupoid S is called locally associative if a(aa) = (aa)a holds
for all a ∈ S [4].

Lemma 6. Every AG-3-band is locally associative AG-groupoid, but the
converse is not true.

Example 1. Let the binary operation on S = {a, b, c, d} be de�ned as
follows [4]:

· a b c d

a d d b d
b d d a d
c a b c d
d d d d d

Then (S, ·) is locally associative but it is not AG-3-band because a(aa) =
(aa)a = d 6= a.

A subset I of an AG-groupoid S is said to be right (left) ideal if IS ⊆ I
(SI ⊆ I). As usual I is said to be an ideal if it is both right and left ideal.
An ideal I of an AG-groupoid is called 3-potent if I(II) = (II)I = I.

An AG-groupoid S without zero is called simple (left simple, right
simple) if it does not properly contain any two sided (left, right) ideal.
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An AG-groupoid S with zero is called zero-simple if it has no proper
ideals and S2 6= {0}.

The existence of non-associative simple and zero-simple AG-3-bands is
guaranteed by the following example.

Example 2. The set S = {1, 2, 3, 4, 5, 6, 7, 8} with the binary operation
de�ned as follows [9]:

· 1 2 3 4 5 6 7 8
1 1 2 7 8 3 4 5 6
2 2 1 8 7 4 3 6 5
3 5 6 3 4 7 8 1 2
4 6 5 4 3 8 7 2 1
5 7 8 1 2 5 6 3 4
6 8 7 2 1 6 5 4 3
7 3 4 5 6 1 2 7 8
8 4 3 6 5 2 1 8 7

is an AG-3-band which has no proper ideals, so it is simple. If we add the
element 0 to the set S and extend the binary operation putting 0 ·0 = 0 ·s =
s · 0 = 0 for all s in S, then (S ∪ {0}, ·) will be a zero-simple AG-3-band.

Proposition 2. A subset of an AG-3-band is a right ideal if and only if it
is left.

Proof. Let A be a right ideal of S. Then using (1) we get sa = ((ss)s)a =
(as)(ss), which implies that A is a left ideal of S.

The converse follows from Lemma 3.

A subset M of an AG-groupoid S is called an m-system if for a, b ∈ M
there exists x ∈ S such that (ax)b ∈ M .

A subset B of an AG-groupoid S is called a p-system if for every b ∈ B
there exists x ∈ S such that (bx)b ∈ B.

Proposition 3. In an AG-groupoid each m-system is a p-system.

Lemma 7. In an AG-3-band every (left, right) ideal is p-system, but the
converse is not true.

Proof. If a, b belongs to an ideal I of an AG-3-band S, then (as)a ∈ (IS)I.
The converse statement follows from Example 2. In this example B =

{1, 2} is a p-system but not an ideal.
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Two subsets A, B of an AG-groupoid S are called right (left) connected
if AS ⊆ B and BS ⊆ A (resp. SA ⊆ B and SB ⊆ A) [8]. A and B are
connected if they are both left and right connected.

Lemma 8. If A and B are ideal of an AG-3-band S, then AB band BA
are right and left connect.

Proof. Using (1), we get (AB)S = (SB)A ⊆ BA. Similarly (BA)S ⊆
AB. So, AB and BA are right connected. Also S(BA) = (SS)(BA) =
((BA)S)S = ((SA)B)S ⊆ AB, and S(AB) ⊆ BA.

Proposition 4. If A and B are ideals of an AG-3-band, then AB is an
ideal.

Proof. Using (2), one can easily show that AB is an ideal.

It is interesting to note that if S is an AG-3-band and I1, I2, I3 are
proper ideals of S, then (I1I2)I3 is an ideal of S. It can be generalized,
that is, if I1, I2, . . . , In are ideals, then (...((I1I2)I3)...)In is also an ideal
and (...((I1I2)I3)...)In ⊆ I1 ∩ I2 ∩ . . . ∩ In.

An AG-groupoid S is said to be fully idempotent if every ideal of S is
idempotent, i.e., for ecery ideal I of S we have I2 = I.

An AG-groupoid S is said to be fully semiprime if every ideal of S is
semiprime, i.e., for every ideal P of S from A2 ⊆ P , where A is an ideal of
S, it follows A ⊆ P .

Every AG-3-band is fully idempotent and fully semiprime. Conse-
quently, An = A for an ideal A and any positive integer n.

Lemma 9. IJ = JI = I ∩ J for all ideals of an AG-3-band.

Proof. If x ∈ I ∩ J , then x = x(xx) ∈ IJ, whence IJ = I ∩ J . So,
IJ = JI.

An ideal I of an AG-groupoid S is said to be strongly irreducible if and
only if for ideals H and K of S, H ∩K ⊆ I implies either H ⊆ I or K ⊆ I.

An AG-groupoid S is called totally ordered if for all ideals A, B of S
either A ⊆ B or B ⊆ A.

An ideal P of an AG-groupoid S is called prime if and only if AB ⊆ P
implies that either A ⊆ P or B ⊆ P for all ideals A and B in S.

Using Lemma 9, one can prove the following Theorems.
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Theorem 1. In an AG-3-band an ideal is strongly irreducible if and only
if it is prime.

Theorem 2. An ideal of an AG-3-band S is prime if and only if the set of
all ideals of S is totally ordered under inclusion.

Theorem 3. The set of ideals of an AG-3-band S form a semilattice,
(LS ,∧), where A ∧B = AB, A and B are ideals of S.
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