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On finite quasigroups whose subquasigroup lattices

are distributive

Konrad Piéro

Abstract

We prove that if the subquasigroup lattice of a finite quasigroup @ is dis-
tributive, then @ is cyclic (i.e., @ is generated by one element) and also,
each of its subquasigroups is also cyclic. Finally, we give examples which
show that the inverse implication does not hold.

It is a classical result of Group Theory, showed by Ore in [5] (see also
[7]), that the subgroup lattice of a group G is distributive if and only if G
is locally cyclic (i.e., each finitely generated subgroup of G is cyclic). In
particular, a finite group G has a distributive subgroup lattice if and only
if G is cyclic.

In the present paper we prove the following result for quasigroups (for
definitions and simple facts of quasigroups and lattices see e.g. [1], [2], [3])

Theorem 1. Let Q = (Q,0,\,/) be a finite quasigroup such that its sub-
quasigroup lattice S(Q) is distributive. Then Q and each subquasigroup of
Q are cyclic.

Before the proof observe that, in the contrary to groups, a subquasigroup
of a cyclic quasigroup need not be cyclic. Let Q be a six-element quasigroup
given by the following table (recall, see e.g. [1], that a finite groupoid (@, o)
is a quasigroup if and only if the multiplication table of o is a Latin square,
i.e., each element of @) occurs exactly once in each row and each column)
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Then Q = (f) = (e) = (d), so Q is cyclic. On the other hand, {a,b,c} is
a subquasigroup of Q which is non-cyclic, because aoca = a, bob = b and
coc = c. Note that the constructed quasigroup Q is even commutative.

Observe also that such example cannot be found among quasigroups
having less than 6 elements. More precisely, it is easy to see that any two-
element quasigroup is cyclic. So if a quasigroup @ contains a non-cyclic
subquasigroup G, then G must have at least three elements, say a, b, c. Next,
there is ¢ € @ which generate Q, in particular ¢ € Q \ G. The elements
goa, gob and goc are pairwise different. They are also different from a, b, ¢
(more precisely, {goa,qob,qoc} NG =0, because a,b,c € G and G is a
quasigroup). At most one of them may be equal g. Thus we have obtained
at least six different elements of Q.

Theorem 1 is straightforward implied by the following more general
lemma (where A and V are lattice operations of infimum and supremum
respectively)

Lemma 1. Let Q = (Q,0,\,/) be a finite quasigroup such that for any two
different elements p,q € Q

() (pogq)=(pog) A (p)V((pog)(a)
Then all subquasigroups of Q are cyclic.

Obviously if the subquasigroup lattice S(Q) is distributive, then (x)
holds. Because (pogq) = (poq) A (p,q) = (pog) A((p) V() = ({pog) A
)V ((poa)Ala).

Proof. Assume that Q contains subquasigroups which are non-cyclic. Take
a family A of all such subquasigroups. Since Q is a finite quasigroup, A is a
finite set which is partially ordered by set-inclusion. Thus (A, C) contains
at least one minimal element, say G. Then G is a subquasigroup of Q such
that
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(7) G is non-cyclic,

(73) each proper (i.e., non-empty and non-equal G) subquasigroup of G is
cyclic.

Further,
(791) G is generated by two elements.

More precisely, G is finite, so G is generated by some elements g1, g2, - . ., gk,
i.e.,
G={91,92,---, 9k)-

Take the new subquasigroup (g1, 92) < G. If G # (g1, g2), then (g1, g2) is a
cyclic subquasigroup. Let (g1, g2) = (¢) for some ¢’ € G. Then

g = <glag37"‘7gk>‘

Thus by simple induction on k we obtain that G is generated by two ele-
ments.

Let B be a set of all pairs (g1,92) of elements of G which generate G
(i.e., (g91,92) = G). Note that B is finite and non-empty.

Now from the set

{g1 € G: (g1, 92) € B for some g2 € G}

we choose an element g such that

[(9)| = min{|(g1)|: (g1,92) € B for some g» € G} (1)

Next, from the set
{92 € G: (g9,92) € B}

we choose an element h such that

[(h)| = min{[(g2)|: (9, 92) € B} (2)

Observe that
goh¢(g) and goh ¢ (h) (3)

Assume for example that goh € (g). Then h = ¢g\(g o h) € (g), so
(h) C (g), and consequently G = (g, h) = (g). But it is a contradiction with
the assumption that G is not cyclic.
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Thus (g), (h) and (g o h) are three different subquasigroups of G. Of
course (g) and (h) are not comparable (otherwise G would be cyclic).
By the condition (x) we have

(goh)=({goh)A(g)V ((goh)A(h)).
Let
Gi=(goh)A{g) = (goh)n(g)

and
Ga = (goh) A(h) =(goh)n(h)

Then Gi C (g) and Ga C (h). Moreover,

G1#(g9) or Ga#(h) (4)

Assume that both equalities hold. Then g and h both belong to (g o h),
because G1 and G are contained in (g o h). Hence (g, h) is contained in
(g o h), and consequently G = (g, h) = (g o h), which is impossible.

Since G1 C (g) S G, we have by the minimality of G, that Gy is cyclic,
ie.,

G1 = {g1) for some g;.
Analogously, Gs is also cyclic, i.e.,
Go = (h1) for some hj.

Assume first that
(91) G (9) (a.1)

Then [(g1)| £ [{g)]. So by the choice of g we obtain that for each element h
of G, g1 and h don’t generate G. In particular,

<917 h> ; g.

Hence (g1, h) has less elements than G, so (by the minimality of G) (g1, h)
is cyclic. Let g1 be an element of G such that

On the other hand,

G1 C (g91,h), G2 C(h) C(g1,h)
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and

<goh> =GV Gs.
Thus

gohe{goh)C{g,h)= (1)

Since (g1) contains goh and h, we obtain that (g7) contains also g, because
g = (g o h)/h. Hence, the cyclic quasigroup (g1) contains g and h, which
implies

G =g, h) = (q1)-
But it is impossible, because we have assumed that G is not cyclic.

Now assume that

Go = (h1) G (h) (a.2)
Then
[(h)| = [(R)],
so by the choice of h we obtain that g and h; don’t generate G, i.e.,
<g7 h’l) ; g

Hence, (g, h1) has less elements than G, so (g, h1) is cyclic (by the minimality
of G). Let hi be an element of G such that

(g, h) = (ha).

Similarly as in the first case we have
gohe€(goh)=G1VGs=(g1,h1) C (g,).

Since (h1) = (g, h1) contains goh and g, we have that (h;) contains also h,
because h = g\(g o h). This fact implies that

Thus we again obtain a contradiction.
Summarizing we have shown that G; = (¢g) and Go = (h). But it con-
tradicts (4), which completes the proof. O

Obviously any groupoid (in particular, each quasigroup) with at most
three elements in which each subgroupoid is cyclic, has at most four sub-
groupoids (together with the empty subgroupoid). In particular, its sub-
groupoid lattice is distributive.
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Unfortunately, there is a four-element quasigroup with a non-distributive
subquasigroup lattice, although each of its subquasigroups is cyclic. For
example, let Q@ = {a, b, c,d} be a quasigroup defined by the following mul-
tiplication table

olal|blc|d
alclal|d]|Db
bid|b|a]|c
c|bld|c]a
dla|c|b|d

Then (a) = (b,¢) = (b,d) = (c,d) = Q, and (b) = {b}, (¢) = {c}, {d} = {d}.
Thus Q has exactly five subquasigroups 0, (b), (¢), (d) and Q. These sub-
quasigroups form the non-distributive lattice M5 , so S(Q) is not dis-
tributive. Observe also that, for example, elements b and d (together with
bod = c) do not satisfy (x) of Lemma 1.

Now we show that even commutativity is not enough as an additional
assumption. Let Q be a commutative five-element quasigroup such that

—~

olal|b|lc|d]|e
alalc|d|b|e
blc|ble|d]|a
cld|le|c|alb
dib|d|ale]|c
elela|b|c|d

Then (a) = {a}, (b) = {b},(c) = {c} and (¢) = (d) = (a,b) = (a,c) =
(b,c) = Q. Thus 0, (a), (b), (c) and Q are all pairwise different subquasi-
groups of Q. Moreover, the lattice S(Q) is isomorphic with Ms3, so it is not
distributive. Note also that elements a and b do not satisfy (x) of Lemma 1.

Remark 1. For any commutative quasigroup Q with at most four elements,
if each subquasigroup of Q is cyclic, then the subquasigroup lattice S(Q) is
distributive.

It is true for an arbitrary groupoid with at most three elements, so we
take a four-element commutative quasigroup Q. Note that if each sub-
quasigroup of Q is cyclic, then Q has at most |Q| + 1 = 5 subquasigroups
(because the empty set is also a subquasigroup). But if a quasigroup has at
most four subquasigroups, then of course it has distributive subquasigroup
lattice. Thus we can take Q with exactly five subquasigroups (three proper
subquasigroups).
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Assume that S(Q) is not distributive. Then S(Q) is isomorphic with
the non-modular lattice N5 or with the non-distributive lattice M.

First we consider the case when S(Q) is isomorphic with AV5. Let G and
Go be proper subquasigroups of Q such that G; ; Go. Let ) # G3 ; Q be the
subquasigroup which is not comparable with G; and Gs (i.e., GsNGa =
and G3 V G; = Q). Let q generates Q; and ¢1, 92,93 generate Gi,Ga, G3
respectively. Of course q, g1, g2, g3 are pairwise different elements, i.e., Q =
{q, 91, 92,93}. Moreover, it is easy to see that G1 = {g1}, G2 = {g1, 92} and
Gs = {g3}. In other words we have

g1°91 =491, 9g3©°93 = 9gs, g2°9ga = dgi.

By the first equality and the definition of quasigroup we have also

92091 = g2 and g1 0g2 = g2,

because each of equations z o g1 = g1 and g; o x = ¢ has exactly one
solution.

These all equalities imply that g3 o g1 and g3 o go cannot be equal g3, ¢1
and g2. Thus g3 0 g1 = q and g3 o go = q. But it is impossible, because the
equation g3 o x = ¢ has two different solutions. This contradiction shows
that S(Q) cannot be isomorphic with Nj.

Now assume that S(Q) is isomorphic with M5. Then there are pairwise
different proper and non-comparable subquasigroups Gi,Ga,Gs of Q. Let
g1, 92, g3 generate these three subquasigroups, respectively. Let ¢ be a gener-
ator of Q. Of course ¢, g1, g2, g3 are pairwise different, so Q = {q, 91, 92,93}
Hence we obtain G = {g1}, G2 = {92}, G3 = {g3}. So

g1°4g1 =901, ¢G2°92 =492, ¢g3°gs = gs3.

Moreover, since q generate @ we have that ¢ o ¢ # ¢. Of course we can
assume that go ¢ = ¢g1. Then qo gy = g1 o ¢ is different from g; (because
the equation ¢ o x = g; has exactly one solution) and g o g1 is not equal ¢
(because g generates Q). Of course we can assume that g1 0o¢ =¢gog1 = ¢2
(replacing g3 by g2 if necessary).

Now observe that equalities goq = g1, g1 ©q = g2 and g3 0 g3 = g3
imply that g3 o ¢ cannot equals g1, g2 and g3. So g3 o ¢ = ¢. Analogously
gog1 = g2, 1091 = g1 and g3 0 g3 = g3 imply g3 © g1 = ¢. But these
equalities cannot hold in a quasigroup, because g1 # ¢. This contradiction
completes the proof.
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At the end of the paper observe that if G is a finite group satisfying the
condition () from Lemma 1, then G is cyclic, and consequently its subgroup
lattice S(G) is distributive. But the following example shows that for finite
(and even commutative) quasigroups the condition (%) is indeed weaker.

Let Q = (Q,0) be a commutative six-element quasigroup such that

ola|b|lc|d|e|f
alalc|fle|b]|d
blc|bla|f|d]|e
c|flald|ble|c
dle|f|b|d]|c]|a
e|bld|e|cl|al|f
fld|le|cla|f]|b

Then {a) = {a}, (b) = {b}, (d) = {d} and (c) = (e} = (f) = (a,) =
(a,d) = (b,d) = Q. So Q has exactly five subquasigroups (together with
the empty subquasigroup) which form the non-distributive lattice M.

On the other hand, we obtain by a straightforward verification that Q
satisfies (x). More precisely, if g € {c, e, f}, then (goh) A(g) = (goh)NQ =
(g o h); so (x) holds. The analogous situation we have for h € {c,e, f}. If
g,h € {a,b,d}, then goh € {c,e, f}; so (g oh) = Q which implies ()
(because then (goh) A (g) = (g) and (goh) A (h) = (h), thus the right hand
side of (x) equals (g) V (h) = Q).
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