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Subdirectly irreducible sloops and SQS-skeins

Magdi. H. Armanious and Enas. M. A. Elzayat

Abstract
It was shown in [2] that there is 8 classes of nonsimple subdirectly irre-
ducible SQS-skeins of cardinality 32 (SK(32)s). Now, we present the same
classi�cation for sloops of cardinality 32 (SL(32)s) and unify this classi-
�cation for both SL(32)s and SK(32)s in one table. Next, some recur-
sive construction theorems for subdirectly irreducible SL(2n)s and SK(2n)s
which are not necessary to be nilpotent are given. Further, we construct
an SK(2n) with a derived SL(2n) such that SK(2n) and SL(2n) are subdi-
rectly irreducible and have the same congruence lattice. We also construct
an SK(2n) with a derived SL(2n) such that the congruence lattice of SK(2n)

is a proper sublattice of the congruence lattice of SL(2n).

1. Introduction
A Steiner quadruple (triple) system is a pair (S; B) where S is a �nite set
and B is a collection of 4-subsets (3-subsets) called blocks of S such that
every 3-subset (2-subset) of S is contained in exactly one block of B (cf.
[13] and [17]). Let SQS(m) denotes a Steiner quadruple system (brie�y
quadruple system) of cardinality m and STS(n) be a Steiner triple system
(brie�y: triple system) of the cardinality n. It is well known that SQS(m)
exists i� m ≡ 2 or 4 (mod 6), and STS(n) exists i� n ≡ 1 or 3 (mod 6) (cf.
[13] and [17]). Let (S;B) be an SQS. If Sa = S−{a} for some point a ∈ S,
then deleting a from all blocks which contain it we obtain the triple system
(Sa; B(a)), where

B(a) = {b′ = b− {a} : b ∈ B and a ∈ b}.
The system (Sa; B(a)) is called a derived triple system (or brie�y DTS) of
(S; B) (cf. [13] and [17]).
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There is one-to-one correspondence between STSs and sloops. A sloop
(brie�y SL) L = (L; ·, 1) is a groupoid with a neutral element 1 satisfying
the identities:

x · y = y · x, 1 · x = x, x · (x · y) = y.

A sloop L is called Boolean if it satis�es the associative law.
Also, there is one-to-one correspondence between SQSs and SQS-skeins

(cf. [13] and [17]). An SQS-skein (brie�y: SK) (Q; q) is an algebra with a
ternary operation q such that

q(x, y, z) = q(x, z, y) = q(z, x, y), q(x, x, y) = y, q(x, y, q(x, y, z)) = z

is valid for all x, y, z ∈ Q. An SQS-skein (Q; q) satisfying the identity:

q(a, x, q(a, y, z)) = q(x, y, z)

is called Boolean. Any sloop associated with a given derived triple system is
also called derived. A sloop (Qa; ·, a) with the binary operation "·" de�ned
by x · y = q(a, y, z), where a ∈ Q, is called derived sloop of an SQS-skein
(Q; q) with respect to a ∈ Q.

A subsloop N of L is called normal if and only if N = [1]θ for a congru-
ence θ on L. Similarly, a sub-SQS-skein of Q is called normal if and only
if N = [a]θ for a congruence θ of Q (cf. [13] and [18]). The congruence θ
associated with the normal subsloop (sub-SQS-skein) N is given by:

θ = {(x, y) : x · y ∈ N}.

All congruences of sloops (SQS-skeins) are permutable, regular and uniform
(cf. [1] and [18]). Congruence lattices of sloops and SQS-skeins are modular.
Theorem 1. Every subsloop (sub-SQS-skein) M of a �nite sloop (L; ·, 1)
(SQS-skein (Q; q)) such that |L| = 2 |M | (resp. |Q | = 2 |M |) is normal.

If (G; +) is a Boolean sloop or, equivalently, a Boolean group, then
(G; q) with q(x, y, z) = x + y + z is a Boolean SQS-skein [1]. The class A0

of all Boolean sloops (SQS-skeins) is the smallest non-trivial subvariety of
the variety of all sloops (SQS-skeins).

A congruence θ on a sloop L or on an SQS-skein Q is called central, if
the diagonal relation ∆L (resp. ∆Q) is a normal subsloop (sub-SQS-skein)
of L (resp. Q). The largest central congruence is called the center of L
(resp. Q) and is denoted by ζ(L) (resp. ζ(Q)) (cf. [1] and [11]). A series of
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congruences 1 = θ0 ⊇ θ1 ⊇ θ2 ⊇ . . .⊇ θn = 0 (or ∆) is called central series
if θi/θi+1 ⊆ ζ(L/θi+1) (resp. θi/θi+1 ⊆ ζ(Q/θi+1)). If L (resp. Q ) contains
a central series, then L (resp. Q) is called nilpotent. If in nilpotent L (resp.
Q ) the smallest length of a central series is n, then it is called nilpotent of
class n (cf. [4] and [5]).

Lemma 2. (cf. [4] and [15]) If θ is a congruence on a sloop L or on an
SQS-skein Q and |[x]θ |= 2, then θ is a central congruence. Moreover, if
L (resp. Q) is subdirecly irreducible, then θ = ζ(L) (resp. θ = ζ(Q)).

2. Subdirectly irreducible SL(32)s and SK(32)s

For any congruence θ on a sloop L or on an SQS-skein Q we may de�ne
the dimension d(θ) as the length of the maximal chain between the smallest
congruence 0 (the diagonal relation) and θ in C(L) or C(Q). All maximal
chains in a �nite modular lattice have the same length [16].

All SL(16)s (also SK(16)s) can be divided into 5 classes according to the
shape of its congruence lattice or, equivalently, to the number of sub-SL(8)s
(sub-SK(8)s) (cf. [8] and [9]). Let L∗ (resp. Q∗) be an SL(16) (resp. SK(16))
and let θ∗ be an atom in C(L∗) (resp. C(Q∗)), then C(L∗/θ∗ ∼= S(Zr

2)) (resp.
C(Q1/θ∗)) ∼= S(Zr

2) (the lattice of all subgroups of the Boolean group Zr

2).
Consequently, for the length of the maximal chain in C(L) or C(Q)) we
have d(1) = r + 1 with r = 0, 1, 2, 3, 4. So, there are 5 classes for each of
SL(16)s and SK(16)s which are presented in Table 1. Examples for each
class of SL(16)s and SK(16)s and for an SK(16)s with a derived SL(16) for
all possible congruence lattices of SK(16) and its derived SL(16), can be
found in [8] and [9].

Armanious gave in [2] all 8 classes of nonsimple subdirectly irreducible
SK(32)s. The same classi�cation holds for nonsimple subdirectly irreducible
SL(32)s.

If in modular lattice two elements θ and ϕ cover θ∧ϕ, then θ∨ϕ covers
θ and ϕ [16]. Moreover, θ ∨ ϕ = θ ◦ ϕ in permutable varieties. This implies
that if θ and ϕ are atoms in the congruence lattice C(L) (resp. C(Q)) of a
�nite sloop (SQS-skein), then the congruence θ ∨ ϕ = θ ◦ ϕ covers θ and ϕ.
Also, the dimensions d(1) of the largest congruence 1 of both L/θ and L/ϕ
(resp. Q/θ and Q/ϕ) are the same.
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d(1) C(L∗) and C(Q∗)
are isomorphic to

Algebraic properties
of SL(16) = L∗ and
SQ(16) = Q∗

Properties of
the STS(15)
and SQS(16)

1
θ∗ = 1

| [x] | θ∗ = 16

L∗ and Q∗ are simple.
STS(15) has no
sub-STS(7)s
and SQS(16)
has no sub-
SQS(8)s.

2

|[x]| θ∗ = 8

C(L∗) and C(Q∗) have
one proper congruence.
L∗ and Q∗ are sub-
directly irreducible,
but not nilpotent.

STS(15) has
one sub-STS(7)
and SQS(16)
has two disjoint
sub-SQS(8)s.

3

| [x]θ∗ |= 4

C(L∗) and C(Q∗) have
3 co-atoms. L∗ and Q∗
are subdirectly
irreducible, but not
nilpotent.

STS(15) has 3
sub-STS(7)s
and SQS(16)
has 6 sub-
SQS(8)s.

4

|[x]θ∗ |= 2

C(L∗) and C(Q∗) have
7 co-atoms. The atom
θ∗ is the center of L∗
(resp. Q∗). L∗ and Q∗
are subdirectly
of nilpotence calss 2.

STS(15) has
exactly 7 sub-
STS(7)s and
SQS(16) has
exactly 14 sub-
SQS(8)s.

5
It has more
than one atom.

Both L∗ and Q∗
are Boolean. So
L∗ ∼= SL(2)4 and
Q∗ ∼= SK(2)4. It has
24 � 1 atoms and
24 � 1 co-atoms.

STS(15) has
exactly 15 sub-
STS(7)s and
SQS(16) has
exactly 30
sub-SQS(8)s.

Table 1. All classes of subdirectly irreducible sloops and SQS-skeins of cardinality 16.

So, d(1) = 1 i� L (resp. Q) is simple and d(1) = n if L (resp. Q) is
Boolean of the cardinality 2n. In general, 1 6 d(1) 6 n for each of SL(2n)
and SK(2n).
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Consider a sloop L = SL(32) and an SQS-skein Q = SK(32), in which
both L and Q are subdirectly irreducible with a monolith θ0. It is well-
known that there are simple SK(n)s and simple SL(n)s for each n ≡ 2 or 4
(mod 6) (see [1], [7], [10] and [18]). Except the case d(1) = 1, when SK(n)s
and SL(n)s are simple, we have four other cases d(1) = 2, 3, 4, 5. For each
d(1) = r, we have two di�erent classes of L/θ0 (resp. Q/θ0). In the �rst
class L/θ0 (resp. Q/θ0) is Boolean and has 2r−1 elements. In the second
L/θ0 (resp. Qθ0) is an SL(16) (resp. SK(16)) and belongs to the class r− 1
of Table 1. This means that the congruence lattice C(L) (resp. C(Q)) is
isomorphic to one of the following two lattices:

In the following table, we review the algebraic and combinatoric proper-
ties of each class of nonsimple subdirectly irreducible SL(32)s and SK(32)s.

d(1)
The lattices
C(L∗) and
C(Q∗)

Properties of SL(32) = L
and SQ(32) = Q

Properties of the
associated STS(31)
and SQS(32)

2 (a)

| [x]θ0 |= 2

Normal subalgebras of L
and Q have 2 elements.
Has no subalgebras of
cardinality > 8. Only
homomorphic images
of L/θ0 and Q/θ0 are
simple of cardinality 16.

STS(31) has
(15 · 14)/6
sub-STS(7)s.
SQS(32) has
(16 · 15 · 14)/24
sub-SQS(8)s.

2 (b)

| [x]θ0 |= 16

L has one sub-SL(16)
and Q has two disjoint
sub-SK(16)s. Only
proper homomorphic
images of L/θ0 and Q/θ0

are of cardinality 2.

STS(31) has only
one sub-STS(15).
SQS(32) has two
disjoint sub-
SQS(16)s. These
3 subsystems be-
longs to the classes
from Table 1.
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3 (a)

| [x]θ1 |= 16
| [x]θ0 |= 2

| L/θ0 |=| Q/θ0 |= 16,
| L/θ1 |=| Q/θ1 |= 2.
L/θ0 and Q/θ0 belong
to the class 2 from
Table 1. L(Q) has only
one normal sub-SL(16)
(two disjoint normal
sub-SK(16)s). These
subsystems belong to
the class 4(a) or
4(b) of Table 1.

STS(31) has
only one sub-
STS(15) and at
least (15 · 14)/6
sub-STS(7)s. The
SQS(32) has two
disjoint sub-
SQS(16)s and
at least
(16 · 15 · 14)/24
sub-SQS(8)s.

3 (b)

| [x]θ0 |= 8

| L/θ0 |=| Q/θ0 |= 4.
L(Q) has 3 normal
sub-SL(16)s (6 normal
sub-SK(16)s) and only
one normal
sub-SL(8) (4 disjoint
normal sub-SK(8)s).
Sub-SL(16)s and sub-
SK(16)s are not
simple and belong
to some nonsimple class
from Table 1.

The STS(31)
has exactly three
sub-STS(15)s and
the SQS(32) has
six sub-SQS(16)s.

4 (a)

| [x]θ1 |= 8
| [x]θ0 |= 2

| L/θ1 |=| Q/θ1 |= 4,
| L/θ0 |=| Q/θ0 |= 16.
L/θ0 and Q/θ0 belong
to the class 3 of Table 1.
L(Q) has three normal
sub-SL(16)s (6 normal
sub-SK(16)s) and
only one normal sub-
SL(8) (4 disjoint normal
sub-SK(8)s). Sub-
SL(16)s and sub-SK(16)s
belong to the class 4(a)
or 4(b) of Table 1.

STS(31) has only
3 sub-STS(15)s.
The associated
SQS(32) has 6
sub-SQS(16)s.
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4 (b)

| [x]θ0 |= 4

| L/θ0 |=| Q/θ0 |= 8.
L(Q) has 7 normal
sub-SL(16)s (14 normal
sub-SK(16)s) and only
one normal sub-SL(4)
(8 disjoint normal
sub-SK(4)s). Sub-
SL(16)s and sub-
SK(16)s belong to the
class 3 or 4 of Table 1.

The STS(31) has
exactly 7 sub-
STS(15)s.
The associated
SQS(32) has 14
sub-SQS(16)s.

5 (a)

| [x]θ1 |= 4
| [x]θ0 |= 2

| L/θ1 |=| Q/θ1 |= 8,
| L/θ0 |=| Q/θ0 |= 16.
L/θ0 and Q/θ0 belong
to the class 4(a) of
Table 1. θ0 is the center
of L(Q) and θ1/θ0 is the
center of L/θ0(Q/θ0).
L(Q) is of nilpotence
class 3 and has 7 normal
sub-SL(16)s (14 normal
sub-SK(16)s) and exactly
one normal sub-SL(4)
(8 disjoint normal sub-
SK(4)s) and one normal
sub-SL(2) (16 disjoint
normal sub-SK(2)s).

The STS(31) has
exactly 7 sub-
STS(15)s and the
associated SQS(32)
has exactly 14 sub-
SQS(16)s. All sub-
STS(16)s and sub-
SQS(16)s belong
to the class 4(a)
or 4(b) of Table 1.

5 (b)

| [x]θ0 |= 2

| L/θ0 |=| Q/θ0 |= 16.
L(Q) is nilpotent of
the class 2 and θ0 is its
center. L(Q) has 15
normal sub-SL(16)s (30
normal sub-SK(16)s) and
exactly one normal sub-
SL(2) (16 disjoint normal
sub-SK(2)s). Sub-
SL(16)s and sub-SK(16)s
belong to the class 4(a)
or 4(b) of Table 1.

STS(31) has
exactly 15 sub-
STS(15)s and
the associated
SQS(32) has
exactly 30 sub-
SQS(16)s.
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3. Subdirectly irreducible SL(2n)s and SK(2n)s
In this section, we �nd recursive constructions for subdirectly irreducible
sloops and SQS-skeins, i.e., for subdirectly irreducible SK(n) = Q∗ and
SL(n) = L∗ with a monolith θ∗, we construct subdirectly irreducible Q =
SK(2n) (resp. L = SL(2n)) having a homomorphic image which congruent
to Q∗ (resp. to L∗).

For a given subdirectly irreducible SK(n) and SL(n) of nilpotence class
k > 1 Guelzow (cf. [14], [15]) and Armanious (cf. [3], [4], [5]) constructed
a subdirectly irreducible SK(2n) (resp. SL(2n)) of nilpotence class k + 1.
Below, basing on results of [15] and [4], we present three recursive construc-
tions for subdirectly irreducible SQS-skeins and sloops. Namely, for a given
subdirectly irreducible SK(n) and SL(n) (not necessary nilpotent or sim-
ple) with a monolith, we construct a subdirectly irreducible SK(2n) (resp.
SL(2n)).

Construction. Let Q∗ = (Q∗; q∗) be an SK(n) and L∗ = (L∗; ∗, 1) be an
SL(n). Let L∗ = Q∗ = {x0, x1, . . . , xn−1} and R be a set of sub-SK(4)s
of Q∗ (sub-SL(4)s of L∗), where x0 denotes the unit 1 of sloops. Consider
the binary operation • on L = L∗ ×GF (2) and the ternary operation q on
Q = Q∗ ×GF (2) de�ned as follows:

q((x, ix), (y, iy), (z, iz)) = (q∗(x, y, z), ix + iy + iz + χR〈x, y, z〉Q∗),
(x, ix) • (y, iy) = (x ∗ y, ix + iy + χR〈x, y〉L∗),

where χR is the characteristic function such that χR〈x, y, z〉Q∗ = 1 if
〈x, y, z〉Q∗ generates a sub-SK(4) ∈ R, and 0 otherwise; χR〈x, y〉L∗ = 1
if 〈x, y〉L∗ generates a sub-SL(4) ∈ R, and 0 otherwise.

It easy to prove that Q = (Q; q) is an SK(2n) and L = (L; •) is an
SL(2n) (for details see [15] and [4]). In the sequel, the SQS-skein Q and
the sloop L will be denoted by 2×R Q∗ and 2×R L∗, respectively.

If R is empty, then χR〈x, y, z〉Q∗ = 0 for x, y, z ∈ Q∗ and χR〈x, y〉L∗ = 0
for x, y ∈ L∗. Thus (Q; q) = Q∗ × SK(2) and (L; •, (1, 0)) = L∗ × SL(2).
If R is the set of all sub-SK(4)s of Q∗ (resp. sub-SL(4)s of L∗), then Q(L)
is Boolean or of nilpotence class k + 1 if and only if Q∗L∗) is Boolean or
of nilpotence class k > 1, respectively. Moreover, Q is semi-boolean if and
only if Q∗ is semi-boolean (see [15]).

Lemma 3. Let Q∗ (resp. L∗) be a subdirectly irreducible SQS-skein (sloop)
with monolith θ∗ and let R be the set of sub-SK(4)s (sub-SL(4)s). The con-
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structed SKS-skein 2×RQ∗ (resp. sloop 2×RL∗) has a congruence θ1 which
covers all its minimal congruences.
Proof. The projection π from Q(L) into the �rst component is onto ho-
momorphism and the congruence kerπ = θ0 on Q(L) is determined by the
relation {((x, i), (x, j)) : ∀x ∈ Q∗(L∗), ∀i, j ∈ {0, 1}}. Now Q/θ0

∼= Q∗ and
L/θ0

∼= L∗. Since θ∗ is the monolith of Q∗ and L∗, Q/θ0 (resp. L/θ0) has
a monolith θ1/θ0 for a congruence θ1 on Q (resp. on L). Thus θ1 is the
unique congruence in C(Q) (resp. C(L)) which covers θ0. If δ is another
atom of C(Q) (resp. C(L)), then δ ◦ θ0 = θ1 covers δ and θ0. Therefore, θ1

covers all atoms of C(Q) (resp. C(L)).

Moreover, since | [(x0, 0)]θ0 |= 2, it follows that if | [(x0)]θ∗ |= m, then
| [(x0, 0)]θ1 |= 2m.

Guelzow [15] and Armanious [4] for a given subdirectly irreducible SK(n)
= Q∗ (SL(n) = L∗) of nilpotence class k with a minimal congruence θ∗
such that | [x]θ∗ |= 2 constructed subdirectly irreducible SK(2n) = Q and
SL(2n) = L of nilpotence class k +1.

Below we prove that for a subdirectly irreducible SK (n) = Q∗ (resp.
SL(n) = L∗) with a monolith θ∗ for each possible cardinality of |[x]θ∗ | the
constructed Q = 2 ×R Q∗ (resp. L = 2 ×R L∗) is subdirectly irreducible.
Note that Q∗ and L∗ are not nilpotent, in general.

In the following three theorems, let x0 be the unit 1 of sloops, ∗ the
binary operation on L∗ and • the operation on L, i.e., x ∗ y = q∗(x0, x, y)
on the set Q∗ and (x, i) • (y, j) = q((x0, 0), (x, i), (y, j)) on the set Q .

The proof of the theorem presented below is analogous to the proof of
the corresponding theorems for nilpotent SQS-skeins and sloops from [3]
and [4].
Theorem 4. Let n > 8. If SK(n) = Q∗ (resp. SL(n) = L∗) is subdirectly
irreducible with a monolith θ∗ = ∪{{xi, xi+1}2 : i = 0, 2, . . . , n − 2} and
R = {x0, x1, x2, x3}, then the constructed SQS-skein Q = 2 ×R Q∗ (resp.
sloop L = 2×R L∗) is also subdirectly irreducible.

Proof. As in Lemma 3, θ0 = {((x, i), (x, j)) : x ∈ Q∗, i, j ∈ {0, 1}} (resp.
x ∈ L∗) is an atom of C(Q)(resp.C(L)) and θ1 ∈ C(Q) (resp. C(L)) is the
unique congruence covering all atoms of C(Q) (resp. C(L)). The theorem
will be proved if we show that the congruence θ0 is the unique atom in the
congruence lattice C(Q) (resp. C(L)). If there is another atom δ 6= θ0 in
the congruence lattice C(Q) (resp. C(L)), then δ ◦ θ0 = θ1 covers both
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δ and θ0. Since [x0]θ∗ = {x0, x1} and | [(x0, 0)]θ0 |= 2 , it follows that
| [(x0, 0)]θ1 |= 4. Then [(x0, 0)]θ1 = {(x0, 0), (x0, 1), (x1, 0), (x1, 1)}. This
means that if there is another atom δ in C (Q) (resp. C (L)), then

[(x0, 0)]δ = {(x0, 0), (x1, 0)} or [(x0, 0)]δ = {(x0, 0), (x1, 1)},

which is impossible.Indeed, each 2-element subset {x, y} of an SK is a sub-
SK(2) and for each element x of an SL the set {1, x} is a sub-SL(2). Also, if
θ is a congruence on an SK (resp. SL), then [x]θ∪[y]θ([1]θ∪[x]θ) is a sub-SK
(sub-SL). In addition, xθy if and only if q(a, y, z)θa (resp. x · yθ1). More-
over, for 3 distinct elements x, y, z, we have q(x, y, z) /∈ {x, y, z} because,
for example, q(x, y, z) = z implies y = q(x, z, q(x, z, y)) = q(x, z, z) = x.

In the case of SQS-skeins, according to the de�nition of θ∗, we see that
{x0,x1}∪{x2,x3} and {x0, x1}∪{x4, x5} are sub-SK(4). Thus q∗(x0, x1, x2) =
x3 and q∗(x0, x1, x4) = x5. So, q∗(x0, x2, x4) = xk and [xk]θ∗ = {xk, xk+1}.
Therefore, q∗(x0, xk, xk+1) = x1.

For [(x0, 0)]δ = {(x0, 0), (x1, 0)}, we have q((x0, 0), (x2, 0), (x3, 1)) =
(x1, 0) and q((x0, 0), (x4, 0), (x5, 0)) = (x1, 0). Thus (x2, 0)δ(x3, 1) and
(x4, 0)δ(x5, 0). But (x0, 0)δ(x0, 0), so, (q∗(x0, x2, x4), 0)δ(q∗(x0, x3, x5), 1),
i.e., (xk, 0)δ(q∗(x0, x3, x5), 1). This means that (q∗(x0, x3, x5), 1) ∈ [(xk, 0)]δ,
which is a contradiction because [(xk, 0)]δ = q((x0, 0), (xk, 0), [(x0, 0)]δ) =
{(xk, 0), (xk+1, 0)}, where q∗(x0, xk, xk+1) = x1.

For [(x0, 0)]δ = {(x0, 0), (x1, 1)}, we have q((x0, 0), (x2, 0), (x3, 0)) =
(x1, 1) and q((x0, 0), (x4, 0), (x5, 1)) = (x1, 1). Whence (x2, 0)δ(x3, 0) and
(x4, 0)δ(x5, 1). This implies that (q∗(x0, x2, x4), 0)δ(q∗(x0, x3, x5), 1). Thus
(xk, 0)δ(q∗(x0, x3, x5), 1). From this, as a simple consequence, we obtain
q((x0, 0), (x5, 1), (xk, 0))δq((x0, 0), (x5, 1), (q∗(x0, x3, x5), 1)). This means
that (q∗(x0, x5, xk), 1)δ(x3, 0), i.e., (q∗(x0, x5, xk), 1) = (x2, 0) or (x3, 0),
which is impossible.

Therefore, the congruence θ0 is the unique atom of C(Q).

Note that for each positive integers n and k there exists a subdirectly
irreducible SK(2n) (resp. SL(2n)) of nilpotence class k with a monolith θ∗
such that | [x]θ∗ |= 2 (cf. [15] and [4]).

The above results we can summarize in the following table:
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If Q∗ (resp. L∗) is a subdirectly irreducible SK(n)
(resp. SL(n)) for n ≥ 16 with a monolith θ∗ such
that |[x]θ∗ |= 2, then the constructed SQS-skein
Q (sloop L) is a subdirectly irreducible with a
congruence lattice C(Q) (resp. C(L)) isomorphic
to the lattice Γ and C(Q∗) (resp. C(L∗)) is equal
to [θ0 : 1]. Note that in general Q∗ and L∗ are
not nilpotent.
In particular, Q∗ (resp. L∗) may be of nilpotence
class t > 1 of cardinality n = 2r+t, r > 3, with
C(Q∗) (resp. C(L∗)) isomorphic to Γ1. Then
Q(L) is of nilpotence class t + 1 having a
congruence lattice C(Q) (resp. C(L)) isomorphic
to Γ2 with | [x]θi |= 2i+1 (i = 0, 1, . . . , t− 1)
and Q/θ0

∼= Q∗ (resp. L/θ0
∼= L∗). Also, θi+1/θi

is the center and in the same time is the monolith
of Q/θi (resp. L/θi). For example, let r = 3 and
t = 1, then Q∗ =SK(16) (resp. L∗ =SL(16))
belongs to the class 4(a) of Table 1 and
Q =SK(32) (resp. L =SL(32)) belongs to the
class 5(a) of Table 2.

Theorem 5. Let (Q∗; q∗) (resp. L∗; ∗, 1)) be a subdirectly irreducible SQS-
skein (resp. sloop) of cardinality n > 8 with a minimum congruence θ∗ such
that | [x]θ∗ |= 4. If R = [x0]θ∗ is a sub-SK(4) (resp. sub-SL(4)), then the
constructed SQS-skein Q = 2×R Q∗ (sloop L = 2×R L∗) is also subdirectly
irreducible.

Proof. As in Lemma 3, θ0 is an atom and θ1 is the unique congruence
covering θ0 in C(Q) (resp. in C(L)). Similar to the above theorem, it is
su�ces to show that θ0 is the unique atom in the congruence lattice C(Q)
(resp. C(L)).

If there is another atom δ in C(Q)(C(L)), then θ1 covers δ and θ0, and
also δ ◦ θ0 = θ1. If [x0]θ∗ = {x0, x1, x2, x3}, then

[(x0, 0)]θ1 = {(x0, 0), (x1, 0), (x2, 0), (x3, 0), (x0, 1), (x1, 1), (x2, 1), (x3, 1)}.

This means that the class [(x0, 0)]θ1 is divided in to two subclasses [(x0, 0)]δ
and [(x0, 1)]δ such that both (x, 0) and (x, 1) can not be in the same sub-
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class. Indeedd, if (x, 0)δ(x, 1), then

q((x0, 0), (x, 0), (x, 1)) = (q∗(x0, x, x), 1) = (x0, 1) ∈ [(x0, 0)]δ,

which implies [(x0, 0)]δ ⊇ [(x0, 0)]θ0. But this is impossible.
If (x1, 0) and (x2, 0) ∈ [(x0, 0)]δ, then

q((x1, 0), (x2, 0), (x0, 0)) = (q∗(x1, x2, x0), 1) = (x3, 1).

Thus, (x3, 1) ∈ [(x0, 0)]δ. If (x1, 1), (x2, 1) ∈ [(x0, 0)]δ, then

q((x1, 1), (x2, 1), (x0, 0)) = (q∗(x1, x2, x0), 1) = (x3, 1),

which gives (x3, 1) ∈ [(x0, 0)]δ. This means that [(x0, 0)]δ contains exactly
3-element subset of the set {x0, x1, x2, x3} × {0, 1} with the same second
component.

We have |[(x0, 0)]δ| = 4 and |[(x0, 0)]θ1| = 8. Without loss of generality,
we can assume that
(i) [(x0, 0)]δ = {(x0, 0), (x1, 0), (x2, 0), (x3, 1)} or
(ii) [(x0, 0)]δ = {(x0, 0), (x1, 1), (x2, 1), (x3, 1)}.
Case (i) for SQS-skeins: Assume that (x, 0) ∈ Q such that x /∈ {x0, x1, x2, x3},
then:

[(x, 0)]δ = q((x, 0), (x0, 0), [(x0, 0)]δ)
= {q((x, 0), (x0, 0), (x0, 0)), q((x, 0), (x0, 0), (x1, 0)),

q((x, 0), (x0, 0), (x2, 0)), q((x, 0), (x0, 0), (x3, 1))}
= {(x, 0), (q∗(x, x0, x1), 0), (q∗(x,x0, x2), 0), (q∗(x, x0, x3), 1)}

and
[(q∗(x, x0, x3), 1)]δ = q((q∗(x, x0, x3), 1), (x0, 0), [(x0, 0)]δ)

= {q((q∗(x, x0, x3), 1), (x0, 0), (x0, 0)),
q((q∗(x, x0, x3), 1), (x0, 0), (x1, 0)),
q((q∗(x, x0, x3), 1), (x0, 0), (x2, 0)),
q((q∗(x, x0, x3), 1), (x0, 0), (x3, 1))}

= {(q∗(x, x0, x3), 1), (q∗(q∗(x, x0, x3), x0, x1), 1),
(q∗(q∗(x,x0, x3), x0, x2), 1), (x, 0)}.

This means that [(x, 0)]δ ∩ [(q∗(x, x0, x3), 1)]δ 6= ∅ and [(x, 0)]δ is
not identical with [(q∗(x, x0, x3), 1)]δ, which contradicts the fact that δ is a
congruence. So, this case is impossible.

In a similar way we can prove that also the second case is impossible.
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Theorem 6. Let (Q∗; q∗) (resp. (L∗; ∗, 1)) be a subdirectly irreducible SQS-
skein (resp. sloop) of cardinality n > 8 with a minimum congruence θ∗
such that |[x]θ∗| > 4. If R = {x0, x1, x2, x3} is a sub-SK(4) of Q∗ (resp.
sub-SL(4) of L∗) contained in [x0]θ∗, then the constructed SQS-skein Q =
2×R Q∗ (sloop L = 2×R L∗) is also subdirectly irreducible with a monolith
θ0 and Q/θ0

∼= Q∗ (resp. L/θ0
∼= L∗).

Proof. As in Lemma 3, θ1 is the unique congruence covering the atom θ0

and all other atoms in C(Q) (resp. C(L)). We need only prove that θ0 is
the unique atom in the congruence lattice C(Q) (resp. C(L)). Assume that
there is another atom δ of C(Q) (resp. C(L)). Then θ1 = δ ◦ θ0 covers
both δ and θ0. Since | [(x, ix)]θ0 |= 2 and θ1 covers δ, it follows that if
| [(x, ix)]θ1 |= 2m, then | [(x, ix)]δ |= m.

Let [x0]θ∗ = {x0, x1, x2, x3, . . . , xm−1}, then
[(x0, 0)]θ1 = {(x0, 0), (x1, 0), (x2, 0), . . . , (x0, 1), (x1, 1), (x2, 1), . . . }.
This means that the class [(x0, 0)]θ1 is divided in to two disjoint sub-

classes [(x0, 0)]δ and [(x0, 1)]δ. In the same manner as in the previous
proof, we can prove that [(x0, 0)]δ contains exactly 3-element subset of the
set {x0, x1, x2, x3} × {0, 1} with the same second component.

Now, |[(x0, 0)]δ| > 4, i.e., |[(x0, 0)]θ1| > 8 and R = {x0, x1, x2, x3}. So,
[(x0, 0)]δ = {(x0, 0), (x1, 0), (x2, 0), (x3, 1), (a1, 0),

. . . , (ai, 0), (b1, 1), . . . , (bj , 1)}
or

[(x0, 0)]δ = {(x0, 0), (x1, 1), (x2, 1), (x3, 1), (a1, 0),
. . . , (ai, 0), (b1, 1), . . . , (bj , 1)},

where x0, x1, x2, x3, a1, a2, . . . , ai, b1, b2, . . . , bj are m distinct elements.
In the �rst case for SQS-skeins for all (ah, 0) ∈ [(x0, 0)]δ with ah /∈

{x0, x1, x2, x3}, we have q((x3, 1), (ah, 0), (x0, 0)) = (bk, 1) ∈ [(x0, 0)]δ and
(bk, 1) 6= (x3, 1). Moreover, if (ah1 , 0) 6= (ah2, 0), then (bk1 , 1) 6= (bk2 , 1).
Also, for all (bh, 1) ∈ [(x0, 0)]δ with bh /∈ {x0, x1, x2, x3}, we can see that
q((x3, 1), (bh, 1), (x0, 0)) = (al, 0) ∈ [(x0, 0)]δ for (al, 0) 6= (x0, 0), (x1, 0) or
(x2, 0). Also, if (bh1 , 1) 6= (bh2 , 1), then (ak1 , 0) 6= (ak2 , 0). This implies that
the sets {a1, a2, . . . , ai} and {b1, b2, . . . , bj} have the same cardinality. Then
i = j > 1. Let i = j = r, then
[(x0, 0)]δ={(x0, 0), (x1, 0), (x2, 0), (x3, 1), (a1, 0), ..., (ar, 0), (b1, 1), ..., (br, 1)}.
Hence the class [(x0, 0)]δ is a sub-SQS-skein having r + 3 elements with
the second component 0 and r+1 elements with the second component 1.
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But q((b1, 1), (x0, 0), {(x0, 0), (x1, 0), (x2, 0), (a1, 0), . . . , (ar, 0)} gives r + 3
distinct elements with second component 1, which is impossible.

In the second case we obtain a similar contradiction. This proves that
θ0 is the unique minimal congruence on Q (resp. L).

In view of Theorems 5 and 6 we get the following constructions:

If Q∗ (resp. L∗) is a subdirectly irreducible SK(n)
(resp. SL(n)) for n ≥ 16 with a monolith θ∗
satisfying | [x]θ∗ |> 2, then Q∗ (resp. L∗) is not
nilpotent. The constructed SQS-skein Q
(sloop L) is a subdirectly irreducible having
a congruence lattice C(Q) (resp. C(L))
isomorphic to Γ2 and C(Q∗) = [θ0 : 1]
(resp. C(L∗) = [θ0 : 1]) isomorphic to Γ1. The
sublattice [θ∗ : 1] of Γ1 is not necessary to be
isomorphic to S(Zr

2).
In particular, if Q∗ (resp. L∗) is a subdirectly
irreducible SK(2n) (resp. SL(2n)) for n > 4
with a monolith θ∗ such that |[x]θ∗| = 2r, then
then the constructed SQS-skein Q (resp. sloop L)
is a subdirectly irreducible and has a congruence
lattice C(Q) (resp. C(L) isomorphic to Γ2 and
C(Q∗) = [θ0 : 1] (resp. C(L∗) = [θ0 : 1])
isomorphic to Γ1. Indeed, |[x]θ1| = 2r+1 and
|[x]θ0| = 2, for each n > 4 and r = n, n− 1, . . . , 1.
Note that Q∗ (resp. L∗) is not nilpotent for
r > 1 and Q∗ (resp. L∗) is simple for r = n.

Examples. 1. For n = 4 and r = 3, 2 or 1, we may choose an SK(24) =
Q∗ (resp. SL(24) = L∗) belonging to the classes 2, 3 or 4(a) of Table
1, respectively. Applying Theorems 6, 5 and 4 to Q∗ (resp. L∗), we get
three examples of a subdirectly irreducible SK(25) = Q (resp. SL(25) = L)
belonging to classes 3(a), 4(a) and 5(a) of Table 2.
2. For n > 3 and r = n, we observe that Q∗ (resp. L∗) is simple of
cardinality 2n and the congruence lattice of C(Q) (resp. C(L)) is a chain of
length 2, i.e., θ1 is the largest congruence in C(Q) (resp. C(L)) and θ0 is the
monolith. For instance, take r = n = 4 and choose a simple SK(24) = Q∗
(resp. SL(24) = L∗) as in the class 1 of Table 1. In view of Theoerem 6, we
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get a subdirectly irreducible SK(25) = Q (resp. SL(25) = L) belonging to
the class 2(a) of Table 2.
3. In [6] and [7] Armanious has shown that if we have a simple SK(n) = Q∗
(resp. SL (n) = L∗), then there is a subdirectly irreducible SK(2n) (resp.
SL(2n)) having only one proper congruence. In particular, for n = 16,
choose a simple SK(16) = Q∗ (resp. SL(16) = L∗) the construction SK(32)=
2 ⊗α Q∗ [7] (resp. SL(32) = 2 ⊗α L∗ [6]) is an example of a subdirectly
irreducible SK(32) (resp. SL(32)) belonging to the class 2(b) of Table 2.
4. For n > 3 and r = 0, Q∗ (resp. L∗) is Boolean of cardinality 2n.
According to the constructions given in [15] and [5], we may say that there
is a subdirectly irreducible SK(2n+1) = Q (resp. SL(2n+1) = L) with
a monolith θ0 such that Q/θ0 (resp. (L/θ0) is a Boolean SK(2n) (resp.
SL(2n)). For instance, let n = 4 and r = 0, then the constructed SK(25) =
Q (resp. SL(25) = L) is an example of 5(b) of Table 2. ¤

In fact, these theorems permit us to construct examples for 6 classes of
Table 2, but it is not enough to construct examples for classes 3(b) and 4(b).

3.1. The SQS-skein 2×R Q∗ having 2×R L∗ as a derived sloop
In [4] Armaniuous has constructed a nilpotent SQS-skein of whose all de-
rived sloops are nilpotent of the same class and both have the same congru-
ence lattice. Also, he has constructed [7] a subdirectly irreducible SK(2n)
having a derived subdirectly irreducible SL(2n) for n > 8, in which the
congruence lattice of each of SL(2n) and SK(2n) are isomorphic to a chain
of length 2.

Let L∗ be a derived sloop of the SQS-skein Q∗ with respect to the element
x0, in which L∗ and Q∗ are subdirectly irreducible with the same monolith
θ∗ (Theorems 4, 5 and 6). Let R be the same 4-element subalgebra {x0, x1,
x2, x3} in both Q∗ and L∗ such that R = [x0]θ∗ ∪ [x2]θ∗ (as in Theorem 4),
R = [x0]θ∗ as in Theorem 5 and R ⊆ [x0]θ∗ as in Theorem 6. Therefore,
x ∗ y = q∗(x0, x, y), and consequently χR〈x, y〉L∗ = χR〈x0, x, y〉Q∗ for all
x, y ∈ L∗ = Q∗. Hence (x, ix) • (y, iy) = q((x0, 0), (x, ix), (y, iy)) for all
(x, ix), (y, iy) ∈ L = Q, this means directly that the constructed sloop
L =2 ×R L∗ is derived sloop of the constructed SQS-skein Q = 2 ×R Q∗.
Therefore, we have the following result.
Corollary 7. Let L∗ be a derived sloop of the SQS-skein Q∗ with respect
to the element x0 and let both Q∗ and L∗ be subdirectly irreducible having a



248 M. H. Armanious and E. M. A. Elzayat

monolith θ∗. If θ∗ and R = {x0, x1, x2, x3} are de�ned as stated in Theorem
4, 5 and 6, then the sloop L = 2 ×R L∗ is always a derived sloop of the
SQS-skein Q = 2×R Q∗ with respect to (x0, 0) for each case of θ∗. |Box

We may choose an SQS-skein Q∗ with a derived sloop L∗ and both
Q∗ and L∗ are subdirectly irreducible of cardinality n (or in particular of
cardinality 2n). In view of Theorems 4, 5, 6 and Corollary 7, we may say
that:

There is an SQS-skein Q = 2×R Q∗ with a derived sloop L = 2×R L∗ of
cardinality n (or 2n), in which both Q and L are subdirectly irreducible of
cardinality 2n (or 2n+1) having the same congruence lattice for each possible
number n. In particular, there is always an SK(32) with a derived SL(32),
both are subdirectly irreducible and have the same congruence lattices.

Note that the construction of a semi-Boolean SQS-skein Q (each derived
sloop L of Q is Boolean) given in [14] guarantees that C(Q) is a proper
sublattice of the congruence lattice C(L) of its derived sloop L. Also each
nonsimple SL(16) = L can be extended to a nonsimple SK(16) = Q with
all possible congruence lattice C(Q) as a sublattice of C(L) (for details see
[8]).

We know that if L∗ is a derived sloop from Q∗, then each congruence
on Q∗ is a congruence on L∗. If both Q∗ and L∗ are subdirectly irreducible,
then the monolith ϕ∗ of Q∗ is a congruence on L∗ containing the monolith
θ∗ of L∗ (examples for L∗ = SL(16) and Q∗ = SK(16) one can �nd in
[8]). This means that we can choose the sub-SL(4) = R = [x0]θ∗ ∪ [x0]θ∗,
R = [x0]θ∗ or R ⊆ [x0]θ∗, if |[x0]θ∗| = 2, 4 or > 4, respectively. Note that
x0 represents the unit of L∗. Since ϕ∗ ⊇ θ∗, R is a sub-SK(4) such that

R = [x0]ϕ∗ ∪ [x0]ϕ∗ if | [x0]ϕ∗ |=| [x0]θ∗ |= 2,
R = [x0]ϕ∗ if | [x0]ϕ∗ |= 4 and | [x0]θ∗ |= 2 or 4,
R ⊆ [x0]ϕ∗ if | [x0]ϕ∗ |> 4 and | [x0]θ∗ |= 2, 4 or > 4.

In view of Theorems 4, 5 and 6, Q = 2 ×R Q∗ and L = 2 ×R L∗
are subdirectly irreducible with a monolith θ0 such that L/θ0

∼= L∗ and
Q/θ0

∼= Q∗. And as a result of Corollary 7, L is a derived sloop of Q , which
means that C(Q) is a proper sublattice of C(L), if ϕ∗ properly contains θ∗.
In particular, we may construct the following examples:
Examples. Let L∗ = SL(16) be a derived sloop of Q∗ = SK(16). The
result obtained in [8] enables us to choose L∗ belonging to class 4(a) and
Q∗ belonging to class 4(a), 3 or 2 of Table 1. Now, we may construct an
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SQS-skein SK(32) = 2 ×R Q∗ with a derived sloop SL(32) = 2 ×R L∗, in
which the SL(32) belongs to the class 5(a) of Table 2. The SK(32) will
belong to the class 5(a) of Table 2, if Q∗ belongs to the class 4(a) of Table
1. Also, the SK (32) will belong to 4(a) or 3(a) of Table 2, if Q∗ belongs to
the class 3 or 2 of Table 1, respectivly. For the last two cases the congruence
lattice C(SK(32)) is a proper sublattice of C(SL(32)). ¤

A natural open problem for future investigations is a construction of an
SQS-skein Q with a derived sloop L for which a congruence lattice C(Q) is
a sublattice of C(L).
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