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S-systems of n-ary quasigroups

Galina Belyavskaya

Abstract

In the theory of binary quasigroups the notions of a right (left) S-system
and an S-system [1] are known. An S-system is simultaneously a left and
right S-system. We introduce (k)-S-systems and S-systems (otherwise than
in [10]) of n-ary quasigroups for n > 2 and 1 < k < n, give examples of
such systems and prove that any (k)-S-system, given on a finite set, is a
pairwise orthogonal set (|3]) of n-ary operations.

1. Introduction

In the theory of binary quasigroups the notion of a right (left) Stein system
(shortly, a right S-system or a left S-system) is known. Such system is
defined in the following way [1].

A system Q(X), ¥ = {E, A7} (¥ = {F, Aj}, where Aj denotes the
sequence Aj, Ag, ..., As), which consists of binary quasigroups and the right
(left) identity operation E (F): E(z,y) =y (F(z,y) = =) given on a set @
is called a right (left) S-system if ¥ is a group with respect to the Stein’s
right (left) multiplication - (o) of binary operations:

(A- B)(z,y) = Az, B(z,y)) (Ao B)(z,y) = A(B(,y),y))-

A system Q(X), ¥ = {E, F, Aj}, is called an S-system if ¥’ = {E, A5}
(X" ={F, Aj}) is a right (left) S-system.

Finite binary S-systems are completely described in the works [1], [5],
[6] by V.Belousov, G. Belyavskaya and A. Cheban.
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Any two operations A and B on a set @ from a right (left) S-system
Q(X) of binary quasigroups are orthogonal, that is the pair of equations
A(z,y) = a,B(z,y) = b has a unique solution for any a,b € @ and any
A, BeX A#B.

In this article we introduce (k)-S-systems of n-ary quasigroups for n > 2,
1 < k < n, give some examples of such systems and prove that any finite (k)-
S-system is a pairwise orthogonal set. We also consider S-systems of n-ary
quasigroups in the more natural sense, than the S-systems of T. Yakubov
[10], and prove that such a finite S-system contains only one n-quasigroup,
whereas S-systems of [10] do not at all exist.

2. Necessary notions and results

We recall some notations, concepts and results which are used in the article.
At first remember the following notations from [2]. By 2 we will denote
the sequence x;, xiq1,...,2;, 1 < j. If j <1, then mf is the empty sequence,
I,n=1{1,2,...,n}. Let @ be a finite or an infinite set, n > 2 be a positive
integer and let Q™ denote the Cartesian power of the set Q.

An n-ary operation A (briefly, an n-operation) on a set () is a mapping
A: Q" — Q defined by A(z}) — zp41, and in this case we write A(z}) =
Tn+41-

A finite n-groupoid (Q, A) of order m is a set Q with one n-ary operation
A defined on @, where |Q| =m > 2.

An n-ary quasigroup (n-quasigroup) is an n-groupoid such that in the
equality

A(22) = 2ot

every n elements from z"! uniquely define the (n+ 1)-th element. Usually
a quasigroup n-operation A is itself considered as an n-quasigroup.

The n-operation Ej, 1 < k < n, on a set Q with Eg(x]) = xy, is called
the k-th identity operation (or the k-th selector) of arity n.

An n-operation A on Q is called k-invertible for some k € 1,n if the
equation

A(alf_lﬂ Lk, aZ—H) = Qn+1

has a unique solution for each fixed n-tuple (a®~1, ap.1,ant1) € QM.

For a k-invertible n-operation there exists the k-inverse n-operation (¥A

defined in the following way:

WA, 1, 2] ) = o & A]) = 20
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for all :E’f+1 e Q.
It is evident that

A WA@Y, 2 ) = WA@Y A, 2y, = oy

and ® [ A] = A for k € T, n.
Let ©,, be the set of all n-ary operations on a finite or an infinite set Q.
On (2, define a binary operation @ (the k-multiplication) in the following
k

way:
(A& B)(a7) = Ay, B(a), i),

A, B € Q,, 27 € Q™. Shortly this equality can be written as

A®B=AE{™", B, Ej\\1)
k

where Ep. is the k-th selector.
In [11] it was proved that (€2, ®) is a semigroup with the identity Ej. If
k

Ay is the set of all k-invertible n-operations from €, for some k € 1,n, then
(Ak, @) is a group. In this group F is the identity, the inverse element of A
k

is the operation "W A € Ay, since AGE), = E,0A, AoWA =R ASA = Ey.
k k k k

An n-ary quasigroup (@, A) (or simply A), is an n-groupoid with an
k-invertible n-operation for each k € 1,n [2].

Let (z7); denote the (n — 1)-tuple (51, 2t 1) € Q" ! and let A be an
n-operation, then the (n — 1)-operation Ag:

Aa(w?)k = A(Jf’f_l, a, CL‘Z+1)

is called the (n — 1)-retract of A, defined by position k, k € 1,n, with the
element a in this position (with x; = a).

If in an n-operation A we fix all positions except two positions k and [
we obtain a binary operation A(xy, ;) = A(alf_l,mk,aélll,xl,aﬁl) which
is called a binary retract of A [2].

An n-ary operation A on Q is called complete if there exists a permuta-
tion @ of @™ such that A = E1p (that is A(z]) = E1¢(z7)). If a complete
n-operation A is finite and has order m, then the equation A(z}) = a has
exactly m"~! solutions for any a € Q [11].

Any k-invertible n-operation A, k € 1,n, is complete, but there exist
complete n-operations, which are not k-invertible for each k € 1,n [11].
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Definition 1. (cf. [3]) Two n-ary operations (n > 2) A and B given on
a set @ of order m are called orthogonal (shortly, A L B) if the system
{A(z}) = a, B(z}) = b} has exactly m"~?2 solutions for any a,b € Q.

A set ¥ = {Af}, s > 2, of n-operations is called pairwise orthogonal if
each pair of distinct n-operations from . is orthogonal.

It is an algebraic analog of orthogonality of n-dimensional hypercubes
which (just as m-operations and n-quasigroups) are used in various areas
including affine and projective geometries, designs of experiments, error-
correcting and error-detecting coding theory and cryptology.

In the article [7] a connection between n-dimensional hypercubes and
n-ary operations and different types of their orthogonality were considered.
The pairwise orthogonality is the weakest from these types.

In [3] the algebraic approach was first used for study of orthogonality of
two n-dimensional hypercubes and the following criterion of orthogonality
of two finite k-invertible n-operations was established.

Theorem 1. (cf. [3]) Let k be a fized number from 1,n. Two finite k-

invertible n-operations A and B on a set Q are orthogonal if and only if the

(n — 1)-retract C, of the n-operation C = B ® WA, defined by x = a, is
k

complete for every a € Q.

3. (k)-S-systems of n-quasigroups

For the n-ary case, n > 2, we introduce (k)-S-systems of n-quasigroups in
the following way.

Definition 2. A system Q(Xg), Xr = {Ek, Aj}, s > 1, where all A; are
n-quasigroups, given on a set @, is called a (k)-S-system of n-quasigroups
if (X, @) is a group.

k

If n=2and ¥y = {E,A5} (X1 = {F,A}}) we obtain a right (left)
S-system of binary quasigroups, since & = - (& = o) (the right and the left
2 1
multiplications of binary operations respectively).

Examples of (k)-S-systems. Let (@, +) be an elementary abelian group
(that is a group which is a direct power of a group of a prime order p [9])
of order m = p', p > 3, and an n-quasigroup (Q, A) has the form:

A(x}) = @1 + oo+ Q1 Tp—1 + T + 1T + -+ @z, (1)
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where all a; are permutations of Q. Consider the (k)-powers A4, A2, ..., AP~

that is the powers of A with respect to the k-multiplication of n-operations:

Al=A9A®...® A (I times) [4]. By Corollary 6 of [4] all these powers
k k k

are n-quasigroups, A? = Ej, and (3}, %) where X} = {Ey, A, A%, ..., AP71}

is a (cyclic) group. Hence, Q(X}) is a (k)-S-systems of n-quasigroups.
Moreover, if m = p > 3 and in (1) «; is the identity permutation for
each i € 1,n, that is

A(zl) =z1+ 22+ ... + xp, (2)

then Q(X},) is a (k)-S-system for any k € 1,n.

Note, that n-quasigroups of ¥}, can be different from n-quasigroups of
Y, if k # I. So, it is easy to check that if an n-quasigroup A of order
p has the form (2), then the sets ¥} and %] are intersected only by the
n-quasigroup A.

Indeed, let 1 < k < [ < n and the (k)-power A" coincide with the
(I)-power A for 1 <7 <t <p—1. Then

r(xi4...4xp_1)tep+r(ceor+. . 4xn) = e+ ) o+t (e +. 4oy,
whence it follows that
(t—r)z1+...Fxp_q)+t(xe+...+x1) +oxp— 2z —r(Tp1 + ...+ 2+

+(t =) (@1 + ...+ xn) = 0.

Setting 1 = ... = X1 = Tpt1 = ... = L] = Ti41 = ... = Ty = 0, we
obtain txy — xp = rx; — x; for all xp,z; of Q and sot =r = 1. ]

Proposition 1. Let Q(3y), X = {Ek, Aj}, be a (k)-S-system of n-quasi-
groups, n 2 3, 1 <l <k <nandu = all_l, v = aﬁ__ll, w = ap, be
fized (ordered) tuples of elements from Q. Then the system Q(Xyvw) of
binary retracts where Xy p = {E,Zi} with A;(xy, 2) = Ai(u, 21,0, 18, W),
is a right S-system of binary quasigroups for any u € Q1 v € QF I,
we Qrk.

Proof. We must prove that >, , . is a group with respect to the right mul-
tiplication of binary operations. At first we note that Ex(u, v, x5, w) =
Ek(xl,xk) = xy, that is By = F.
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Let A; € B, then W A; € By, A; € By and BA; € B, 4. Prove
that @4, € Yuww. Indeed, from (4; o) A;)(2]) = x, it follows
k

k
= Ai(z, W Ay, 21)) = .

But Zi(:m,(z) Ai(xy, 7)) = 71 Hence, (F) 4, =2) 4, and @4, € Y-
Further, it A; © A; = A, € X, then
k

(AZ % A])(U, Zy, v, l‘k,ﬂ)) - Al(ua Xy, v, A]’(’LL,IE[,’U,‘T]C,U)),U))
(w1, Aj (21, 21)) = (Ai - Ag) (a1, xx)

A;
Ar(uv T, Uy Ty w) = A’r‘<xl7 .’L’k),

that is Zz . Zj = Zr S Eu,v,w-

It still remains to prove that A; # A; if i # j. Let A; = A;, then
Ai(u, xp, 0, 2, w) = Aj(u, 27,0, Tp, w), (k)Ai(u,xl,v,Aj(u,a:l,v,mk,w),w) =
zp. But B =) A4, % Aj € X, so B(u,z,v, x5, w) = x, for any x; € Q

implies that B is not an n-quasigroup, so B = Ej and ¢ = j.
Therefore, we proved that the set X, , . is a group with respect to the
right multiplication of binary operations. O

RemeE‘k. If in Proposition 1 £ < I, v = alf_l, v o= af,;ll, w =

aliq, Ai(xk,azl)iz A;(u, xg, v, 2, w), then analogously one can prove that
Yuww = = {F,A]} is a left S-system of binary quasigroups.

Theorem 2. Let n > 3, k (1 < k < n) be a fired number, Q be a set of
order m, Q(Xg), X = {Ek, Aj}, be a (k)-S-system of n-quasigroups. Then
Yk 15 a patrwise orthogonal set of n-operations and s < m — 1.

Proof. Let A;,A; € X, @ # j, then (k)Aj € X and A; % ((k)Aj) is an

n-quasigroup of 3, so any (n— 1)-retract of this n-quasigroup is an (n—1)-

quasigroup which is always complete. By Theorem 1 A; L A;. Now it is

evident that A; L Ej, since A; ® E, = A; and W E, = Ej,. Thus, 3y is a
k

pairwise orthogonal set of n-operations.

But by Proposition 1 Q(Xuuw), where Yy = {E,A}}, is a right
S-system of binary quasigroups which is an orthogonal set and can not
contain more than m — 1 binary quasigroups (latin squares) of order m [8§],
so s<m—1. O
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Definition 3. A (k)-S-system Q(Xg) with | @ |= m is called complete if it
contains m — 1 n-quasigroups, that is if | Xj |= m.

Proposition 2. For any n > 3 and any k € 1,n there exist complete (k)-
S-systems of n-quasigroups of each prime order p > 3.

Proof. Examples of such (k)-S-systems are the (cyclic) systems obtained
with the help of n-quasigroups of the form (2) where (Q,+) is a group of a
prime order p > 3. O

Note that (cyclic) (k)-S-systems which are obtained from an n-
quasigroup A of the form (1) are not complete if m = p', ¢ > 1.

4. S-systems of n-quasigroups

In [10] n-ary S-systems were considered in the following sense.

Definition 4. (cf. [11]) A system Q(X), ¥ = {ET, Aj}, s > 1, where
A; is an n-quasigroup for each i € 1,5, n > 2, is called an S-system of
n-quasigroups if ¥ is closed with respect to the (Menger’s) superposition:
C(B}) =C(B1,Bs,...,B,) € ¥ (C(BY})(2}) = C(Bi(z}), ..., Bp(z})) for
any C, By,..., B, € 3.

T. Yakubov in [10] proved that if Q(X) is a finite (that is the set @ is
finite) n-ary S-system in this sense, then ¥ = {Ej, Aj} is a group with
respect to the k-multiplication of n-operations for each k € 1,n. Using this
fact and the definition of (k)-S-systems it is natural to define an S-system
of n-ary quasigroups in the following way.

Definition 5. A system Q(X), ¥ = {ET, Aj}, s > 1, n > 2, where all A;
are n-quasigroups is called an S-system of n-quasigroups if X = {Ey, A}
is a (k)-S-system for any k € 1, n.

Proposition 3. Let Q(X), ¥ = {EI-?, A3}, be an S-system of n-quasigroups,
n>3,1<p<g<nandu=ad ", v= agﬂ, w = ayq be fived (ordered)
tuples of elements from Q. Then the system Q(Xyw) of binary retracts
where Yo pw = {E,F, AT} with A;j(zp, 1) = Ai(u,xp,v,74,w), is an S-

system of binary quasigroups for any u € QP~1, v € QTP w € Q" I,

Proof. In this case Ep(u, p, v, 2q, w) = xp = F(p, 2q), Eg(u, xp, v, 24, w) =
zq = E(xp, q). From Definition 5 it follows that ¥ = {Ey, A} is a (k)-S-
system for any k € T,n. If k = ¢, then by Proposition 1 3y, = {F, A7}



258 G. Belyavskaya

of binary retracts is a right S-system of binary quasigroups. On the other

hand, if k = p, then ¥, , , = {F} A7} for the same u, v, w is a left S-system
of binary quasigroups (see Remark). Thus, Q(Xyw) is an S-system of
binary quasigroups. O

For the binary case Definition 4 and Definition 5 are equivalent (see
Theorem 4.1 of [1]). We shall prove that when n > 2 it is not true. At
first remind that an n-quasigroup (Q, A) is called an n-T'S- quasigroup if
its k-inverse n-quasigroups coincide with A for each k € 1,n (see [2]).

Theorem 3. A finite system Q(X), ¥ = {E7], Aj}, n > 3, is an S-system
of n-quasigroups if and only if s =1 and the n-quasigroup Ay is an n-T'S-
quasigroup.

Proof. By Proposition 3 the system @Q(X,,.) of binary retracts, where
Yuww = {F E A}, Ai(xp,24) = Ai(u, xp,v, 4,w), is an S-system of bi-
nary quasigroups. By Theorem 4.2 of [1] all operations of a finite S-system
of binary quasigroups are idempotent if s > 2 (note that in [1] s > 4
since s designates the number of all operations in an S-system), that is
Ai(u, z,v, z,w) = A;(z,x) = x for every z € Q. Now we use the idea of the
proof from [10].

If n = 3, then A;(a,a) = a and A;(a,a,w) = a (if, for example, p = 1,
q = 2) for any w of Q. But it is impossible as A; is a 3-quasigroup.

Let n > 4, a # b, the element a be in A; in positions p, ¢
(p < q) and the element b is in positions r,t (¢ < r < t), ie,
Ai(-..ya,.. . a,...,b, .. )b, ).  Fix tuples u € QP71 v € QP71
w € Q"1 where in the tuple w the element b is in the positions r,¢. Then
for a binary quasigroup 4; of the system X, , ., we have

Zi('rpa 'Tq) = Ai(u7xp7U7$Q7w) = Ai(U,.’Z’p,U,IL’q,wl, b7w27 b7 U}3),
if w = (wy,b,ws, b, ws), and
Ai(a,a) = Ai(u,a,v,a,w) = Ai(u,a,v,a,wr, b, wa, byws) =a.  (3)

Now consider the system X, i, w; With w1 = (u,a,v,a,wy), then

i(@r, ) = Ai(ur, T, wa, T, w3),

ol sl

z(b7 b) = Ai(u’avvv a,wi, ban) b’ U)g) =b.

Taking into account the equality (3), we conclude that a = b. Thus, the
case s = 2 for n > 2 is impossible.
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It remains only the case s = 1. In this case the n-quasigroup A; coin-
cides with all its inverse n-quasigroups, that is it is an n-T'S-quasigroup. On
the other hand, if an n-quasigroup A is an n-T'S-quasigroup, then A =% A
forany k€ 1,n, A % A= F) and ¥ = {E], A} is an S-system. O

Unfortunately, such S-systems of n-quasigroups are trivial.

As an example of an n-T'S-quasigroup can be the n-quasigroup of the
form (2) where (Q,+) is an (abelian) group of exponent two (2x = 0 for all
x € Q). Such group has order 2! for some natural ¢t > 1.

In [10] it was proved that finite S-systems of n-quasigroups in the sense
of Definition 4 do not exist even for s = 1. Taking into account Theorem 3
we conclude that Definition 4 and Definition 5 are not equivalent for n > 2.
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