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S-systems of n-ary quasigroups

Galina Belyavskaya

Abstract

In the theory of binary quasigroups the notions of a right (left) S-system
and an S-system [1] are known. An S-system is simultaneously a left and
right S-system. We introduce (k)-S-systems and S-systems (otherwise than
in [10]) of n-ary quasigroups for n > 2 and 1 6 k 6 n, give examples of
such systems and prove that any (k)-S-system, given on a �nite set, is a
pairwise orthogonal set ([3]) of n-ary operations.

1. Introduction
In the theory of binary quasigroups the notion of a right (left) Stein system
(shortly, a right S-system or a left S-system) is known. Such system is
de�ned in the following way [1].

A system Q(Σ), Σ = {E, As
1} (Σ = {F, As

1}, where As
1 denotes the

sequence A1, A2, ..., As), which consists of binary quasigroups and the right
(left) identity operation E (F ): E(x, y) = y (F (x, y) = x) given on a set Q
is called a right (left) S-system if Σ is a group with respect to the Stein's
right (left) multiplication · (◦) of binary operations:

(A ·B)(x, y) = A(x,B(x, y)) ((A ◦B)(x, y) = A(B(x, y), y)).

A system Q(Σ), Σ = {E, F, As
1}, is called an S-system if Σ′ = {E,As

1}
(Σ′′ = {F,As

1}) is a right (left) S-system.
Finite binary S-systems are completely described in the works [1], [5],

[6] by V.Belousov, G. Belyavskaya and A. Cheban.
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Any two operations A and B on a set Q from a right (left) S-system
Q(Σ) of binary quasigroups are orthogonal, that is the pair of equations
A(x, y) = a, B(x, y) = b has a unique solution for any a, b ∈ Q and any
A,B ∈ Σ, A 6= B.

In this article we introduce (k)-S-systems of n-ary quasigroups for n > 2,
1 6 k 6 n, give some examples of such systems and prove that any �nite (k)-
S-system is a pairwise orthogonal set. We also consider S-systems of n-ary
quasigroups in the more natural sense, than the S-systems of T. Yakubov
[10], and prove that such a �nite S-system contains only one n-quasigroup,
whereas S-systems of [10] do not at all exist.

2. Necessary notions and results
We recall some notations, concepts and results which are used in the article.
At �rst remember the following notations from [2]. By xj

i we will denote
the sequence xi, xi+1, . . . , xj , i 6 j. If j < i, then xj

i is the empty sequence,
1, n = {1, 2, . . . , n}. Let Q be a �nite or an in�nite set, n > 2 be a positive
integer and let Qn denote the Cartesian power of the set Q.

An n-ary operation A (brie�y, an n-operation) on a set Q is a mapping
A : Qn → Q de�ned by A(xn

1 ) → xn+1, and in this case we write A(xn
1 ) =

xn+1.
A �nite n-groupoid (Q, A) of order m is a set Q with one n-ary operation

A de�ned on Q, where |Q| = m > 2.
An n-ary quasigroup (n-quasigroup) is an n-groupoid such that in the

equality
A(xn

1 ) = xn+1

every n elements from xn+1
1 uniquely de�ne the (n+1)-th element. Usually

a quasigroup n-operation A is itself considered as an n-quasigroup.
The n-operation Ek, 1 6 k 6 n, on a set Q with Ek(xn

1 ) = xk is called
the k-th identity operation (or the k-th selector) of arity n.

An n-operation A on Q is called k-invertible for some k ∈ 1, n if the
equation

A(ak−1
1 , xk, a

n
k+1) = an+1

has a unique solution for each �xed n-tuple (ak−1
1 , an

k+1, an+1) ∈ Qn.
For a k-invertible n-operation there exists the k-inverse n-operation (k)A

de�ned in the following way:
(k)A(xk−1

1 , xn+1, x
n
k+1) = xk ⇔ A(xn

1 ) = xn+1
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for all xn+1
1 ∈ Qn+1.

It is evident that

A(xk−1
1 , (k)A(xn

1 ), xn
k+1) = (k)A(xk−1

1 , A(xn
1 ), xn

k+1) = xk

and (k)[(k)A] = A for k ∈ 1, n.
Let Ωn be the set of all n-ary operations on a �nite or an in�nite set Q.

On Ωn de�ne a binary operation ⊕
k
(the k-multiplication) in the following

way:
(A⊕

k
B)(xn

1 ) = A(xk−1
1 , B(xn

1 ), xn
k+1),

A,B ∈ Ωn, xn
1 ∈ Qn. Shortly this equality can be written as

A⊕
k

B = A(Ek−1
1 , B,En

k+1)

where Ek is the k-th selector.
In [11] it was proved that (Ωn,⊕

k
) is a semigroup with the identity Ek. If

Λk is the set of all k-invertible n-operations from Ωn for some k ∈ 1, n, then
(Λk,⊕

k
) is a group. In this group Ek is the identity, the inverse element of A

is the operation (k)A ∈ Λk, since A⊕
k
Ek = Ek⊕

k
A, A⊕

k

(k)A = (k)A⊕
k
A = Ek.

An n-ary quasigroup (Q, A) (or simply A), is an n-groupoid with an
k-invertible n-operation for each k ∈ 1, n [2].

Let (xn
1 )k denote the (n− 1)-tuple (xk−1

1 , xn
k+1) ∈ Qn−1 and let A be an

n-operation, then the (n− 1)-operation Aa:

Aa(xn
1 )k = A(xk−1

1 , a, xn
k+1)

is called the (n − 1)-retract of A, de�ned by position k, k ∈ 1, n, with the
element a in this position (with xk = a).

If in an n-operation A we �x all positions except two positions k and l
we obtain a binary operation A(xk, xl) = A(ak−1

1 , xk, a
l−1
k+1, xl, a

n
l+1) which

is called a binary retract of A [2].
An n-ary operation A on Q is called complete if there exists a permuta-

tion ϕ of Qn such that A = E1ϕ (that is A(xn
1 ) = E1ϕ(xn

1 )). If a complete
n-operation A is �nite and has order m, then the equation A(xn

1 ) = a has
exactly mn−1 solutions for any a ∈ Q [11].

Any k-invertible n-operation A, k ∈ 1, n, is complete, but there exist
complete n-operations, which are not k-invertible for each k ∈ 1, n [11].
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De�nition 1. (cf. [3]) Two n-ary operations (n > 2) A and B given on
a set Q of order m are called orthogonal (shortly, A ⊥ B) if the system
{A(xn

1 ) = a,B(xn
1 ) = b} has exactly mn−2 solutions for any a, b ∈ Q.

A set Σ = {As
1}, s > 2, of n-operations is called pairwise orthogonal if

each pair of distinct n-operations from Σ is orthogonal.

It is an algebraic analog of orthogonality of n-dimensional hypercubes
which (just as n-operations and n-quasigroups) are used in various areas
including a�ne and projective geometries, designs of experiments, error-
correcting and error-detecting coding theory and cryptology.

In the article [7] a connection between n-dimensional hypercubes and
n-ary operations and di�erent types of their orthogonality were considered.
The pairwise orthogonality is the weakest from these types.

In [3] the algebraic approach was �rst used for study of orthogonality of
two n-dimensional hypercubes and the following criterion of orthogonality
of two �nite k-invertible n-operations was established.

Theorem 1. (cf. [3]) Let k be a �xed number from 1, n. Two �nite k-
invertible n-operations A and B on a set Q are orthogonal if and only if the
(n − 1)-retract Ca of the n-operation C = B ⊕

k

(k)A, de�ned by xk = a, is
complete for every a ∈ Q.

3. (k)-S-systems of n-quasigroups
For the n-ary case, n > 2, we introduce (k)-S-systems of n-quasigroups in
the following way.

De�nition 2. A system Q(Σk), Σk = {Ek, A
s
1}, s > 1, where all Ai are

n-quasigroups, given on a set Q, is called a (k)-S-system of n-quasigroups
if (Σk,⊕

k
) is a group.

If n = 2 and Σ2 = {E,As
1} (Σ1 = {F, As

1}) we obtain a right (left)
S-system of binary quasigroups, since ⊕

2
= · (⊕

1
= ◦) (the right and the left

multiplications of binary operations respectively).
Examples of (k)-S-systems. Let (Q,+) be an elementary abelian group
(that is a group which is a direct power of a group of a prime order p [9])
of order m = pt, p > 3, and an n-quasigroup (Q,A) has the form:

A(xn
1 ) = α1x1 + . . . + αk−1xk−1 + xk + αk+1xk+1 + . . . + αnxn (1)
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where all αi are permutations of Q. Consider the (k)-powers A,A2, . . . , Ap−1,
that is the powers of A with respect to the k-multiplication of n-operations:
Al = A ⊕

k
A ⊕

k
. . . ⊕

k
A (l times) [4]. By Corollary 6 of [4] all these powers

are n-quasigroups, Ap = Ek and (Σ′k,⊕
k
) where Σ′k = {Ek, A, A2, . . . , Ap−1}

is a (cyclic) group. Hence, Q(Σ′k) is a (k)-S-systems of n-quasigroups.
Moreover, if m = p > 3 and in (1) αi is the identity permutation for

each i ∈ 1, n, that is

A(xn
1 ) = x1 + x2 + . . . + xn, (2)

then Q(Σ′k) is a (k)-S-system for any k ∈ 1, n.
Note, that n-quasigroups of Σ′k can be di�erent from n-quasigroups of

Σ′l, if k 6= l. So, it is easy to check that if an n-quasigroup A of order
p has the form (2), then the sets Σ′k and Σ′l are intersected only by the
n-quasigroup A.

Indeed, let 1 6 k 6 l 6 n and the (k)-power Ar coincide with the
(l)-power At for 1 6 r < t 6 p− 1. Then

r(x1+...+xk−1)+xk+r(xk+1+...+xn) = t(x1+...+xl−1)+xl+t(xl+1+...+xn),

whence it follows that

(t− r)(x1 + . . . + xk−1) + t(xk + . . . + xl−1) + xl − xk − r(xk+1 + . . . + xl)+

+(t− r)(xl+1 + . . . + xn) = 0.

Setting x1 = . . . = xk−1 = xk+1 = . . . = xl−1 = xl+1 = . . . = xn = 0, we
obtain txk − xk = rxl − xl for all xk, xl of Q and so t = r = 1.

Proposition 1. Let Q(Σk), Σk = {Ek, A
s
1}, be a (k)-S-system of n-quasi-

groups, n > 3, 1 6 l < k 6 n and u = al−1
1 , v = ak−1

l+1 , w = an
k+1 be

�xed (ordered) tuples of elements from Q. Then the system Q(Σu,v,w) of
binary retracts where Σu,v,w = {E,A

s
1} with Ai(xl, xk) = Ai(u, xl, v, xk, w),

is a right S-system of binary quasigroups for any u ∈ Ql−1, v ∈ Qk−l−1,
w ∈ Qn−k.

Proof. We must prove that Σu,v,w is a group with respect to the right mul-
tiplication of binary operations. At �rst we note that Ek(u, xl, v, xk, w) =
Ek(xl, xk) = xk, that is Ek = E.
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Let Ai ∈ Σk, then (k)Ai ∈ Σk, Ai ∈ Σu,v,w and (k)Ai ∈ Σu,v,w. Prove
that (2)Ai ∈ Σu,v,w. Indeed, from (Ai ⊕

k

(k) Ai)(xn
1 ) = xk it follows

(Ai ⊕
k

(k) Ai)(u, xl, v, xk, w) = Ai(u, xl, v,(k) Ai(u, xl, v, xk, w), w)

= Ai(xl,
(k) Ai(xl, xk)) = xk.

But Ai(xl,
(2) Ai(xl, xk)) = xk. Hence, (k)Ai =(2) Ai and (2)Ai ∈ Σu,v,w.

Further, if Ai ⊕
k

Aj = Ar ∈ Σk, then

(Ai ⊕
k

Aj)(u, xl, v, xk, w) = Ai(u, xl, v, Aj(u, xl, v, xk, w), w)

= Ai(xl, Aj(xl, xk)) = (Ai ·Aj)(xl, xk)

= Ar(u, xl, v, xk, w) = Ar(xl, xk),

that is Ai ·Aj = Ar ∈ Σu,v,w.
It still remains to prove that Ai 6= Aj if i 6= j. Let Ai = Aj , then

Ai(u, xl, v, xk, w) = Aj(u, xl, v, xk, w), (k)Ai(u, xl, v, Aj(u, xl, v, xk, w), w) =
xk. But B =(k) Ai ⊕

k
Aj ∈ Σk, so B(u, xl, v, xk, w) = xk for any xl ∈ Q

implies that B is not an n-quasigroup, so B = Ek and i = j.
Therefore, we proved that the set Σu,v,w is a group with respect to the

right multiplication of binary operations.

Remark. If in Proposition 1 k < l, u = ak−1
1 , v = al−1

k+1, w =
an

l+1, Ai(xk, xl) = Ai(u, xk, v, xl, w), then analogously one can prove that
Σu,v,w = = {F, A

s
1} is a left S-system of binary quasigroups.

Theorem 2. Let n > 3, k (1 6 k 6 n) be a �xed number, Q be a set of
order m, Q(Σk), Σk = {Ek, A

s
1}, be a (k)-S-system of n-quasigroups. Then

Σk is a pairwise orthogonal set of n-operations and s 6 m− 1.

Proof. Let Ai, Aj ∈ Σk, i 6= j, then (k)Aj ∈ Σk and Ai ⊕
k

((k)Aj) is an
n-quasigroup of Σk, so any (n−1)-retract of this n-quasigroup is an (n−1)-
quasigroup which is always complete. By Theorem 1 Ai ⊥ Aj . Now it is
evident that Ai ⊥ Ek, since Ai ⊕

k
Ek = Ai and (k)Ek = Ek. Thus, Σk is a

pairwise orthogonal set of n-operations.
But by Proposition 1 Q(Σu,v,w), where Σu,v,w = {E, A

s
1}, is a right

S-system of binary quasigroups which is an orthogonal set and can not
contain more than m− 1 binary quasigroups (latin squares) of order m [8],
so s 6 m− 1.
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De�nition 3. A (k)-S-system Q(Σk) with | Q |= m is called complete if it
contains m− 1 n-quasigroups, that is if | Σk |= m.

Proposition 2. For any n > 3 and any k ∈ 1, n there exist complete (k)-
S-systems of n-quasigroups of each prime order p > 3.

Proof. Examples of such (k)-S-systems are the (cyclic) systems obtained
with the help of n-quasigroups of the form (2) where (Q,+) is a group of a
prime order p > 3.

Note that (cyclic) (k)-S-systems which are obtained from an n-
quasigroup A of the form (1) are not complete if m = pt, t > 1.

4. S-systems of n-quasigroups
In [10] n-ary S-systems were considered in the following sense.

De�nition 4. (cf. [11]) A system Q(Σ), Σ = {En
1 , As

1}, s > 1, where
Ai is an n-quasigroup for each i ∈ 1, s, n > 2, is called an S-system of
n-quasigroups if Σ is closed with respect to the (Menger's) superposition:
C(Bn

1 ) = C(B1, B2, . . . , Bn) ∈ Σ (C(Bn
1 )(xn

1 ) = C(B1(xn
1 ), . . . , Bn(xn

1 )) for
any C, B1, . . . , Bn ∈ Σ.

T. Yakubov in [10] proved that if Q(Σ) is a �nite (that is the set Q is
�nite) n-ary S-system in this sense, then Σk = {Ek, A

s
1} is a group with

respect to the k-multiplication of n-operations for each k ∈ 1, n. Using this
fact and the de�nition of (k)-S-systems it is natural to de�ne an S-system
of n-ary quasigroups in the following way.

De�nition 5. A system Q(Σ), Σ = {En
1 , As

1}, s > 1, n > 2, where all Ai

are n-quasigroups is called an S-system of n-quasigroups if Σk = {Ek, A
s
1}

is a (k)-S-system for any k ∈ 1, n.

Proposition 3. Let Q(Σ), Σ = {En
1 , As

1}, be an S-system of n-quasigroups,
n > 3, 1 6 p < q 6 n and u = ap−1

1 , v = aq−1
p+1, w = an

q+1 be �xed (ordered)
tuples of elements from Q. Then the system Q(Σu,v,w) of binary retracts
where Σu,v,w = {E, F, A

s
1} with Ai(xp, xq) = Ai(u, xp, v, xq, w), is an S-

system of binary quasigroups for any u ∈ Qp−1, v ∈ Qq−p−1, w ∈ Qn−q.

Proof. In this case Ep(u, xp, v, xq, w) = xp = F (xp, xq), Eq(u, xp, v, xq, w) =
xq = E(xp, xq). From De�nition 5 it follows that Σk = {Ek, A

s
1} is a (k)-S-

system for any k ∈ 1, n. If k = q, then by Proposition 1 Σu,v,w = {E,A
s
1}
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of binary retracts is a right S-system of binary quasigroups. On the other
hand, if k = p, then Σ′u,v,w = {F, A

s
1} for the same u, v, w is a left S-system

of binary quasigroups (see Remark). Thus, Q(Σu,v,w) is an S-system of
binary quasigroups.

For the binary case De�nition 4 and De�nition 5 are equivalent (see
Theorem 4.1 of [1]). We shall prove that when n > 2 it is not true. At
�rst remind that an n-quasigroup (Q,A) is called an n-TS- quasigroup if
its k-inverse n-quasigroups coincide with A for each k ∈ 1, n (see [2]).

Theorem 3. A �nite system Q(Σ), Σ = {En
1 , As

1}, n > 3, is an S-system
of n-quasigroups if and only if s = 1 and the n-quasigroup A1 is an n-TS-
quasigroup.

Proof. By Proposition 3 the system Q(Σu,v,w) of binary retracts, where
Σu,v,w = {F,E,A

s
1}, Ai(xp, xq) = Ai(u, xp, v, xq, w), is an S-system of bi-

nary quasigroups. By Theorem 4.2 of [1] all operations of a �nite S-system
of binary quasigroups are idempotent if s > 2 (note that in [1] s > 4
since s designates the number of all operations in an S-system), that is
Ai(u, x, v, x, w) = Ai(x, x) = x for every x ∈ Q. Now we use the idea of the
proof from [10].

If n = 3, then Ai(a, a) = a and Ai(a, a, w) = a (if, for example, p = 1,
q = 2) for any w of Q. But it is impossible as Ai is a 3-quasigroup.

Let n > 4, a 6= b, the element a be in Ai in positions p, q
(p < q) and the element b is in positions r, t (q < r < t), i.e.,
Ai(. . . , a, . . . , a, . . . , b, . . . , b, . . .). Fix tuples u ∈ Qp−1, v ∈ Qq−p−1,
w ∈ Qn−q where in the tuple w the element b is in the positions r, t. Then
for a binary quasigroup Ai of the system Σu,v,w we have

Ai(xp, xq) = Ai(u, xp, v, xq, w) = Ai(u, xp, v, xq, w1, b, w2, b, w3),

if w = (w1, b, w2, b, w3), and

Ai(a, a) = Ai(u, a, v, a, w) = Ai(u, a, v, a, w1, b, w2, b, w3) = a. (3)

Now consider the system Σu1,w2,w3 with u1 = (u, a, v, a, w1), then

Ai(xr, xt) = Ai(u1, xr, w2, xt, w3),

Ai(b, b) = Ai(u, a, v, a, w1, b, w2, b, w3) = b.

Taking into account the equality (3), we conclude that a = b. Thus, the
case s > 2 for n > 2 is impossible.
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It remains only the case s = 1. In this case the n-quasigroup A1 coin-
cides with all its inverse n-quasigroups, that is it is an n-TS-quasigroup. On
the other hand, if an n-quasigroup A is an n-TS-quasigroup, then A =(k) A
for any k ∈ 1, n, A⊕

k
A = Ek and Σ = {En

1 , A} is an S-system.

Unfortunately, such S-systems of n-quasigroups are trivial.
As an example of an n-TS-quasigroup can be the n-quasigroup of the

form (2) where (Q,+) is an (abelian) group of exponent two (2x = 0 for all
x ∈ Q). Such group has order 2t for some natural t > 1.

In [10] it was proved that �nite S-systems of n-quasigroups in the sense
of De�nition 4 do not exist even for s = 1. Taking into account Theorem 3
we conclude that De�nition 4 and De�nition 5 are not equivalent for n > 2.
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