
Quasigroups and Related Systems 15 (2007), 47− 76

Loops related to geometric structures

Helmut Karzel

Abstract

There are many connections between loops and geometries:
• one can derive loops from several geometries and then use these loops for a "coordina�
tization" of the geometries,

• one can start from loops with certain properties and associate to them geometric stru�
ctures or

• one can use geometric structures � for instance "chain structures" or "graphs" � in or�
der to represent loops.

Some of these relations I like to discuss here.

1. Introduction and historical remarks
In many geometries we observe the following situation. There is a set P of
geometric objects (like points, lines, planes, circles etc.) and a distinct set
Γ of permutations of P (like collineations, motions, automorphisms etc.)
such that for any two objects a, b ∈ P there is exactly one permutation in Γ
� denoted by [a → b] � mapping a onto b. Thus the pair (P, Γ) is a regular
permutation set. Such a situation we obtain for instance if we take for P the
set of all points of an Euclidean, or more generally an absolute geometry, and
for Γ all re�ections in points. More precisely, many geometries (P, L,≡) (P
denotes the set of points, L the set of lines and ≡ the congruence relation)
in particular absolute and some unitary geometries have the properties:

1. For all a ∈ P there exists exactly one involutory motion ã with
Fix ã = {a}.

2. Any two points a, b ∈ P have exactly one midpoint m ∈ P hence
m̃(a) = b.
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3. For all a,b ∈ P it holds ˜̃a(b) = ã ◦ b̃ ◦ ã.

Now if (P, Γ) is a regular permutation set and if we �x an arbitrary
element o ∈ P , then the set P becomes with respect to the binary operation,

a + b := [o → a] ◦ [o → o]−1(b)

a loop (P, +). This construction we call loop derivation of (P, Γ) in the
element o. On the other side, for a given loop (P, +) we obtain a regular
permutation set. For a ∈ P let a+(x) := a+x, hence a+ is a permutation of
P . Let P+ := {p+ | p ∈ P}, ν : P → P ; x 7→ (x+)−1(o) and a◦ := a+ ◦ ν.
Then the pair (P, P ◦) with P ◦ := {p◦ | p ∈ P} is a regular permutation set
� called the permutation derivation of (P, +) � having the property that p◦

interchanges the elements o and p. The loop derivation of (P, P ◦) in the
element o reproduces the loop (P, +).

With these derivations we can translate properties of one structure in
properties of the other.

Any arbitrary permutation set (E, Γ) (i.e., we claim only that Γ is a
subset of the symmetric group SymE of the set E) can be represented as
a chain structure (P, G1, G2,K) (cf. section 7, 8, 9) and so also any loop
(E,+) via the permutation set (E,E+) and we have inter alia:

Let (E, Γ) be a permutation set and (P, G1,G2, K) the corresponding
chain structure, then (E,Γ) is regular (sharply 2-transitive; sharply 3-transi-
tive) if and only if (P, G1, G2,K) is a web (2-structure; hyperbola structure).

Of particular interest are invariant re�ection structures (P, Γ) and their
corresponding K-loops (= Bruck loops) (cf. section 6). Among these struc-
tures there are the ordinary point re�ection spaces (P, P̃ ) characterized by
the "three re�ection properties" (R1) and (R2) which allow us to de�ne
lines such that P together with the set L of all lines forms an incidence
space (P, L). Examples are the set P of points and the set P̃ of all point
re�ections of a hyperbolic space. If we �x a point o ∈ P in an ordinary
point re�ection spaces (P, P̃ ) and consider the loop derivation (P, +) in o,
then each line L ∈ L passing through o is a commutative subgroup of the
loop (P, +). Taking the loop (P, +) and the set F := {F ∈ L | o ∈ F} of
all lines containing o we obtain a "coordinatization" (P,+,F) of the point
re�ection space (P, P̃ ) like in analytic geometry where (P, +) is a vector
space and F the set of one dimensional vector subspaces. The points of the
corresponding point re�ection space or a�ne space, respectively, are the
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elements of P and the lines are in both cases the cosets a + F with a ∈ P
and F ∈ F (cf. Theorems 10.1, 11.5, 11.6).

Now we give some historical remarks on incidence groups and the gen-
eralisation to geometric spaces with a loop structure. A tripel (P, L, ·)
consisting of a group (P, ·) and an incidence space (P, L) such that for each
a ∈ P the map

a· : P → P ; x 7→ a · x
is a collineation of the incidence space (P, L) is called incidence group. Of
interest there are the following subclasses. An incidence group (P, ·, L) is
called:

�bered if any line L ∈ L containing the neutral element e of the
group (P, ·) is a subgroup of (P, ·),

2-sided if for all a ∈ P also the map ·a : P → P ; x 7→ x · a
is a collineation of the incidence spacs (P, L),

kinematik space if (P, L, ·) is �bered and 2-sided.
If (P, L, ·) is an incidence group then the set F := {L ∈ L | e ∈ L}

is a bundle in e, i.e.,
⋃

F = P and for all A,B ∈ F with A 6= B it holds
A∩B = {e}, and we have L = {a ·F | a ∈ P, F ∈ F}. If (P, L, ·) is �bered
then F is a �bration (partition) of the group (P, ·), i.e., F is a bundle and a
set of proper subgroups of the group (P, ·). If (P, L, ·) is even a kinematik
space then F is a kinematik �bration, i.e., F has the additional property that
for all X ∈ F and for all a ∈ P it holds a ·X ·a−1 ∈ F. On the other hand,
if F is a bundle of a group (P, ·) in the neutral element e of (P, ·) and if we
set L := {a · F | a ∈ P, F ∈ F} then (P, L, ·) is an incidence group if and
only if the following condition is satis�ed:

(f) ∀a ∈ P ∀X ∈ F e ∈ a ·X ⇒ a ·X ∈ F.

Clearly if F is a �bration of the group (P, ·) then F satis�es the condition
(f) and so there is a one to one correpondence between �bered incidence
groups (kinematik spaces) and �brations (kinematik �brations) of groups.

The notion of incidence group was generalized by weakening the assump-
tions concerning the algebraic structure. The group (P, ·) was replaced by a
loop or even a groupoid by H. Wähling, G. Kist, M. Marchi, E. Zizioli and
the author (cf. [8], [26], [18], [22], [11], [27]). In [11] the concepts "�bration"
and "kinematic �bration" were used also for loops. In 1987 Elena Zizioli
found out that for a general loop these notions are not enough to produce
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a �bered incidence loop. She showed that the conditions (f) = (F4) and
(F5) (cf. section 11) are necessary and su�cient. Such �brations (satisfying
(F4) and (F5)) are called incidence �brations (cf. [27], [16], [18] Sec. 8).

E. Kolb and A. Kreuzer [19] de�ned in a loop (P, +) with the help of the
defect function δa,b (cf. section 5) the binary relation "a ∼ b ⇔ δa,b = id".
Under the assumption that ∼ is an equivalence relation, they showed that
the equivalence classes form an incidence �bration.

2. Notations and known results
Permutation sets. In this paper P will always denote a non empty set,
SymP the group of all permutations of the set P , J := {σ ∈ SymP | σ2 =
id} and J∗ := J \{id}. A pair (P, Γ) with Γ ⊆ Sym P is called permutation
set and we call a permutation set

Bol set if for each γ ∈ Γ, γ ◦ Γ ◦ γ = Γ,
symmetric if for each γ ∈ Γ, γ ◦ Γ−1 ◦ γ = Γ,
invariant if for each γ ∈ Γ, γ ◦ Γ ◦ γ−1 = Γ,
involution set if Γ ⊆ J .

For a permutation set (P, Γ) we de�ne for a, b ∈ P :

[a → b] := {γ ∈ Γ | γ(a) = b}.

Then we call a point p ∈ P semiregular (transitive), if for each x ∈ P
we have |[p → x]| 6 1 ( |[p → x]| > 1), and we call p ∈ P regular if
|[p → x]| = 1.

By Ps (Pt) we denote the set of all semiregular (transitive) points and
by Pr or (P, Γ)r the set of all regular points of (P, Γ). The pair (P, Γ) is
called regular permutation set if P = Pr.

2.1. Let (P, Γ) be a permutation set. Then:
(1) (P, Γ) is a Bol set if and only if (P,Γ) is symmetric and Γ = Γ−1.
(2) If (P, Γ) is symmetric and σ ∈ Sym P then (P, σ ◦ Γ) is symmetric.
(3) If (P, Γ) is symmetric and σ ∈ Γ then (P, σ−1 ◦ Γ) is a Bol set with

id ∈ σ−1 ◦ Γ.
(4) If (P, Γ) is a Bol set and σ ∈ SymP with σ ◦ Γ ◦ σ = Γ, in particular

if σ ∈ Γ, then (P, σ ◦ Γ) is a Bol set.
(5) If (P, Γ) is an involution set then the notions "symmetric", "Bol set"

and "invariant" coincide.
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Proof. (1) If (P, Γ) is a Bol set and γ ∈ Γ then γ ◦ Γ ◦ γ = Γ implies
γ−1 ◦ Γ ◦ γ−1 = Γ hence γ−1 ◦ γ ◦ γ−1 = γ−1 ∈ Γ, i.e., Γ−1 = Γ and so
γ ◦ Γ−1 ◦ γ = γ ◦ Γ ◦ γ = Γ.

(2) Let γ ∈ Γ then (σ ◦γ)◦ (σ ◦Γ)−1 ◦ (σ ◦γ) = σ ◦γ ◦Γ−1 ◦σ−1 ◦σ ◦γ =
σ ◦ (γ ◦ Γ−1 ◦ γ) = σ ◦ Γ hence (P, σ ◦ Γ) is symmetric.

(3) By (2) σ−1 ◦ Γ is symmetric and σ ◦ Γ−1 ◦ σ = Γ implies σ−1 ◦ Γ =
Γ−1 ◦ σ = (σ−1 ◦ Γ)−1, i.e., by (1) (P, σ−1 ◦ Γ) is a Bol set.

(4) follows in the same way as (2).

Binary operation. If P is provided with a binary operation ” + ”, we
de�ne for a ∈ P :

a+ : P → P ; x 7→ a + x,

+a : P → P ; x 7→ x + a,

P+ := {a+ | a ∈ P} and +P := {+a | a ∈ P}.
An element o ∈ P is called left (right) zero element if o+ = id (+o = id),
and zero element if o+ = +o = id. (P, +) is called left (right) quasigroup
if P+ ⊆ Sym P (+P ⊆ Sym P ) and quasigroup if P+ ∪ +P ⊆ Sym P , and
left (right) loop or loop, respectively, if moreover (P, +) has a zero element.

If (P, +) is a left loop, hence P+ ⊆ Sym P , then for all a, b ∈ P also

δa,b := ((a + b)+)−1 ◦ a+ ◦ b+ ∈ Sym P

is a permutation �xing the element o. Therefore to each left loop (P, +)
there corresponds the subgroup ∆ := 〈{δa,b | a, b ∈ P}〉 of Sym P , generated
by all these maps. We have:

2.2. (P, +) is a quasigroup if and only if (P, P+) is a regular permutation
set.

2.3. Let (P,Γ) be a permutation set with Pr 6= ∅ , let o ∈ Pr be �xed and
for a, b ∈ P we de�ne a• := [o → a], P • := {a• | a ∈ P} and

a⊕ b := [o → a](b) = a•(b),
a + b := [o → a] ◦ [o → o]−1(b) = a• ◦ (o•)−1(b).

Then
(1) P • = Γ.
(2) (P,⊕) is a left quasigroup with the property "∀a ∈ P : a⊕ o = a".
(3) (P, +) is a left loop with o as zero element.
(4) If (P, Γ) is invariant then (P, Γ) is a regular permutation set, hence
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P = Pr.
(5) If (P, Γ) is a regular permutation set then (P,⊕) is a quasigroup

with the right zero element o, and (P, +) is a loop with the zero
element o.

Proof. (4) Let a, b ∈ P be given, let c := [o → a]−1(b), γ := [o → a] ◦ [o →
c] ◦ [o → a]−1 and d := γ(o) then (by the invariance) γ ∈ Γ, hence (by
o ∈ Pr) γ = [o → d] and γ(a) = [o → a] ◦ [o → c](o) = [o → a](c) = b.
Therefore γ is the unique element in Γ mapping a onto b.

De�nition 1. If (P, Γ) is a permutation set with Pr 6= ∅ and p ∈ Pr, let
p̃ := [p → p], P̃r := {p̃ | p ∈ Pr}. Then for each p ∈ Pr the binary operation

+p : P × P → P ; (a, b) 7→ a + b := [p → a] ◦ p̃−1(b)

is called the loop derivation of (P, Γ) in the point p. Moreover if (P, Γ) is
regular and o ∈ P we set:

ν = νo : P → P ; x 7→ õ ◦ [o → x]−1(o),

ω = ωo := õ−1 ◦ ν : P → P ; x 7→ [o → x]−1(o),

P ◦ := Γ ◦ ω = {a◦ := [o → a] ◦ ω | a ∈ P}.
We remark that ν(x) = [o → o] ◦ [o → x]−1(o) = (x+)−1(o) and we denote

−x := ν(x) = (x+)−1(o).

For a, b ∈ P we write a− b := a + (−b).

2.4. If (P, +) is a left loop and µ ∈ Sym P any permutation with µ(o) = o,
then (P, P+ ◦ µ) is a permutation set with o ∈ (P, P+ ◦ µ)r and the loop
derivation of (P, P+ ◦ µ) in the point o gives us back the original left loop
(P, +).

De�nition 2. Let (P, +) be a left loop with −x = ν(x). If ν ∈ Sym P , let
P ◦ := P+ ◦ ν = {x◦ := x+ ◦ ν | x ∈ P}. Then (P, P ◦) is called permutation
derivation of the left loop (P, +). If (P, +) is a loop and p ∈ P , let 2′p be
the solution of the equation x − p = p. Then p̃ := (2′p)◦ (recall that p̃ is
the unique permutation of P ◦ �xing p) and ˜̃p := p+ ◦ ν ◦ (p+)−1.
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2.5. If (P, +) is a left loop then:
(1) ν ∈ Sym P ⇔ o ∈ (P, (P+)−1)r.
(2) If (P, +) is obtained by the loop derivation of a permutation set

(P, Γ) in a point o ∈ (P, Γ)r then ν ∈ Sym P ⇔ o ∈ (P, õ ◦ Γ−1)r.
(3) If (P, +) is a loop then ν ∈ Sym P hence we can form the permu�

tation derivation (P, P ◦) and the loop derivation of (P, P ◦) in o
reproduces the original loop (P, +).

De�nition 3. A loop (P, +) is called:
(*)-loop if (*) ∀a, b ∈ P : a− (a− b) = b;
Bol loop if for all a, b ∈ P we have a+ ◦ b+ ◦ a+ ∈ P+, i.e.,

a + (b + (a + x)) = (a + (b + a)) + x and (P, P+)
is a Bol set;

Bruck loop or K-loop if (P, +) is a Bol loop and if ν ∈ Aut(P, +), i.e.,
−(a + b) = (−a) + (−b).

2.6. Let (P, Γ) be a Bol set with Pr 6= ∅ and (P, +) the loop derivation in
any point o ∈ Pr then (P, +) is a Bol loop. If (P, +) is any Bol loop then
the permutation derivation (P, P ◦) is a Bol set.

Proof. Let o ∈ Pr, (P, +) the loop derivation of (P, Γ) in o and let a, b ∈ P
then (cf. 2.3 ) a+ = a• ◦ (o•)−1, b+ = b• ◦ (o•)−1 and a+ ◦ b+ ◦ a+ =
a• ◦ (o•)−1 ◦ b• ◦ (o•)−1 ◦a• ◦ (o•)−1. Since (P,Γ) is a Bol set, o• ◦Γ ◦ o• = Γ
hence Γ = (o•)−1◦Γ◦(o•)−1 and so (o•)−1◦b•◦(o•)−1 ∈ (o•)−1◦Γ◦(o•)−1 =
Γ, i.e., by 2.3(1) there is a c ∈ P with c• = (o•)−1 ◦ b• ◦ (o•)−1 and so
a+ ◦ b+ ◦ a+ = a• ◦ C• ◦ a• ◦ (o•)−1. Again since (P, Γ) is a Bol set there
is a d ∈ P with a• ◦ C• ◦ a• = d• thus a+ ◦ b+ ◦ a+ = d• ◦ (o•)−1 ∈ P+.
Therefore (P, P+) is a Bol set. Moreover by 2.1(1), Γ = Γ−1 and so there
is an a′ ∈ P with a′• = o• ◦ (a•)−1 ◦ o•. Hence (a+)−1 = (a• ◦ (o•)−1)−1 =
o• ◦ (a•)−1 ◦ o• ◦ (o•)−1 = a′• ◦ (o•)−1 = a′+ ∈ P+. By [17] (3.10.3), (P, +)
is a Bol loop.

2.7. Let (P, +) be a left loop with ν ∈ Sym P and P ◦ := P+ ◦ ν then
o ∈ (P, P ◦)r and:

(1) a ∈ (P, P ◦)r ⇔ ∀x ∈ P ∃1x
′ ∈ P such that x = x′ − a.

(2) If a ∈ (P, P ◦)r and if +a is the loop derivation of (P, P ◦) in the
point a then for all p, q ∈ P it holds p +a q = p′ + (a′+)

−1
(q).

(3) If (P, +) is a Bol loop then (P, P ◦)r = P and for all a ∈ P it holds
p +a q = p′ + (−a′ + q) and x′ = a + ((−a + x) + a), in particular,
a′ = a + a =: 2a and moreover, (P, +a) is a Bol loop.
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Proof. (1) is a consequence of p◦(a) = p+ ◦ ν(a) = p + (−a) = p− a.
(2) If [a → p]◦ denotes the permutation of P ◦ mapping a onto p then

[a → p]◦ = p′+ ◦ ν in particular, ã = [a → a]◦ = a′+ and so by De�nition 1,
p +a q = [a → p]◦ ◦ ã−1(q) = p′+ ◦ ν ◦ (ν)−1 ◦ (a′+)−1(q) = p′ + (a′+)−1(q).

(3) For each loop we have (P, P ◦)r = P and in a Bol loop, (−a)+ =
(a+)−1, (2a)+ = (a+(o+a))+ = a+ ◦a+ and so (a+((−a+x)+a))−a =
a+◦(−a+x)+◦a+(−a) = a+◦(−a+x)+(o) = a+(−a+x) = x implying x′ =
a+((−a+x)+a). Consequently, p+a q = p′+(a′+)−1(q) = p′+(−a′+q) =
(a+((−a+p)+a))+(−2a+q) and therefore p+a = a+ ◦ (−a+p)+ ◦ (a+)−1

implying p+a ◦q+a ◦p+a = a+ ◦ (−a+p)+ ◦ (−a+q)+ ◦ (−a+p)+ ◦ (a+)−1 ∈
a+ ◦P+ ◦ (a+)−1. Thus if r := a + ((−a + p) + ((−a + q) + (−a + p))) then
p+a ◦ q+a ◦ p+a = r+a showing that (P, +a) is a Bol loop.

2.8. Let (P,Γ) be a regular permutation set, let o ∈ P be �xed and (P, +)
the loop derivation in o then:

(1) (P, P ◦) (cf. De�nition 1) is a regular permutation set and for each
a ∈ P , a◦ interchanges the points o and a.

(2) P ◦ = Γ ⇔ ∀x ∈ P : [o → x] = [x → o].
(3) If (P, Γ) is invariant then õ ◦ ν = ν ◦ õ and so ω = õ−1 ◦ ν = ν ◦ õ−1

and moreover:
P ◦ is invariant ⇔ ∀α ∈ Γ : α ◦ ω ◦ Γ = Γ ◦ ω ◦ α ⇔ Γ ∪ {ν} ⊆ N(P ◦).

(4) If P ◦ is invariant then P ◦ ⊆ J .

Proof. (1) By 2.3(5) and 2.5(3), ν ∈ SymP and so ω = õ−1 ◦ ν ∈ Sym P
hence P ◦ = Γ ◦ ω is a regular permutation set. Finally ω(o) = [o →
o]−1(o) = o, ω(a) = [o → a]−1(o) and so a◦(o) = [o → a] ◦ ω(o) = [o →
a](o) = a and a◦(a) = [o → a] ◦ ω(a) = [o → a] ◦ [o → a]−1(o) = o.

(2) By De�nition 1, P ◦ = Γ ⇔ ω = id ⇔ ν = õ ⇔ ∀x ∈ P : ν(x) =
(x+)−1(o) = õ ◦ [o → x]−1(o) = õ(x) ⇔ ∀x ∈ P : [o → x](x) = o ⇔ ∀x ∈
P : [o → x] = [x → o] (since (P, Γ) is a regular permutation set).

(3) Let x ∈ P then ν(x) = õ ◦ [o → x]−1(o) = õ ◦ [o → x]−1 ◦ õ−1(o) =
[o → õ(x)]−1(o) (since Γ is invariant) hence õ◦ν(x) = õ◦ [o → õ(x)]−1(o) =
ν(õ(x)) and so õ ◦ ν = ν ◦ õ.

Let P ◦ = Γ◦ω = Γ◦ õ−1 ◦ν be invariant and let α ∈ Γ then α◦ω ◦P ◦ =
α ◦ ω ◦ Γ ◦ ω = P ◦ ◦ α ◦ ω = Γ ◦ ω ◦ α ◦ ω hence α ◦ ω ◦ Γ = Γ ◦ ω ◦ α. For
α := õ and using the commutativity of õ and ν we obtain ν ◦ Γ = Γ ◦ ν
hence ω ◦Γ = õ−1 ◦ν ◦Γ = õ−1 ◦Γ◦ν = Γ◦ õ−1 ◦ν = Γ◦ω = P ◦. Together,
α ◦ P ◦ = α ◦ ω ◦ Γ = Γ ◦ ω ◦ α = P ◦ ◦ α.
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Now let Γ ∪ {ν} ⊆ N(P ◦). Then ν ◦ P ◦ = ν ◦ Γ ◦ ω = ν ◦ Γ ◦ õ−1 ◦ ν =
P ◦◦ν = Γ◦ω◦ν hence (using the commutativity), ν ◦Γ◦ õ−1 = Γ◦ õ−1◦ν =
Γ◦ν ◦ õ−1 and so ν ◦Γ = Γ◦ν. This implies ω◦Γ = õ−1◦ν ◦Γ = õ−1◦Γ◦ν =
Γ ◦ õ−1 ◦ ν = Γ ◦ ω = P ◦ and so ω ◦ P ◦ = ω ◦ Γ ◦ ω = P ◦ ◦ ω. Therefore if
α ◦ω ∈ P ◦ then by α ∈ N(P ◦), α ◦ω ◦P ◦ = α ◦P ◦ ◦ω = P ◦ ◦α ◦ω showing
that P ◦ is invariant.

(4) If a, b ∈ P we denote the map of P ◦ mapping a onto b by [a → b]′.
Now let ϕ ∈ P ◦, a ∈ P and b := ϕ(a) hence ϕ = [a → b]′. Since P ◦ is
invariant we have (a◦)−1 ◦ [a → b]′ ◦ a◦ = [o → (a◦)−1(b)]′. By (1) this
is equal [(a◦)−1(b) → o]′ = (a◦)−1 ◦ [b → a]′ ◦ a◦. Together we obtain,
ϕ = [b → a]′ hence ϕ(b) = a, i.e., ϕ ∈ J .

3. Isomorphisms
Let (P, Γ) and (P ′,Γ′) be permutation sets and let ψ : P → P ′ be a bijec-
tion. Then ψ is called isomorphism between (P, Γ) and (P ′, Γ′) and (P, Γ),
(P ′,Γ′) are called isomorphic, if Γ′ = ψ ◦ Γ ◦ ψ−1. An isomorphism ϕ is
called automorphism of (P, Γ) if (P, Γ) = (P ′, Γ′), hence Γ = ϕ ◦ Γ ◦ ϕ−1.
Thus the automorphism group Aut(P,Γ) is exactly the normalizer of Γ in
SymP . We call (P, Γ) homogeneous if Aut(P, Γ) acts transitively on P and
self homogeneous if for all a, b ∈ P it holds [a → b] ∩ Aut(P, Γ) 6= ∅.
Clearly if (P, Γ) is homogeneous and (P, Γ)r 6= ∅ then (P, Γ) is a regular
permutation set, and if (P, Γ) is invariant with (P, Γ)r 6= ∅, then (P, Γ) is
homogeneous (cf. 2.3(4)).

3.1. Let ψ : P → P ′ be an isomorphism from (P, Γ) onto (P ′, Γ′), let
(P, Γ)r 6= ∅ and o ∈ (P, Γ)r then o′ := ψ(o) ∈ ψ((P, Γ)r) = (P ′,Γ′)r and we
have:

(1) ∀a, b ∈ P ψ ◦ [a → b] ◦ ψ−1 = [ψ(a) → ψ(b)].
(2) ∀x ∈ P ψ ◦ [o → x] ◦ õ−1 = [o′ → ψ(x)]′ ◦ õ′

−1 ◦ ψ.
(3) If (P, +), (P ′, +′) are the loop derivations of (P, Γ) and (P ′, Γ′)

in o and o′, respectively, then ψ is an isomorphism from (P, +)
onto (P ′, +′) and also from the permutation derivation (P, P ◦) onto
the permutation derivation (P ′, p′◦

′
) (We have the formula: If a ∈ P

then ψ ◦ a◦ ◦ ψ−1 = (ψ(a))◦′).
(4) If (P, Γ) is invariant then for all a, b ∈ P and for each γ ∈ Γ:

γ ◦ [a → b] ◦ γ−1 = [γ(a) → γ(b)].
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Proof. Since ψ is an isomorphism we have for all a, b ∈ P : ψ◦[a → b]◦ψ−1 =
[ψ(a) → ψ(b)] and so by o′ = ψ(o), ψ(a + b) = ψ([o → a] ◦ [o → o]−1(b)) =
ψ[o → a]◦ψ−1◦ψ◦ [o → o]−1◦ψ(b)[ψ(o) → ψ(a)]◦ [ψ(o) → ψ(o)]−1(ψ(b)) =
ψ(a) +′ ψ(b).

3.2. Let o ∈ (P, Γ)r, o′ ∈ (P ′,Γ′)r, let (P, +) and (P ′, +′), resp., be the
loop derivations of (P, Γ) in o, and (P ′, Γ′) in o′, resp., and let ϕ be an
isomorphism from (P,+) onto (P ′, +′). Then:

(1) ϕ is also an isomorphism from (P, Γ) onto (P ′, Γ′) if and only if
ϕ ◦ õ = õ′ ◦ ϕ.

(2) If ν ∈ SymP , then ν ′ ∈ SymP ′ and ϕ is an isomorphism from the
permutation derivation (P, P ◦ = P+ ◦ν) of (P, +) onto the permu�
tation derivation (P ′, P ′◦) of (P ′, +′).

Proof. (1) For each a ∈ P we have a+ = [o → a] ◦ õ−1 and (ϕ(a))+
′

=
[o′ → ϕ(a)]′ ◦ õ′

−1, and since ϕ is an isomorphism, ϕ ◦ a+ = (ϕ(a))+
′ ◦ ϕ.

Together we obtain, ϕ ◦ [o → a] ◦ ϕ−1 ◦ ϕ ◦ õ−1 = [o′ → ϕ(a)]′ ◦ õ′
−1 ◦ ϕ.

This implies for a = o, [o′ → ϕ(o)]′ = õ′ and so o′ = ϕ(o), i.e., ϕ is only an
isomorphism from (P, Γ) onto (P ′,Γ′) if ϕ ◦ õ = õ′ ◦ ϕ and then ϕ ◦ [o →
a]◦ϕ−1 = [o′ → ϕ(a)]′ showing Γ′ = ϕ◦Γ◦ϕ−1 since Γ = {[o → a] | a ∈ P}
and Γ′ = {[o → ϕ(a)]′ | a ∈ P}.

(2) From o′ = ϕ(o) = ϕ(x + ν(x)) = ϕ(x) +′ ϕ(ν(x)) we obtain
ν ′(ϕ(x)) = ϕ(ν(x)) and �nally, since õ = o◦ = o+ ◦ ν = ν and õ′ = ν ′

the equation ϕ ◦ õ = õ′ ◦ ϕ. Hence by 3.2(1), ϕ is an isomorphism from
(P, P ◦) onto (P ′, P ′◦).

From 3.1 and 3.2 one obtains:

3.3. Let ϕ be an isomorphism between the permutation sets (P, Γ) and
(P ′,Γ′), let o ∈ (P, Γ)r (then ϕ(o) ∈ (P ′, Γ′)r) and let (P, +) resp. (P ′, +′)
be the loop derivation in o resp. ϕ(o). If ν ∈ Sym P (then also ν ′ ∈
SymP ′), let P ◦ := P+ ◦ ν and P ′◦ := P ′+ ◦ ν ′ then ϕ is an isomorphism
between (P, +) and (P ′,+′) and between the permutation sets (P, P ◦) and
(P ′, P ′◦).

3.4. Let (P, Γ)r 6= ∅, a ∈ (P, Γ)r, ψ ∈ Aut(P, Γ) and b := ψ(a) then:
(1) ∀x ∈ P ψ ◦ [a → x] ◦ ã−1 = [b → ψ(x)] ◦ b̃−1 ◦ ψ,
(2) ψ is an isomorphism between the left loops (P, +a) and (P, +b)

obtained by the loop derivations of (P,Γ) in the points a and b.
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3.5. Let (P, +) be a left loop with ν ∈ Sym P , (P, P ◦) with P ◦ = P+ ◦ν the
permutation derivation of (P, +) and let ϕ ∈ Sym P and f := ϕ◦ν◦ϕ−1(o).
Then for c ∈ P :

(1) ϕ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P ϕ ◦ a+ ◦ ϕ−1 ◦ f+ = (ϕ(a + ϕ−1(f)))+.
(2) If ϕ(o) = o then: "ϕ ∈ Aut(P, P ◦) ⇔ ϕ ∈ Aut(P, +)".
(3) ν ∈ Aut(P, P ◦) ⇔ ν ∈ Aut(P, +).
(4) c+ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P c+ ◦ a+ ◦ (c+)−1 ◦ (c− (−c))+ =

(c + (a− (−c)))+.
(5) c◦ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P c+ ◦ν ◦a+ ◦ν−1 ◦ (c+)−1 ◦ (c− (−c))+ =

(c− (a− c))+.

Proof. By de�nition, ϕ ∈ Aut(P, P ◦) if and only if ϕ◦a+ ◦ν ◦ϕ−1 ∈ P+ ◦ν
for each a ∈ P . For a = o we obtain that there has to be an f ∈ P with
ϕ ◦ ν ◦ ϕ−1 = f+ ◦ ν and so ϕ ◦ ν ◦ ϕ−1(o) = f+ ◦ ν(o) = f+(o) = f . Thus
ϕ ◦a+ ◦ ν ◦ϕ−1 = ϕ ◦a+ ◦ϕ−1 ◦ϕ ◦ ν ◦ϕ−1 = ϕ ◦a+ ◦ϕ−1 ◦ f+ ◦ ν ∈ P+ ◦ ν,
i.e., ϕ ◦ a+ ◦ ϕ−1 ◦ f+ ∈ P+. Since ϕ ◦ a+ ◦ ϕ−1 ◦ f+(o) = ϕ(a + ϕ−1(f))
we have proved (1). If ϕ(o) = o then f = o and condition (1) assumes the
form

ϕ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P ϕ ◦ a+ ◦ ϕ−1 = (ϕ(a))+.

But this tells us that ϕ is an automorphism of the left loop (P, +). Since
ν(o) = (o+)−1(o) = id(o) = o, (3) is a consequence of (2).

Since f := c+ ◦ν ◦(c+)−1(o) = c−(−c) = c◦(−c) = c◦ ◦ν ◦(c◦)−1(o) and
so c+(a + (c+)−1(f)) = c + (a− (−c)) and c◦(a + (c◦)−1(f)) = c◦(a− c) =
c− (a− c), (4) and (5) are consequences of (1).

From 3.2 we obtain:

3.6. Let (P, +) be a left loop with ν ∈ SymP , then:
(1) P+ ⊆ Aut(P, P ◦) ⇔ ∀a, b ∈ P a+ ◦b+ = (a+(b−(−a)))+ ◦(−a)+.
(2) If P+ ⊆ Aut(P, P ◦) then (P, +) is a loop and for the structure group

∆ := 〈{δa,b | a, b ∈ P}〉 of the loop generated by the permutations
δa,b := ((a + b)+)−1 ◦ a+ ◦ b+ we have ∆ ≤ Aut(P, +) and therefore
Aut(P, P ◦) = P+ onQ Aut(P, +) is equal the quasidirect product of
the loop (P, +) with the automorphism group of the loop.

(3) P ◦ ⊆ Aut(P, P ◦) ⇔ ∀a, b ∈ P a+ ◦ (−b)+ = (a− (b−a))+ ◦ (−a)+.
(4) P ◦ ⊆ Aut(P, P ◦) ⇔ P+ ∪ {ν} ⊆ Aut(P, P ◦).

Proof. (1) We have: "P+ ⊆ Aut(P, P ◦) ⇔ the functional equation of
3.5(4) is valid for all c, a ∈ P". For a = −c we obtain (c+)−1◦(c−(−c))+ =
((−c)+)−1 and so 3.5(4) takes on the form (c+(a−(−c)))+◦(−c)+ = c+◦a+.
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(2) By 2.4, since ν ∈ SymP , (P, P ◦) is a permutation set with o ∈
(P, P ◦)r and so by P+(o) = P and P+ ⊆ Aut(P, P ◦), (P, P ◦) is a regular
permutation set. With (P, P ◦) also (P, P+ = P ◦ ◦ ν−1) is regular and so
by 2.2, (P, +) is a loop. By P+ ⊆ Aut(P, P ◦) we have ∆ ≤ Aut(P, P ◦) and
since δa,b(o) = ((a + b)+)−1 ◦ a+ ◦ b+(o) = ((a + b)+)−1(a + b) = o each
element δ ∈ ∆ �xes o and so by 3.5(2), ∆ ≤ Aut(P, +).

(3) Again, "P ◦ ⊆ Aut(P, P ◦) ⇔ the functional equation of 3.5(5) is
valid ∀c, a ∈ P". For c = o we obtain ν◦a+◦ν−1 = (−a)+ and so 3.5(5) takes
on the form c+◦(−a)+◦(c+)−1◦(c−(−c))+ = (c−(a−c))+. Now by a = c,
we obtain (−c)+◦(c+)−1◦(c−(−c))+ = id, i.e., (c−(−c))+ = c+◦((−c)+)−1

and �nally c+ ◦ (−a)+ = (c− (a− c))+ ◦ (−c)+.
(4) Clearly if P ◦ ⊆ Aut(P, P ◦), then ν = o◦ ∈ Aut(P, P ◦) and P+ =

P ◦ ◦ ν−1 ⊆ Aut(P, P ◦). If P+ ∪ {ν} ∈ Aut(P, P ◦) then P ◦ = P+ ◦ ν ⊆
Aut(P, P ◦).

3.7. For a loop (P, +) the following conditions are equivalent:
(1) (P, P ◦) is selfhomogeneous.
(2) ∀a, b ∈ P a+ ◦ (−b)+ ◦ ((−a)+)−1 = (a− (b− a))+.
(3) (P, P ◦) is an invariant regular involution set.
(4) (P, +) is a K-loop (= Bruck loop).

Proof. Let a, b ∈ P and c ∈ P the solution of x− a = b then [a → b]◦ = c◦

and so by 3.6(3) the conditions (1) and (2) are equivalent. From the equation
(2) we obtain a+ ◦ (−b)+ = (a− (b− a))+ ◦ ((−a)+) hence a + (−b + x) =
(a − (b − a)) + (−a + x) and so for x := −(−a), a + (−b − (−a)) =
a− (b− a), i.e., −b− (−a) = −(b− a), showing that ν is an automorphism
of (P, +). Now observing ν ∈ Aut(P, +) we obtain for x := − − (b − a):
a+(−b−−(b−a)) = (a−(b−a))+(−a−−(b−a)) = o hence a = b−(b−a) =
b+ ◦ ν ◦ b+ ◦ ν(a) = b◦ ◦ b◦(a), i.e., b◦ ∈ J in particular, o◦ = o+ ◦ ν = ν ∈ J .
Consequently P ◦ ⊆ J . Finally a◦ = a+ ◦ ν = (a◦)−1 = ν ◦ (a+)−1 hence
(a+)−1(x) = ν ◦ a+ ◦ ν(x) = −(a − x) = −a − −x = −a + x = (−a)+(x)
and ν ◦ a+ ◦ ν = (−a)+. Therefore the equation (2) assumes the form
a+ ◦ b+ ◦a+ = (a+(b+a))+ saying that (P, +) is a Bol loop hence together
with ν ∈ Aut(P, +), (P, +) is a Bruck loop and moreover, a◦ ◦ b◦ ◦ a◦ =
a+◦ν◦b+◦ν◦a+◦ν = a+◦(−b)+◦a+◦ν = (a+(−b+a))+◦ν ∈ P+◦ν = P ◦.
Consequently (P, P ◦) is an invariant regular involution set.

By [10], (3) and (4) are equivalent. Now let (P, +) be a Bruck loop.
Since (P, +) is also a Bol loop, we have a+ ◦ b+ ◦ a+ = (a + (b + a))+

and obtain by substituting a := −b, (−b)+ = (b+)−1 and so (− − b)+ =
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((−b)+)−1 = ((b+)−1)−1 = b+ hence − − b = b, i.e., ν2 = id. Then (since
ν ∈ Aut(P, +) ) a+◦(−b)+◦a+ = (a+(−b+a))+ = (a+(ν(b)+ν(ν(a))+ =
(a + ν(b + ν(a))+ = (a− (b− a))+ and this is equation (2).

3.8. For a left loop (P, +) with ν ∈ Sym P the following conditions are
equivalent:

(1) P+ ⊆ Aut(P, P ◦) and P+ = (P+)−1,
(2) (P, +) is a Bol loop.

Proof. (1) ⇒ (2) Let a, b ∈ P then there is a c ∈ P with (a+)−1 = c+

hence c = c+(o) = (a+)−1(o) implying a + c = a+(c) = o, i.e., c = −a
hence (a+)−1 = (−a)+ and so −(−a) = a. By 3.6(1), a+ ◦ b+ = (a + (b−
(−a)))+ ◦ (−a)+ and by observing the previous facts we obtain a+ ◦ b+ =
(a + (b + a))+ ◦ (a+)−1 or a+ ◦ b+ ◦ a+ = (a + (b + a))+ telling us that
(P, +) is a Bol loop.

(2) ⇒ (1) Since in a Bol loop, for each a ∈ P , (a+)−1 = (−a)+ and
−(−a) = a the characterizing functional equation a+◦b+◦a+ = (a+(b+a))+

of the Bol loop can be written in the form of the equation of 3.6(1) and
therefore the statements of (1) are veri�ed.

Remark 1. By 3.8, if (P, +) is a Bol loop then the permutation derivation
(P, P ◦) of (P, +) is a homogeneous Bol set (cf. 2.6) and so by 3.4(2),
if (P, +a) is the loop derivation of (P, P ◦) in an arbitrary point a ∈ P ,
then (P, +a) and (P, +) are isomorphic. This supplements 2.7(3) and more
precisely we have: The map (−a)+ is an isomorphism from the Bol loop
(P, +a) onto the Bol loop (P,+).

4. Involution sets
By [14] we have:

4.1. Let (P, +) be a left loop then the following statements are equivalent:
(1) ν ∈ SymP and P ◦ ⊆ J , i.e., (P, P ◦) is an involution set with

o ∈ (P, P ◦)r.
(2) (P, +) satis�es the condition (*) ∀ a, b ∈ P a− (a− b) = b.

4.2. Let (P, Γ) be a permutation set with Pr := (P, Γ)r 6= ∅, let o ∈ Pr be
�xed and let + := +o be the loop derivation of (P, Γ) in o. Then:

(1) Γ = Γ−1 ⇔ P̃r ⊆ J and õ ◦ (P+)−1 ◦ õ = P+.
(2) If there is a ν ′ ∈ J with ν ′ ◦ (P+)−1 ◦ ν ′ = P+ then Γ = Γ−1.



60 H. Karzel

(3) If (P, Γ) is an involution set then (P, +) satis�es the condition (*).
(4) If (P, Γ) is an invariant involution set then (P, +) is a K-loop.

Proof. (1) If a ∈ Pr then ã := [a → a] is the unique element of Γ �xing
a and also ã−1(a) = a. Therefore if Γ = Γ−1 then ã = ã−1, i.e., ã ∈ J , in
particular õ = o◦ ∈ J . By P+ = {x+ = [o → x]◦ (o◦)−1 = x◦ ◦ õ | x ∈ P} =
P ◦ ◦ õ = Γ ◦ õ hence Γ = P+ ◦ õ we have:

Γ = P+ ◦ õ = Γ−1 = õ ◦ (P+)−1 ⇔ õ ◦ (P+)−1 ◦ õ = P+.
(2) Let ν ′ ∈ J with ν ′ ◦ (P+)−1 ◦ ν ′ = P+ hence for each a ∈ P ∃b ∈ P

with ν ′ ◦ (a◦ ◦ (o◦)−1)−1 ◦ ν ′ = ν ′ ◦ o◦ ◦ (a◦)−1 ◦ ν ′ = b◦ ◦ o◦. For a = o
we obtain id = ν ′ ◦ ν ′ = b◦ ◦ o◦ hence b◦ = (o◦)−1. Consequently Γ−1 =
õ ◦ (P+)−1 = õ ◦ ν ′ ◦ P+ ◦ ν ′ = Γ = P+ ◦ õ−1 if and only if ν ′ = õ−1.

5. Defect functions
Let (P, Γ) be a permutation set with Pr 6= ∅ then the map

δ : Pr × P × Γ → Sym P,

(a, b, γ) 7→ δa;b,γ = [a → a] ◦ [γ(b) → a] ◦ γ ◦ [a → b]

is called the defect function of the permutation set (P, Γ) in the point a.
We have δa;b,γ(a) = a. If Pr = P we set

δ : P 3 −→ Sym P ; (a, b, c) 7→ δa;b,c := [a → a] ◦ [c → a] ◦ [b → c] ◦ [a → b].

Three points a, b, c ∈ P are called defect free if δa;b,c = id.
If (P, +) is a left loop then the map

δ : P × P → SymP ; (a, b) 7→ δa,b = ((a + b)+)−1 ◦ a+ ◦ b+

is called the defect function of the left loop (P, +) and a, b ∈ P are called
defect free if δa,b = id, i.e., if (a + b)+ = a+ ◦ b+. Here o is the �xed point
of δa,b. We recall that the de�nition implies:

5.1. If (P, +) is a K-loop then ∆ := 〈{δa,b | a, b ∈ P}〉 ≤ Aut (P, +).

6. Re�ection structures and point re�ection spaces
Let P be a non empty set. If there is a �xed point o ∈ P and a map

◦ : P → J ; x 7→ x◦ with x◦(o) = x for each x ∈ P
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then the tripel (P, ◦, o) is called re�ection structure (cf.[10]). If there is a
map

∼ : P → J ; x 7→ x̃ with Fix x̃ = {x} for each x ∈ P

satisfying the property
(M) for all a, b ∈ P ∃1m ∈ P with m̃(a) = b

then the pair (P,∼) is called point re�ection structure (cf. [6], [5]). A
re�ection structure (point re�ection structure) is invariant if for all a, b ∈ P
there exists c ∈ P with a◦ ◦ b◦ ◦ a◦ = c◦, ( ã ◦ b̃ ◦ ã = c̃ ). An invariant
re�ection structure (P, ◦, o) is a point re�ection structure if for each a ∈ P ,
|Fix a◦| = 1.

By the de�nitions and 2.5 follows:

6.1. Let (P, ◦, o) be a re�ection structure and Γ := P ◦ := {x◦ | x ∈ P}. If
(P, Γ) is regular, for each p ∈ P we denote by p̃ ∈ Γ the permutation with
p̃(p) = p. Let P̃ := {p̃ | p ∈ P}. Then:

(1) (P, P ◦) is an involution set, o a regular point hence o ∈ (P, P ◦)r

and the loop derivation of (P, P ◦) in the point o gives us a left loop
(P, +) satisfying the condition (*).

(2) (P, ◦, o) is an invariant re�ection structure ⇔ (P, P ◦) is an invar�
iant involution set with (P, P ◦)r 6= ∅ ⇔ (P, +) is a K-loop.

(3) (P, ◦, o) is an invariant point re�ection structure ⇔ (P, P ◦) is an
invariant involution set with (P, P ◦)r 6= ∅ and any two points
a, b ∈ P have exactly one midpoint m ∈ P , i.e., if c◦ ∈ P ◦ with
m ∈ Fix c◦ then c◦(a) = b ⇔ P̃ = P ◦ = Γ ⇔ (P, +) is a K-loop
uniquely 2-divisible.

(4) If the re�ection structure (P, ◦, o) (the point re�ection structure
(P,∼) ) is invariant then for all a, b ∈ P we have a◦ ◦ b◦ ◦ a◦ =
(a◦ ◦ b◦(a))◦, (ã ◦ b̃ ◦ ã = ˜̃a(b)).

Proof. All we have to show is that ν ∈ Sym P . Let x ∈ P then x+ = [o →
x] ◦ [o → o]−1 = x◦ ◦ (o◦)−1 = x◦ ◦ o◦ hence (x+)−1 = o◦ ◦ x◦ and so ν(x) =
−x = (x+)−1(o) = o◦ ◦ x◦(o) = o◦(x). Therefore ν = o◦ ∈ Sym P .

6.2. If (P, Γ) is an involution set with Pr = (P,Γ)r 6= ∅, o ∈ Pr �xed and
x◦ := [o → x] for each x ∈ P then (P, ◦, o) is a re�ection structure.

6.3. If (P, +) is a left loop satisfying (*) and x◦ := x+ ◦ ν for each x ∈ P
then (P, ◦, o) is a re�ection structure.
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De�nition 4. Let (P,∼) be a point re�ection structure and let ρ :=
{(a, b, c) ∈ P 3 | ã ◦ b̃ ◦ c̃ ∈ J} then (P,∼) is called point re�ection space if:

(R1) ∀a, b, c ∈ ρ : ã ◦ b̃ ◦ c̃ ∈ P̃ ,
(R2) ρ is a ternary equivalence relation, i.e.,

(a, b, c) ∈ ρ ⇒ (b, c, a), (b, a, c) ∈ ρ and
a 6= b ∧ (a, b, c), (a, b, d) ∈ ρ ⇒ (b, c, d) ∈ ρ.

Remark 2. If (P, L,≡, α) is an absolute geometry (cf. [10]) and if ∼ is the
map which associates to each point p ∈ P the re�ection in p then (P,∼) is
a point re�ection space.

From now on let (P,∼) be a point re�ection space, let P̃ := {p̃ | p ∈ P},
and let G := 〈P̃〉 be the group generated by the point re�ections p̃. Let the
point o ∈ P be �xed. From (R1) follows that (P, P̃ ) is an invariant regular
involution set. Therefore by 4.2(4) the loop derivation (P,+) of (P, P̃ ) in o
is a K-loop. We call (P,∼) singular if ρ = P 3 and ordinary otherwise. Any
two distinct points a, b ∈ P determine an equivalence class

a, b := {x ∈ P | (a, b, x) ∈ ρ}.

We have:

6.4. A point re�ection space (P,∼) is singular if one of the following equiv-
alent conditions is satis�ed:

(1) The set P of all points forms the only equivalence class of ρ,
(2) P̃ ◦ P̃ ◦ P̃ = P̃ ,
(3) P̃ ◦ P̃ is a commutative subgroup of index 2 in G,
(4) The K-loop (P, +) is a commutative group (isomorphic with P̃ ◦ P̃ ).

For the rest of this section let (P,∼) be an ordinary point re�ection
space. Then the set P together with the set L := {a, b | a, b ∈ P, a 6= b} of
all equivalence classes of ρ � called lines � forms an incidence space (P, L)
where the set L contains more than one line. A subset T ⊆ P is called
subspace of (P,∼) if for all a, b ∈ T with a 6= b we have a, b ⊆ T . Let T

be the set of all subspaces of (P,∼).

Remark 3. If (P, L,≡, α) is an ordinary absolute geometry then the set of
lines L coincides with the set of equivalence classes of the relation ρ.

6.5. An ordinary point re�ection space (P,∼) has the following properties:
(1) (P, L) in an incidence space.
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(2) If L ∈ L, then ∀a, b, c ∈ L ∃ d ∈ L with ã ◦ b̃ ◦ c̃ = d̃.
(3) If a, b ∈ P with a 6= b, then a, b = {x ∈ P | ã ◦ b̃ ◦ c̃ ∈ J}.
(4) For each T ∈ T, and for each t ∈ T it holds t̃(T ) = T .
(5) Let ∼T : T → Sym T ; t 7→ t̃|T . Then (T,∼T ) is a point re�ection

space and (T,∼T ) is singular if and only if T is a point or a line.
(6) 〈P̃ 〉 = G ≤ Aut(P,∼) = Aut(P, ρ) = Aut(P, L) = Aut(P, T)

and the automorphism group Aut(P, ∼) acts transitively on the
point set P .

Since an absolute space (P, L,≡, α) is also an ordered space (P, L, α)
and an ordered space is an exchange space (cf. [10] Theorem 1.5) there are
ordinary point re�ection spaces (P,∼) such that the corresponding incidence
space (P, L) is an exchange space. For these spaces we can state:

6.6. Let (P,∼) be an ordinary point re�ection space such that the correspon-
ding incidence space (P, L) is an exchange space. Then:

(1) (P, L) has a base B, two bases have the same cardinality and we
de�ne dim(P,∼) := |B| − 1 as dimension of (P,∼).

(2) If dim(P,∼) > 3 then (P,∼) is desarguesian.
(3) If dim(P,∼) > 3 let E := {T ∈ T | dimT = 2} be the set of all

planes, for each p ∈ P let L(p) := {L ∈ L | p ∈ L} and E(p) :=
{E ∈ E | p ∈ E}, then (L(p),E(p),⊂) is a projective space.

7. Nets, chain structures, webs and their properties
Let (P, G1, G2) be a 2-net, i.e., P is a non empty set and G1, G2 are subsets
of the powerset of P called generators such that:
(I1) ∀p ∈ P, ∀i ∈ {1, 2} ∃1 [p]i ∈ Gi with p ∈ [p]i,
(I2) ∀X ∈ G1, ∀Y ∈ G2 |X ∩ Y | = 1.

By (I1), (I2), if A,B ∈ Gi then A and B have the same cardinality and
there is a binary operation (cf. e.g. [4]):

¤ : P × P → P ; (x, y) 7→ xy := [x]1 ∩ [y]2

which has the properties:

7.1. Let a, b, c, d ∈ P and let {a, b}� := {ab, ba} and {a, b; c, d}� :=
{ab, ba; cd, dc}. Then:

(1) (ab)(cd) = ad,
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(2) ”ab = b ⇔ [a]1 = [b]1”, ”ab = a ⇔ [a]2 = [b]2” and aa = a,
(3) ({a, b}�)� = {ab, ba}� = {a, b},
(4) {a, b}� = {a, b} ⇔ ab = a or ab = b ⇔ |{a, b} ∪ {a, b}�| < 4,
(5) ({a, b; c, d}�)� = {a, b; c, d}.
The set {a, b} is called parallel (joinable) if {a, b}� = {a, b}, ({a, b}� 6=

{a, b}) and a subset A ⊆ P is called joinable if for all {a, b} ∈ (
A
2

)
we have

{a, b}� 6= {a, b}. Let
C := {C ∈ 2P | ∀X ∈ G1 ∪G2 |C ∩X| = 1}

be the set of all chains of the 2-net (P,G1, G2). If K ⊆ C then (P, G1,G2, K)
is called chain structure and (P, G1, G2,C) maximal chain structure. We
have:

C 6= ∅ ⇔ ∀A ∈ G1 ∀B ∈ G2 |A| = |B|.
If (P, G1, G2,K) satis�es the condition

(Ii) ∀{a1, ..., ai} ∈
(
P
i

)
which are joinable ∃1K ∈ K with {a1, ..., ai} ⊆ K

for i = 1, 2, 3 then (P, G1,G2, K) is called web, 2-structure, hyperbola struc-
ture, respectively. If (P, G1, G2,K) is a web, for each p ∈ P we denote
the chain K ∈ K which is uniquely determined by p ∈ K with [p]3, hence
[p]3 ∈ K and p ∈ [p]3.

For A,B ∈ C and p ∈ P let

pA := [p]1 ∩A, Ap := [p]2 ∩A and ÃB : P → P ; x 7→ (Bx)(xA).

Moreover we consider the 1- and 2-perspectivities:

[A 1→ B] : A → B; x 7→ xB, [A 2→ B] : A → B; x 7→ Bx.

We note:

7.2. Let A,B, C ∈ C then:
(1) ÃB ∈ SymP with ÃB ∈ Aut(P, G1 ∪G2) and ÃB(G1) = G2,

B̃A = (ÃB)−1, F ix ÃB = A ∩B,
(2) ÃB(C) ∈ C, ÃB(A) = B, ÃB(B) = A,
(3) Ã := ÃA is an involution with Fix Ã = A, called re�ection in A,
(4) ÃB = C̃D ⇔ (A,B) = (C,D),
(5) Ã, B|A = [A 2→ B], Ã, B|B = [B 1→ A],

(6) Ã, B ◦ C̃ ◦ B̃, A = ˜̃
A,B(C), in particular Ã ◦ C̃ ◦ Ã = ˜̃

A(C).
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By 7.2(2) there is the following ternary operation:

τ : C× C× C → C; (A,B, C) 7→ τ(A,B, C) := ÃC(B).

Two chains A,B ∈ C are called orthogonal, denoted by A ⊥ B, if A 6= B
and Ã(B) = B. Then A ⊥ B implies B ⊥ A. For a subset K ⊆ C we
denote by K⊥ := {C ∈ C | ∀K ∈ K C̃(K) = K} the orthogonal complement
of the chain set K.
De�nition 5. Let (P, G1,G2, K) be a chain structure, T ∈ C and X ∈
G1∪G2. (P, G1, G2,K) is called covering if

⋃
K = P . T is called transversal

of (P, G1,G2, K) if for each K ∈ K

T ∩K 6= ∅ and for each t ∈ T ∃1K ∈ K such that t ∈ K.

T is called orthogonal transversal of (P, G1, G2, K) if moreover for each
K ∈ K it holds T ⊥ K. X is called transversal (quasi-transversal) of
(P, G1, G2, K) if the map

K → X; K 7→ K ∩X

is a bijection (injection).

7.3. Let E ∈ C be �xed and for A,B ∈ C let A ·B := ÃB(E). Then (C, ·) is
a group isomorphic to Sym E with the neutral element E and we have the
representations:

τ(A,B, C) = ÃC(B) = A ·B−1 · C and Ã(B) = A ·B−1 ·A.

De�nition 6. A subset S ⊆ C is called symmetric, if for all A,B ∈ S it
holds τ(A,B, A) = Ã(B) ∈ S, and double symmetric, if for all A,B,C ∈ S

we have τ(A,B, C) = Ã, C(B) ∈ S.
Clearly each double symmetric subset S is also symmetric, and the set

of all symmetric and double symmetric subsets, respectively, is closed with
respect to intersections. This allows us to de�ne the two closure operations:
if A is an arbitrary subset of C and if CS and CSS , respectively, denotes the
set of all symmetric and double symmetric subsets of C, let

A∼ :=
⋂
{S ⊆ CS | A ⊆ S} and A∼∼ :=

⋂
{S ⊆ CSS | A ⊆ S} ,

respectively, be the smallest symmetric and double symmetric subset of C

containing A.
Let Ã := {Ã | A ∈ A} and

∼∼
A := {Ã, B | A,B ∈ A}. Then:
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7.4. Let A ⊆ C and M(A) := {ÃB, ÃB ◦ C̃ | A,B,C ∈ A}. Then:
(1) A = A∼ ⇔ Ã is normal in Ã, (i.e., ∀ α, β ∈ Ã α ◦ β ◦ α ∈ Ã),
(2) A = A∼∼ ⇔ Ã is normal in

∼∼
A ,

(i.e., ∀ α ∈ Ã ∀ β ∈∼∼A β ◦ α ◦ β−1 ∈ Ã),
(3) if an element E ∈ A is �xed and the multiplication de�ned according

to 7.3, then A = A∼∼, i.e., A is double symmetric ⇔ A ≤ C,
(4) M(A) ≤ Sym P ⇔ A ≤ C.

Remark 4. For a chain structure (P, G1, G2, K) the General Rectangle Ax-
iom
(R) ∀A,B, C ∈ K : {[[a]1 ∩B]2 ∩ [[a]2 ∩ C]1 | a ∈ A} ∈ K,
formulated in [13] p.89, claims exactly that the set K of chains is double
symmetric, i.e., for all A, B,C ∈ K it holds A · B−1 · C ∈ K. Therefore
if a chain structure (P, G1,G2, K) satis�es the General Rectangle Axiom
(R) then K is symmetric. For a web (P, G1, G2, K) the axiom (R) is called
Reidemeister Condition.

Remark 5. Another axiom formulated by W.Benz [3] for hyperbola struc-
tures (P, G1, G2, K) and called Symmetry Axiom is the following:
(S) ∀K, L ∈ K : |L̃(K) ∩K| > 2 ⇒ L̃(K) = K.
By [2] and [9] we have the result: For a hyperbola structure (P, G1,G2, K)
the Symmetry Axiom (S) implies the Rectangle Axiom (R) and so for a hy-
perbola structure (P, G1,G2, K) satisfying the Symmetry Axiom (S) the set
of chains K is symmetric. But there are hyperbola structures (P, G1,G2, K)
where K is even double symmetric and the Symmetry Axiom (S) is violated
(cf. [13] p. 90 �).

7.5. Let A,B, C, · · · ∈ C, E ∈ C �xed and let ” · ” be de�ned according to
7.3. Then:

(1) Fix ÃB = A ∩B, Fix (ÃB ◦ C̃) = (B ∩ C)¤(A ∩ C),
(2) ÃB ◦ C̃D ◦ F̃G = ˜(AD−1F )(GC−1B),
(3) ÃB ◦ C̃D = ˜(AD−1U)(UC−1B) ◦ Ũ ,
(4) Ã ◦ B̃ ◦ Ã = ÃB−1A = ˜̃

A(B),
(5) Ã ◦ B̃C ◦ Ã = ˜(AC−1A)(AB−1A) = ˜

Ã(C), Ã(B),
(6) ÃB ◦ Ẽ ◦ C̃D ◦ Ẽ = ˜(AC)(DB) ◦ Ẽ.
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8. Symmetric chain structures as permutation sets
Let (P, G1, G2,C) be a maximal chain structure and let S ⊆ C be a sym-
metric subset of chains, hence for all S, T ∈ S, S̃(T ) ∈ S. Therefore for
each S ∈ S the map

S̃ : S → S; X 7→ S̃(X)

is an involution of SymS and so (S, S̃) with S̃ := {S̃ | S ∈ S} is an
involution set. By 7.2(6), S̃ ◦ T̃ ◦ S̃ = ˜̃

S(T ), hence (S, S̃) is an invariant
involution set. From 2.3 and 4.2 we obtain:

8.1. Let (P, G1, G2,S) be a symmetric chain structure such that (S, S̃)r 6=
∅ and let E ∈ (S, S̃)r then:

(1) (S, S̃) is a regular invariant involution set,
(2) ∀A,B ∈ S ∃1C ∈ S C̃(A) = B (i.e., [A → B] = C̃),
(3) the loop derivation

+ : S×S → S; (A,B) 7→ A + B := [E → A] ◦ Ẽ(B)
of (S, S̃) in E produces a K-loop (S, +).

8.2. Let (P, G1, G2, S) be a web with S⊥ 6= ∅, let T ∈ S⊥ and for each
S ∈ S let S̃|T be the restriction of S̃ onto T then:

(1) (T, S̃|T ) with S̃|T := {S̃|T ) | S ∈ S} is a regular involution set and
for each S ∈ S we have S = {x¤S̃|T (x) | x ∈ T}.

(2) The following statements are equivalent:
(i) S̃ is symmetric,
(ii) (S, S̃) is a regular invariant involution set.

Proof. (1) Let a, b ∈ T and C := [ab]3 be the chain C ∈ S of our web
containing the point ab then C ⊥ T and this implies C̃(T ) = T and T̃ (ab) =
ba ∈ T̃ (C) = C hence C̃(a) = b and so [a ↔ b] := C̃|T showing that (T, S̃|T )
is a regular involution set.

(2) is a consequence of (1) and 8.1.

9. Immersions of permutation sets in chain structures
We consider �rstly the permutation set (E,Sym E) where E is a not empty
set. To (E, Sym E) there corresponds the following maximal chain structure
(P, G1, G2, C) (cf. e.g. [1]) with:

P := E ×E, G1 := {E × x | x ∈ E}, G2 := {x×E | x ∈ E}
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and C the set of all chains of the net (P, G1, G2). If we identify E with the
subset {(x, x) | x ∈ E} of P then E ∈ C and in that way we see that C is
not empty. Let

κE : Sym E → C; σ 7→ κE(σ) := {(x, σ(x)) | x ∈ E}.

Then for each σ ∈ Sym E, κE(σ) is a chain of C, the graph of σ, and the
map κE is a bijection between Sym E and C. The inverse map of κE is
given by

λE : C → Sym E; C 7→ C̃E ◦ C̃E|E .

Moreover if C is turned into a group (C, ·) according to 7.3 then κE is an
isomorphism from the symmetric group (Sym E, ◦) onto the group (C, ·).
Now let (E, Γ) be an arbitrary permutation set. Then K := κE(Γ) is a subset
of C and (P,G1, G2,K) a chain structure called the envelope of (E, Γ). We
write Ev(E, Γ) := (P, G1, G2,K). Between a permutation set (E,Γ) and her
envelope Ev(E, Γ) := (P, G1, G2,K) there are the following connections:

9.1. Let (E, Γ) be a permutation set and (P, G1,G2, K) := Ev(E,Γ) her
envelope then:

(1) Γ ≤ Sym E ⇔ K ≤ C,
(2) (E,Γ) is a regular permutation set ⇔ (P, G1,G2, K) is a web,
(3) (E,Γ) is a regular permutation group ⇔ (P, G1, G2,K) is a web

with K ≤ C, i.e., a web satisfying the Reidemeister Condition;
in this case we call (P, G1, G2, K) a webgroup,

(4) (E,Γ) is a sharply 2-transitive permutation set ⇔ (P, G1,G2, K) is
a 2-structure,

(5) (E,Γ) is a sharply 2-transitive permutation group ⇔ (P, G1,G2, K)
is a 2-structure with K ≤ C, i.e., a 2-structure satisfying the rect�
angle axiom (R) (cf. [7]); in this case we call (P,G1, G2, K) a 2-
group,

(6) (E,Γ) is a sharply 3-transitive permutation set ⇔ (P, G1,G2, K) is
a hyperbola structure,

(7) (E,Γ) is a sharply 3-transitive permutation group ⇔ (P, G1,G2, K)
is a hyperbola structure with K ≤ C, i.e., a hyperbola structure
satisfying the rectangle axiom; in this case we call (P,G1, G2, K) a
hyperbola group.

From now on we consider only permutation sets (E, Γ) with (E, Γ)r 6= ∅.
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9.2. Let (P, G1,G2, K) be a chain structure with a transversal X ∈ G1 of
(P, G1, G2, K), let o ∈ X be �xed and let E ∈ K with o ∈ E. Then for
each a ∈ E, o¤a is an element of X and so there is exactly one A ∈ K

with o¤a ∈ A. Therefore if we set a+ := λE(A) and E+ := {a+ | a ∈ E}
then (E,E+) becomes a permutation set with o ∈ (E, E+)r, and (E, +) with
a + b := a+(b) becomes a left loop. Moreover we have κE(a+) = A hence
K = κE(E+) and the following three propositions are equivalent:

(i) (P, G1, G2, K) is a web,
(ii) ∀X ∈ G1 X is a transversal of (P, G1, G2, K),
(iii) ∀X ∈ G2 X is a transversal of (P, G1, G2,K).

9.3. Let (E,+) be a left loop, X := o¤E, K := κE(E+) and for a, b ∈ E,
A := κE(a+), B := κE(b+) then κE(a+ ◦ b+ ◦ a+) = A · B · A = Ã(B−1)
and we have:

(1) X ∈ G1 is a transversal of (P, G1, G2,K),
(2) a+ ◦ b+ ◦ a+ ∈ E+ ⇔ A ·B ·A = Ã(B−1) ∈ K,
(3) (E,+) is a Bol loop ⇔ K is symmetric.

From 9.3 we obtain the theorems:

Theorem 9.4. Let (E, +) be a Bol loop and let K := κE(E+) then K is
symmetric hence (by section 8) (K, K̃) is an invariant involution set and the
following statements are equivalent:

(i) (K, K̃) is regular,
(ii) for all a, b ∈ E the equation b = x + (−a + x) has exactly one

solution x ∈ E,
(iii) (E, +) is uniquely 2-divisible, i.e., ∀a ∈ E ∃1x ∈ E with x+x = a,
(iv) ∀A ∈ K ∃1A

′ ∈ K A′ ·A′ = A (this implies: if A + B := A′ ·B ·A′
then (K,+) is a K-loop),

(v) K⊥ 6= ∅.

Proof. Let A,B ∈ K and a+ := λE(A), b+ := λE(B). If there is a C ∈ K

such that B = C̃(A) = C · A−1 · C and if c+ := λE(C) then b+ = c+ ◦
(−a)+ ◦ c+ hence b = c + (−a + c). If c ∈ E is a solution of the equation
b = x + (−a + x) and C := κE(C+) then C̃(A) = B. This shows the
equivalence of (i) and (ii) and if we set a := o in (ii) we see that (ii)
implies (iii). Finally we assume (iii). For each a ∈ E let a′ ∈ E such
that a′ + a′ = a then if A := κE(a+) and A′ := κE(a′+) we have Ã′(E) =
A′ ·E ·A′ = A′ ·A′ = κE(a′+) ·κE(a′+) = κE(a′+◦a′+) = κE(a+) = A. This
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shows (iv) and E ∈ (K, K̃)r and so by 2.3(4), (K, K̃) is a regular invariant
involution set, i.e., (iv) implies (i).

The equivalence of (i) and (v) is a consequence of 8.1.

We set A+B := Ã′ ◦ Ẽ(B) = Ã′(B−1) = A′ ·B ·A′ = κE(a′+) ·κE(b+) ·
κE(a′+) = κE(a′+ ◦ b+ ◦ a′+) = κE(a′ + (b + a′))+ ∈ κE(E+) = K and so
by 8.1(3), (K,+) is a K-loop and moreover we have the result of P. T. Nagy
and K. Strambach [23].

Theorem 9.5. Let (E, +) be a Bol loop uniquely 2-divisible and for a ∈ E
let a′ ∈ E such that a′ + a′ = a, then (E,⊕) with a⊕ b := a′ + (b + a′) is
a K-loop.

10. Loops derived from point re�ection spaces
In this section let (P,∼) be a point re�ection space, let a point o ∈ P be
�xed and let (P, +) be the loop derivation of (P,∼) in o. If (P,∼) is singular
then by 6.4 the loop (P, +) is a commutative group. Therefore we assume
that (P,∼) is ordinary. Then by 9.4, (P, +) is a proper K-loop uniquely
2-divisible. For p ∈ P let p′ ∈ P such that p′ + p′ = p. We recall that the
operation "+" is given by a + b := ã′ ◦ õ(b) and that the pair (P, L), where
L denotes the set of equivalence classes of the relation ρ, is an incidence
space (cf. section 6).

We show:

Theorem 10.1. Let F := L(o) := {L ∈ L | o ∈ L} be the set of all
equivalence classes containing o and let a, b ∈ P . Then:

(1) if a+ ◦ b+ = b+ ◦ a+ then a+ ◦ b+ ∈ P+, more precisely, a+ ◦ b+ =
(a + b)+,

(2) For each F ∈ F, F is a commutative subgroup of the loop (P, +),
and if a ∈ F \ {o} then F = {x ∈ P | a+ ◦ x+ = x+ ◦ a+},

(3) L = {a + F | a ∈ P, F ∈ F},
(4) the collineation group Aut(P, L) contains P+,
(5) the set F is a �bration of the K-loop (P,+) consisting of commuta�

tive subgroups of the loop (P, +), i.e., for all A,B ∈ F and for each
a ∈ P :
(F.1) |A| > 2,
(F.2)

⋃
F = P ,

(F.3) if A 6= B then A ∩B = {o}.
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Proof. (1) By p+ = p̃′ ◦ õ, the equation a+ ◦ b+ = ã′ ◦ õ ◦ b̃′ ◦ õ = b+ ◦ a+ =
b̃′ ◦ õ ◦ ã′ ◦ õ implies ã′ ◦ õ ◦ b̃′ = b̃′ ◦ õ ◦ ã′, i.e., ã′ ◦ õ ◦ b̃′ ∈ J and so by (R1),
there is a c ∈ P such that ã′ ◦ õ ◦ b̃′ = c̃. Therefore a+ ◦ b+ = c̃ ◦ õ ∈ P+

and since a+ ◦ b+(o) = a+(b) = a + b this implies a+ ◦ b+ = (a + b)+.
(2) For p ∈ P+ the equation p = p̃′(o) implies by 6.1(4), p̃ = ˜̃

p′(o) =
p̃′ ◦ õ ◦ p̃′ and p′ 6= o hence õ ◦ p̃′ ◦ p̃ = p̃′ ∈ J and õ ◦ p̃ ◦ p̃′ = õ ◦ p̃′ ◦ õ ∈ J
and so by 6.5(3), p′ ∈ o, p and p ∈ o, p′ hence o, p = o, p′. Therefore:
x ∈ F = o, a = o, a′ ⇔ x′ ∈ F = o, a′ ⇔ x̃′ ◦ õ ◦ ã′ = ã′ ◦ õ ◦ x̃′ ⇔ x+ ◦ a+ =
x̃′ ◦ õ ◦ ã′ ◦ õ = ã′ ◦ õ ◦ x̃′ ◦ õ = a+ ◦ x+ ⇒ x + a = x+(a) = x+ ◦ a+(o) =
a+ ◦ x+(o) = a + x.

(3), (4) If p ∈ P then by 6.5(6) p+ = p̃′ ◦ õ ∈ Aut(P, L), and therefore
if L ∈ L, p ∈ L then F := (p+)−1(L) ∈ L and o ∈ F , i.e., F ∈ F and
a + F = a+(F ) = L.

11. Loops with �brations
In 1987 Elena Zizioli introduced for loops the notion of an incidence �bration
(cf. [27], [16]) in the sense of the following de�nition:
Given a loop (P, +) and a set F ⊆ 2P , F is called a �bration of (P, +) if:

(F1) ∀X ∈ F |X| > 2,
(F2)

⋃
F = P ,

(F3) ∀A,B ∈ F A 6= B A ∩B = {o}.
If furthermore the following conditions

(F4) ∀a ∈ P ∀X ∈ F o ∈ a + X =⇒ a + X ∈ F,
(F5) ∀X ∈ F ∀δ ∈ ∆ δ(X) ∈ F,

are valid then F is called an incidence �bration.
Remark 6. If (P, +, F) is a �bered loop then to each a ∈ P ∗ there is exactly
one �ber A ∈ F with a ∈ A which we denote by [a]. Then (F4) and (F5)
can be expressed in the form:

(F4)′ ∀a ∈ P ∗ a + [−a] = [a],
(F5)′ ∀a ∈ P ∗ ∀δ ∈ ∆ δ([a]) = [δ(a)].
By [27] we have:

11.1. If F is an incidence �bration of a loop (P, +) let L := {a + X | a ∈
P, X ∈ F}. Then (P, L, +) is an incidence loop, i.e., (P, L) is an incidence
space, (P, +) is a loop and for each a ∈ P the map a+ is a collineation of
(P, L).
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Remark 7. The �bration F corresponding to an ordinary point re�ection
space (P,∼) according to 9.1 is an incidence �bration of the loop (P, +) since
the �beres are subgroups of (P, +) and the maps a+ collineations of (P, L).
Moreover if A ∈ F and a ∈ A \ {o} then A = {x ∈ P | x+ ◦ a+ = a+ ◦ x+}
is the centralizer of the element a in (P.+).

Now we ask, when do the centralizers of an arbitrary loop form a �bra-
tion or an incidence �bration, respectively? To answer this, we consider the
following two exchange conditions:

(Z1) For all a, b ∈ P ∗ if b ∈ [a] then [a] ⊆ [b].
(Z2) For all a, b ∈ P ∗ if a+ ◦ b+ = b+ ◦ a+ then a+ ◦ b+ ∈ P+.

11.2. Let (P, +) be a loop, for any a ∈ P ∗ let [a] := {x ∈ P | a+ ◦ x+ =
x+ ◦ a+} be the centralizer of a and let Z := {[a] | a ∈ P ∗}. Then:

(1) Z is a �bration of (P, +) if and only if the exchange condition (Z1)
is veri�ed,

(2) Z is an incidence �bration if and only if (Z1) and the condition:
"∀a ∈ P ∗ ∀δ ∈ ∆ : a + [−a] = [a] and δ([a]) = [δ(a)]" are valid,

(3) if Z is a �bration then on each �ber [a] the addition ” + ” is com�
mutative,

(4) if (P,+) satis�es (Z1) and (Z2) then each �ber [a] is a commutative
subsemigroup of (P, +) and [a]+ := {x+ | x ∈ [a]} is a commutative
subsemigroup of Sym P ,

(5) if ∆ ≤ Aut(P, +) (i.e., (P, +) is an Al-loop, cf. [17] p. 35) then Z

satis�es (F5).

Proof. (3), (4) Let x, y ∈ [a]\{o} . Then x+y = x+◦y+(o) = y+◦x+(o) =
y + x. If (Z2) is valid then (x + y)+(o) = x + y = x+ ◦ y+(o) implies
(x + y)+ = x+ ◦ y+ and so a+ ◦ (x + y)+ = a+ ◦ x+ ◦ y+ = x+ ◦ a+ ◦ y+ =
x+ ◦ y+ ◦ a+ = (x + y)+ ◦ a+, i.e., x + y ∈ [a] and moreover (x + y) + z =
(x + y)+(z) = x+ ◦ y+(z) = x + (y + z) showing that [a] and [a]+ are
semigroups.

(5) Clearly if a ∈ P ∗ and α ∈ Aut(P, +) then α([a]) = [α(a)].

If Z is an incidence �bration we say that the loop (P, +) has a c(entralizer)-
�bration. In order to obtain more informations we claim from now on that
our loop (P, +) satis�es the left inverse property

∀a ∈ P a+ ◦ (−a)+ = id.
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11.3. Let (P, +) be a loop satisfying the left inverse property and (Z1) then:
(1) ν ∈ Aut(P, Z) ∩ J , more precisely ν is the identity on Z,
(2) (F4)′ ⇔ ∀a ∈ P ∗ [a] + [a] ⊆ [a],
(3) if for each a ∈ P ∗ [a]+[a] ⊆ [a] then [a] is a commutative subgroup

of the loop (P,+),
(4) (P, +) has a c-�bration if and only if (Z1) and the condition:

"∀a ∈ P ∗ ∀δ ∈ ∆ [a] + [a] = [a] and δ([a]) = [δ(a)]" are valid.
Proof. Let a ∈ P ∗ then (−a)+ = (a+)−1 and so a+ ◦ (−a)+ = (−a)+ ◦ a+,
hence by (Z1), [a] = [−a], i.e., ν ∈ Aut(P, Z) ∩ J and a + [−a] = a + [a] ⊆
[a] + [a] ⊆ [a]. If x ∈ [a] then y := (a+)−1(x) = (−a)+(x) = −a + x ∈
[a] + [a] ⊆ [a] hence x ∈ a+([a]) = a + [a]. Together a + [−a] = [a] and this
shows the equivalence in (2).

By 10.1, the loop (P, +) derived from an ordinary point re�ection space
is a K-loop satisfying the exchange conditions (Z1) and (Z2). Since a K-
loop is an Al-loop with left inverse property, (P, +) has a c-�bration.
11.4. Let (P, +) be a loop with left inverse property and where Z is a c-
�bration, let (P, +,L) (with L := {a+[b] | a ∈ P, b ∈ P ∗}) the corresponding
incidence loop (according 11.1) and let a ∈ P ∗ then:

(1) the restriction of ν onto [a] is an automorphism of the commutative
group ([a], +),

(2) for each p ∈ P ˜̃p ∈ J and ˜̃p �xes the bundle p + Z linewise,
(3) if ν ∈ Aut(P, +) then P ◦ = P+ ◦ ν ⊆ Aut(P, L) ∩ J and for p ∈ P

ν ◦ p+ ◦ ν = (ν(p))+ = (−p)+, ˜̃p = p+ ◦ p+ ◦ ν = p+ ◦ p◦, hence
˜̃
P ⊆ Aut(P, L) ∩ J .

We summarize:
Theorem 11.5. Let (P,∼) be an ordinary point re�ection space (cf. De�-
nition 4), let o ∈ P be �xed and let (P, +) the loop derivation of (P,∼) in
o. Then (P, +) is a proper K-loop uniquely 2-divisible, satisfying (Z1) and
(Z2) and Z is an incidence �bration.
Theorem 11.6. Let (P, +) be a proper K-loop uniquely 2-divisible satisfying
(Z1) and (Z2) and let

∼: P → J ; p 7→ p̃ := p+ ◦ ν ◦ (−p)+.

Then:
(1) Z is an incidence �bration,
(2) (P,∼) is an ordinary point re�ection space.
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Proof. (1) A K-loop is an Al-loop with left inverse property. Therefore by
11.2 and 11.3, (Z1) and (Z2) enforce that Z is an incidence �bration.

(2) Since in an uniquely 2-divisible K-loop, ν is an involutory auto-
morphism of (P, +) with Fix ν = {o} and (−p)+ = (p+)−1, the map p̃ is
an involution �xing exactly the point p and p̃ = (p + p)+ ◦ ν = (p + p)◦

showing P ◦ = P+ ◦ ν = P̃ := {p̃ | p ∈ P}. By 3.7 and the 2-divisibility,
(P, P ◦) = (P, P̃ ) is a selfhomogeneous invariant regular involution set sat-
isfying (M). Hence (P,∼) is a point re�ection structure and p̃ = p◦ ◦ ν ◦ p◦.
If (a, b, c) ∈ P 3 are given and a′ := b◦ ◦ ã ◦ b◦(o) = b◦ ◦ ã(b), c′ :=
b◦ ◦ c̃ ◦ b◦(o) = b◦ ◦ c̃(b) then a′◦ = b◦ ◦ ã ◦ b◦ and c′◦ := b◦ ◦ c̃ ◦ b◦ and we
have: (a, b, c) ∈ ρ ⇔ ã ◦ b̃ ◦ c̃ ∈ J ⇔ a′◦ ◦ ν ◦ c′◦ ∈ J ⇔ a′+ ◦ c′+ = c′+ ◦ a′+

implying by (Z2), d◦ ◦ ν = d+ = a′+ ◦ c′+ = a′◦ ◦ ν ◦ c′◦ ◦ ν for d := a′ + b′

hence d◦ = b◦ ◦ ã ◦ b◦ ◦ ν ◦ b◦ ◦ c̃ ◦ b◦ ⇔ ã ◦ b̃ ◦ c̃ = b◦ ◦ d◦ ◦ b◦ ∈ P ◦ = P̃ .
Thus (R1) is valid.

In order to show (R2) we use the same notation as in the proof of (R1).
By the invariance of P ◦ and (R1), the relation ρ is symmetric. Therefore
let a 6= b and (a, b, c), (a, b, d) ∈ ρ hence a′+ ◦c′+ = c′+ ◦a′+ and a′+ ◦d′+ =
d′+ ◦a′+, i.e., c′, d′ ∈ [a′] and so d′+ ◦c′+ = c′+ ◦d′+ implying again by (Z2)
for e := c′+d′, c̃◦ b̃◦ d̃ = b◦◦e◦◦b◦ ∈ P ◦ = P̃ . Consequently (c, b, d) ∈ ρ and
so also (b, c, d) ∈ ρ. Since (P, +) is not commutative, ρ 6= R3 and therefore
(P,∼) is an ordinary point re�ection space.
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