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Loops related to geometric structures

Helmut Karzel

Abstract

There are many connections between loops and geometries:

e one can derive loops from several geometries and then use these loops for a "coordina—
tization" of the geometries,

e one can start from loops with certain properties and associate to them geometric stru—
ctures or

e one can use geometric structures — for instance "chain structures" or "graphs" —in or—
der to represent loops.

Some of these relations I like to discuss here.

1. Introduction and historical remarks

In many geometries we observe the following situation. There is a set P of
geometric objects (like points, lines, planes, circles etc.) and a distinct set
I' of permutations of P (like collineations, motions, automorphisms etc.)
such that for any two objects a,b € P there is exactly one permutation in I'
— denoted by [a — b] — mapping a onto b. Thus the pair (P,T") is a regular
permutation set. Such a situation we obtain for instance if we take for P the
set, of all points of an Euclidean, or more generally an absolute geometry, and
for I all reflections in points. More precisely, many geometries (P, £,=) (P
denotes the set of points, £ the set of lines and = the congruence relation)
in particular absolute and some unitary geometries have the properties:

1. For all a € P there exists exactly one involutory motion a with

Fiza ={a}.
2. Any two points a,b € P have exactly one midpoint m € P hence
m(a) =b.
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3. For all a,b € P it holds a(b) = aoboa.

Now if (P, T') is a regular permutation set and if we fix an arbitrary
element o € P, then the set P becomes with respect to the binary operation,

a+b:=Jo—a]ofo— o] (D)

a loop (P,+). This construction we call loop derivation of (P,I') in the
element 0. On the other side, for a given loop (P,+) we obtain a regular
permutation set. For a € P let a™(z) := a+x, hence a™ is a permutation of
P.Let PP :={pT |peP}, v:P—P;x— (7)) o) and a®° :=at owv.
Then the pair (P, P°) with P° := {p° | p € P} is a regular permutation set
— called the permutation derivation of (P,+) — having the property that p°
interchanges the elements o and p. The loop derivation of (P, P°) in the
element o reproduces the loop (P, +).

With these derivations we can translate properties of one structure in
properties of the other.

Any arbitrary permutation set (E,T') (i.e., we claim only that I is a
subset of the symmetric group Sym E of the set E) can be represented as
a chain structure (P, ®1, B9, K) (cf. section 7, 8, 9) and so also any loop
(E,+) via the permutation set (E, E™) and we have inter alia:

Let (E,T) be a permutation set and (P, &1, B9, R) the corresponding
chain structure, then (E,T') is reqular (sharply 2-transitive; sharply 3-transi-
tive) if and only if (P, 1, Ba, R) is a web (2-structure; hyperbola structure).

Of particular interest are invariant reflection structures (P,I") and their
corresponding K-loops (= Bruck loops) (cf. section 6). Among these struc-
tures there are the ordinary point reflection spaces (P, P) characterized by
the "three reflection properties" (R1) and (R2) which allow us to define
lines such that P together with the set £ of all lines forms an incidence
space (P, £). Examples are the set P of points and the set P of all point
reflections of a hyperbolic space. If we fix a point 0o € P in an ordinary
point reflection spaces (P, P) and consider the loop derivation (P, +) in o,
then each line L € £ passing through o is a commutative subgroup of the
loop (P,+). Taking the loop (P,+) and the set § := {F € £ | 0o € F} of
all lines containing o we obtain a "coordinatization" (P, +,F) of the point
reflection space (P, P) like in analytic geometry where (P, +) is a vector
space and § the set of one dimensional vector subspaces. The points of the
corresponding point reflection space or affine space, respectively, are the
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elements of P and the lines are in both cases the cosets a + F with a € P
and F € § (cf. Theorems 10.1, 11.5, 11.6).

Now we give some historical remarks on incidence groups and the gen-
eralisation to geometric spaces with a loop structure. A tripel (P, £,")
consisting of a group (P, -) and an incidence space (P, £) such that for each
a € P the map

a:P—P, r—a-x

is a collineation of the incidence space (P, £) is called incidence group. Of
interest there are the following subclasses. An incidence group (P, -, £) is
called:

fibered if any line L € £ containing the neutral element e of the
group (P, ) is a subgroup of (P,-),
2-sided if for all a € P also the map a: P — P; z—2x-a
is a collineation of the incidence spacs (P, £),
kinematik space if (P,£,-) is fibered and 2-sided.

If (P,£,) is an incidence group then the set § := {L € £ | e € L}
is a bundle in e, ie., |JF = P and for all A,B € § with A # B it holds
ANB =/{e},and we have £={a-F |a€ P, F €§}. If (P,L,")is fibered
then § is a fibration (partition) of the group (P,-), i.e., § is a bundle and a
set of proper subgroups of the group (P,-). If (P, £, ") is even a kinematik
space then § is a kinematik fibration, i.e., § has the additional property that
for all X € § and for all @ € P it holds a- X -a~! € §. On the other hand,
if § is a bundle of a group (P,-) in the neutral element e of (P,-) and if we
set £:={a-F|a€P, FeF} then (P,L,-)is an incidence group if and
only if the following condition is satisfied:

(f) Voe PVXeF eca-X = a-XeGF.

Clearly if § is a fibration of the group (P, -) then § satisfies the condition
(f) and so there is a one to one correpondence between fibered incidence
groups (kinematik spaces) and fibrations (kinematik fibrations) of groups.

The notion of incidence group was generalized by weakening the assump-
tions concerning the algebraic structure. The group (P, -) was replaced by a
loop or even a groupoid by H. Wihling, G. Kist, M. Marchi, E. Zizioli and
the author (cf. [8], [26], [18], [22], [11], [27]). In [11] the concepts "fibration"
and "kinematic fibration" were used also for loops. In 1987 Elena Zizioli
found out that for a general loop these notions are not enough to produce
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a fibered incidence loop. She showed that the conditions (f) = (F'4) and
(F'5) (cf. section 11) are necessary and sufficient. Such fibrations (satisfying
(F4) and (F'5)) are called incidence fibrations (cf. [27], [16], [18] Sec. 8).

E. Kolb and A. Kreuzer [19] defined in a loop (P, +) with the help of the
defect function dqp (cf. section 5) the binary relation "a ~ b & §4 = id".
Under the assumption that ~ is an equivalence relation, they showed that
the equivalence classes form an incidence fibration.

2. Notations and known results

Permutation sets. In this paper P will always denote a non empty set,
Sym P the group of all permutations of the set P, J := {oc € Sym P | 0% =
id} and J* := J\ {id}. A pair (P,T') with I' C Sym P is called permutation
set and we call a permutation set

Bol set if foreachyel, yolloy =T,
symmetric if foreach y €T, yoI'loy =T,
invariant if foreach y €T, yoT'oy™ ! =T,

involution set i I C J.
For a permutation set (P,T") we define for a,b € P:

[a —b]:={y €T [~(a) =b}.

Then we call a point p € P semireqular (transitive), if for each x € P
we have |[[p — z]| < 1 (|[p — z]| = 1), and we call p € P regular if
lp— =] =1.

By Ps (P;) we denote the set of all semiregular (transitive) points and
by P, or (P,T'), the set of all regular points of (P,I"). The pair (P,I') is
called regular permutation setif P = P,.

2.1. Let (P,T') be a permutation set. Then:

(1) (P,T) is a Bol set if and only if (P,T) is symmetric and I = T~

(2) If (P,T') is symmetric and o € Sym P then (P,o oT') is symmetric.

(3) If (P,T) is symmetric and o € T’ then (P,o~ ' oT) is a Bol set with
ide o 'ol.

(4) If (P,T') is a Bol set and o0 € Sym P with 0 oT' oo =T, in particular
if o €T, then (P,o o) is a Bol set.

(5) If (P, T) is an involution set then the notions "symmetric", "Bol set”
and "invariant” coincide.
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Proof. (1) If (P,T') is a Bol set and v € T then yoI' oy = T implies
v loloyt =T hence v toyoy =47t T, ie, Il =T and so
yoIloy=qoloy=T.

(2) Let v € T then (0oy)o(col) to(soy) =coyoltoslogoy =
go(yoI''toy) =00l hence (P,o0oT) is symmetric.

(3) By (2) 07! oT is symmetric and 0 oI' "' oo =T implies 0 ' o' =
I too=(c"tol) ! ie, by (1) (P,o~toTl)is a Bol set.

(4) follows in the same way as (2). O

Binary operation. If P is provided with a binary operation 7 + 7, we
define for a € P:
at:P—P; v+ a+uz,

Ta:P—P; z—x+a,
Pt:={a"|aeP} and "P:={Ta|ac P}

An element o € P is called left (right) zero element if o™ = id (To = id),

and zero element if o = To = id. (P,+) is called left (right) quasigroup

if Pt C Sym P (TP C Sym P) and quasigroup if PT U *P C Sym P, and

left (right) loop or loop, respectively, if moreover (P, +) has a zero element.
If (P,+) is a left loop, hence P™ C Sym P, then for all a,b € P also

Sap = ((a+ b)) toatobt € SymP

is a permutation fixing the element o. Therefore to each left loop (P, +)
there corresponds the subgroup A := ({64 | a,b € P}) of Sym P, generated
by all these maps. We have:

2.2. (P,+) is a quasigroup if and only if (P,P™") is a reqular permutation
set.

2.3. Let (P,T") be a permutation set with P, # () , let o € P, be fized and
for a,b € P we define a® := [0 — a|, P®*:={a® | a € P} and
a®b:=[o— a](b) =a*(b),
a+b:=[o—alofo— o] 1(b) = a®o (0*)"L(b).

Then
(1) P*=T.
(2) (P,®) is a left quasigroup with the property Na € P:a®o=a.
(3) (P,+) is a left loop with o as zero element.
(4) If (P,T) is invariant then (P,T') is a reqular permutation set, hence



52 H. Karzel

P=PF,.

(5) If (P,T) is a regular permutation set then (P, ®) is a quasigroup
with the right zero element o, and (P,+) is a loop with the zero
element o.

Proof. (4) Let a,b € P be given, let ¢ := [0 — a]}(b), v := [0 — a] o [0 —
cJofo — a]~! and d := ~(0) then (by the invariance) v € T, hence (by
0€ P)vy=Jo—d and y(a) = [0 — a] oo — ¢|](0) = [0 — a](c) = b.
Therefore v is the unique element in I' mapping a onto b. O

Definition 1. If (P,T') is a permutation set with P. # ) and p € P, let
p:=I[p—p|l, P:={p|p€ P-}. Then for each p € P, the binary operation

+p:PxP—P; (a,b)—>a+b:=[p—alop *(b)

is called the loop derivation of (P,T") in the point p. Moreover if (P,T") is
regular and o € P we set:

v=v,:P—=P; x+000o— z] o),

W=Wp:=0 tov:P — P; x'—>[0—>$]71(0)7

P°:=Tow={a’:=[0o—alow]|ac P}

We remark that v(z) = [0 — o] o [0 — 2] 7*(0) = (z+) ' (0) and we denote

For a,b € P we write a — b := a + (—b).

2.4. If (P,+) is a left loop and p € Sym P any permutation with p(o) = o,
then (P, PT o) is a permutation set with o € (P, P o u), and the loop
derivation of (P, PT o i) in the point o gives us back the original left loop
(P, +).

Definition 2. Let (P, +) be a left loop with —z = v(x). If v € Sym P, let
P°:=Ptov={2°:=a%ov |z € P} Then (P, P°) is called permutation
derivation of the left loop (P,+). If (P,+) is a loop and p € P, let 2'p be
the solution of the equation x — p = p. Then p := (2'p)° (recall that p is
the unique permutation of P° fixing p) and 5 =ptovo(pt)~L
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2.5. If (P,+) is a left loop then:
(1) veSymP <o (P, (PY)7h,.
(2) If (P,+) is obtained by the loop derivation of a permutation set
(P,T) in a point o € (P,T), then v € SymP < o€ (P60l 1),.
(3) If (P,+) is a loop then v € Sym P hence we can form the permu—
tation derivation (P, P°) and the loop derivation of (P, P°) in o
reproduces the original loop (P, +).

Definition 3. A loop (P, +) is called:

(*)-loop if (*)Va,be P:a—(a—b)=10;

Bol loop if for all a,b € P we have a™ obT oa™ € PT, i,
a+(b+(a+z)=(a+ (b+a))+z and (P,PT)
is a Bol set;

Bruck loop or K-loop if (P,+) is a Bol loop and if v € Aut(P,+), i.e.,
—(a+0b) = (—a)+ (-b).

2.6. Let (P,T) be a Bol set with P, # 0 and (P,+) the loop derivation in
any point o € P, then (P,+) is a Bol loop. If (P,+) is any Bol loop then
the permutation derivation (P, P°) is a Bol set.

Proof. Let o € P, (P,+) the loop derivation of (P,T') in 0 and let a,b € P
then (cf. 2.3 ) at = a®o (0®)7!, bT = b* 0 (0*)"! and at o bt 0 at =
a®o(0°) tob*o(0®) toato(0®) " . Since (P,I) is a Bol set, 0* 0T 00® =T
hence I' = (0®) 1ol'o(0®)~! and so (0*) 1ob®0(0®) 7! € (0°) tol'o(0®)~! =
T, ie., by 2.3(1) there is a ¢ € P with ¢® = (0®)"! 0 b® 0 (0*)~! and so
atobtoa™ =a*oC®o0a®o (0*)"!. Again since (P,T) is a Bol set there
isade€ P with a®oC®oa® = d® thus a” obT oat = d®o (0°)7! € PT.
Therefore (P, P*) is a Bol set. Moreover by 2.1(1), I' = I'"! and so there
is an @’ € P with a/® = 0° 0 (a®) ' 0 0®. Hence (a™)"! = (a®0 (0*)" 1) =
0*0(a®) tooto (o)t =d%0 (o) =d/T e PT. By [17] (3.10.3), (P, +)
is a Bol loop. O

2.7. Let (P,+) be a left loop with v € Sym P and P° := Pt ov then
o€ (P,P°), and:
(1) ae(P,P°), < Ve P 312’ € P such that x = 2’ — a.
(2) If a € (P, P°), and if +4 is the loop derivation of (P, P°) in the
point a then for all p,q € P it holds p+,q=1p + (a’+)71(q).
(3) If (P,+) is a Bol loop then (P, P°), = P and for all a € P it holds
ptaq=p +(—d +q) and v’ = a+ ((—a + z) + a), in particular,
a' = a+a=:2a and moreover, (P,+,) is a Bol loop.
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Proof. (1) is a consequence of p°(a) = ptov(a) =p+ (—a) =p —a.

(2) If [a — p|o denotes the permutation of P° mapping a onto p then
la — plo = p'T ov in particular, @ = [a — a], = &’" and so by Definition 1,
P+aq=la—plood (g =p ovo@) o (d") g =p + (") g).

(3) For each loop we have (P, P°), = P and in a Bol loop, (—a)™ =
(at)™, (2a) = (a+(0+a))t =aToat andso (a+ ((—a+2)+a)) —a =
ato(—a+z)toat(—a) = ato(—a+z)"(0) = at(—a+z) = z implying 2’ =
a+((—a+z)+a). Consequently, p+aq=p'+(a'")"Hq) = p'+(—d' +q) =
(a+((—a+p)+a))+(—2a+q) and therefore pTe = a* o(—a+p)*to(at)!
implying p*eogteopte = aTo(~a+p)To(—atq)To(-atp)tola®)" €
atoPto(a™)™t Thusifr:=a+ ((—a+p)+ ((—a+q)+ (—a+p))) then
ptaogteopte =rte showing that (P, +,) is a Bol loop. O

2.8. Let (P,T") be a regular permutation set, let o € P be fized and (P,+)
the loop derivation in o then:
(1) (P, P°) (¢f. Definition 1) is a regqular permutation set and for each
a € P, a® interchanges the points o and a.
(2) PP=T&VzxeP: [o—z|=[xr— o0
(3) If (P,T) is invariant then 6ov =vo0 and so w =0 'ov =v00 '
and moreover:
P° is invariant & Va €'t aowol =T owoa < T'U{r} C N(P°).
(4) If P° is invariant then P° C J.

Proof. (1) By 2.3(5) and 2.5(3), v € Sym P and so w =6 ' ov € Sym P
hence P° = I' ow is a regular permutation set. Finally w(o) = [0 —
0]~ (o) = o0, w(a) = [0 — a]~%(0) and so a°(0) = [0 — a] o w(0) = [0 —
al](0) = a and a°(a) = [0 — a] ow(a) = [0 — a] o [o — a] (o) = o.

(2) By Definition 1, PP =TS w=id < v=0&Vre P :v(x) =
(z7)7L(0) =000 — 2] (o) =0(z) & Vr € P: [o— z](x) =0 & Vx €
P: [o— z] =[x — o] (since (P,T') is a regular permutation set).

(3) Let z € P then v(z) =600 — 2] 1(0) =000 — 2] too (o) =
[0 — 6(z)] 7! (0) (since T is invariant) hence 6ov(z) = 60 [0 — o(x)] (o) =
v(o(z)) and so oov =voo.

Let P° =Tow =T06 'ov be invariant and let o € T then cowo P° =
aowol'ow=Poaow=Towoaowhence xowol'=Towoa. For
a = 0 and using the commutativity of 0 and v we obtain voI' = T'ov
hence wol = o~!
aoP°=qowol'=Towoa=Poa.

ovoll=6"1toTov=T006"tor =Tow = P°. Together,
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Now let TU {r} C N(P°). Then vo P° =volow=vol oo lov=
P°ov =Towov hence (using the commutativity), vol'oo~! =Too lov =
I'ovoo ! and so vol' = I'ov. This implies wol' =6 lovol' =6 tolor =
lFoolov=Tow=P° andsowoP°=wol ow= P°ow. Therefore if
aow € P° then by a € N(P°), aowo P° = aoP°ow = P°oaow showing
that P° is invariant.

(4) If a,b € P we denote the map of P° mapping a onto b by [a — b]".
Now let ¢ € P°, a € P and b := ¢(a) hence ¢ = [a — b]’. Since P° is

invariant we have (a®)"!ofa — b 0a® = [0 — (a°)~1(b)]. By (1) this
is equal [(a®)71(b) — o] = (a®°)"to[b — a) oa®. Together we obtain,
@ = [b — a) hence p(b) =a, ie., o€ J. O

3. Isomorphisms

Let (P,T") and (P’,T") be permutation sets and let ¢ : P — P’ be a bijec-
tion. Then v is called isomorphism between (P,T') and (P’,T”) and (P,T),
(P',T") are called isomorphic, if T = ¢p o' 0 p=1. An isomorphism ¢ is
called automorphism of (P,T) if (P,T) = (P',T’), hence I' = poT o oL
Thus the automorphism group Aut(P,T") is exactly the normalizer of I" in
Sym P. We call (P,T") homogeneous if Aut(P,T") acts transitively on P and
self homogeneous if for all a,b € P it holds [a — b] N Aut(P,T) # 0.
Clearly if (P,T') is homogeneous and (P,T"), # 0 then (P,T') is a regular
permutation set, and if (P,T") is invariant with (P,T), # 0, then (P,T) is
homogeneous (cf. 2.3(4)).

3.1. Let ¢ : P — P’ be an isomorphism from (P,T) onto (P',T"), let
(P,T), # 0 and o € (P,T"), then o’ := (o) € Y((P,T),) = (P',T"), and we
have:

(1) Ya,be P Yofa—blod™! = [y(a) — (b))

(2) Ve €P tpofo—z]oo =] Hw(x)]’og’ilow.

(3) If (P,+), (P',+') are the loop derivations of (P,T') and (P',TV)
in o and o, respectively, then 1 is an isomorphism from (P,+)
onto (P',+") and also from the permutation derivation (P, P°) onto
the permutation derivation (P’,p’ol) (We have the formula: Ifa € P
then 1 oa® o' = (¢(a))®).

(4) If (P,T) is invariant then for all a,b € P and for each v € I':

vola—bloy™' =[y(a) = v(b)].
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Proof. Since 1 is an 1somorphlsm we have for all a,b € P: Yo[a — blo w =
[¢¥(a) — ¢(b)] and so by o' = (o), 1(a+b) = ¢([o — a] o [0 — 0} (b)) =
Plo — aJotp~ orpofo — o] TLorp(b)[1h(0) — W(a)]o[th(0) — ¥(0)] (1 (b))
U(a) + ¥(b).

3.2. Let o € (P,T"),, o € (P,T),, let (P,+) and (P',+'), resp., be the
loop derivations of (P,T) in o, and (P',T") in o, resp., and let p be an
isomorphism from (P,+) onto (P',+"). Then:
(1) ¢ is also an isomorphism from (P,T") onto (P',T") if and only if
poo= o o .
(2) Ifve SymP, then v € Sym P' and ¢ is an isomorphism from the
permutation derivation (P, P° = Pt ov) of (P,+) onto the permu—
tation derivation (P',P'°) of (P',+').

Ol

Proof. (1) For each a € P we have a* = [0 — a] 06~ and (p(a))t =

[0 — ¢(a)] o 0~’71, and since ¢ is an isomorphism, ¢ oa™ = (¢(a))™ o ¢.
Together we obtain, po o — alop togpoo ! =[o — p(a)] o J o ©.
This implies for a = o, [0’ — ¢(0)]' = ¢ and so o' = (0), i.e., ¢ is only an
isomorphism from (P,T') onto (P',T) if p 00 = o’ o ¢ and then p oo —
alop™! = [0’ — p(a)]’ showing I" = poTop ! since ' = {[o — a] | a € P}
and IV = {[o — cp( )] | a € P}

(2) From o' = ¢(o) = ¢z + v(z)) = @(x) +' p(r(z)) we obtain

V(p(z)) = @(v(z)) and finally, since 6 = 0° = ot ov = v and o = v/
the equation ¢ 0 0 = o’ o p. Hence by 3.2(1), ¢ is an isomorphism from
(P, P°) onto (P, P'°). O

From 3.1 and 3.2 one obtains:

3.3. Let ¢ be an isomorphism between the permutation sets (P,T') and
(P',T"), let 0 € (P, 1), (then v(0) € (P',T"),) and let (P,+) resp. (P',+')
be the loop derivation in o resp. ¢(0). If v € Sym P (then also V' €
Sym P, let P° := Pt ov and P'° := P'" o/ then ¢ is an isomorphism
between (P,+) and (P',4') and between the permutation sets (P, P°) and
(P, P"°).

3.4. Let (P,T), #0, a€ (P,T),, ¢ € Aut(P,T") and b := 1 (a) then:
(1) Vee P pola—aloa " =[b—¢(z)]ob ' o,
(2) 1 is an isomorphism between the left loops (P, +4) and (P, +3)
obtained by the loop derivations of (P,T") in the points a and b.
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3.5. Let (P,+) be a left loop with v € Sym P, (P, P°) with P° = Pt ov the
permutation derivation of (P,+) and let o € Sym P and f := povop (o).
Then for c € P:
(1) p € Aut(P,P°) < Va e P poatoptoft = (pla+ e t(f) .
(2) If p(0) = o then: "p € Aut(P,P°) < ¢ € Aut(P,+)".
(3) v € Aut(P,P°) & v e Aut(P,+).
(4) ¢t € Aut(P,P°) & Ya e P ctoato(ch)to(c—(—c)t =
(c+(a—(=0)*.
(5) ¢® € Aut(P,P°) < Va € P ctovoatovto(ch)to(c—(—c)T =
(c—(a—c))".

Proof. By definition, ¢ € Aut(P, P°) if and only if poatovop™t € PTov
for each a € P. For a = o we obtain that there has to be an f € P with
povop t=fTovandso povop t(o)=frov(o)=f*(0)=f. Thus
gpoa+oyo<p_1 = gpoa"’ocp_logooyocp_l = g@oa"'ogp_lof"’oy S P+oy’
ie., poatop toft e P Since poatop o fT(0)=pla+ o (f))
we have proved (1). If (o) = o then f = o0 and condition (1) assumes the
form
o € Aut(P,P°) &Va € P poat op ! = (p(a))’.

But this tells us that ¢ is an automorphism of the left loop (P,+). Since
v(0) = (07)71(0) = id(0) = o, (3) is a consequence of (2).

Since f := ctovo(ct) o) = c—(—c) = ®°(—c) = covo(c®) (o) and
s0 ¢ (a+ (cN)7HS)) = e+ (a—(=0) and (a+ ()7} (f)) = (a— ) =
c¢—(a—c), (4) and (5) are consequences of (1). O

From 3.2 we obtain:

3.6. Let (P,+) be a left loop with v € Sym P, then:
(1) P* C Aut(P,P°) & Va,be P atob™ = (a+(b—(—a))) o(—a)T.
(2) If P C Aut(P, P°) then (P,+) is a loop and for the structure group
A= ({04 | a,b € P}) of the loop generated by the permutations
Sap = ((a+b)T)Toat obt we have A < Aut(P,+) and therefore
Aut(P, P°) = Pt xg Aut(P,+) is equal the quasidirect product of
the loop (P,+) with the automorphism group of the loop.
(3) P° C Aut(P,P°) & Va,be P ato(=b)t =(a—(b—a))To(—a)".
(4) P° C Aut(P,P°) & Pt U{v} C Aut(P, P°).

Proof. (1) We have: "Pt C Aut(P,P°) < the functional equation of
3.5(4) is valid for all ¢,a € P". For a = —c we obtain (¢*) lo(c—(—c))* =
((—=c)™)~! and so0 3.5(4) takes on the form (c+(a—(—c)))To(—c)* = c¢Toa™.
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(2) By 2.4, since v € Sym P, (P, P°) is a permutation set with o €
(P, P°), and so by P*(0o) = P and P* C Aut(P, P°), (P, P°) is a regular
permutation set. With (P, P°) also (P, P = P° o v~!) is regular and so
by 2.2, (P,+) is a loop. By PT C Aut(P, P°) we have A < Aut(P, P°) and
since 6,5(0) = ((a +b)T)toat obt(0) = ((a+ b)) (a+b) = o each
element 6 € A fixes 0 and so by 3.5(2), A < Aut(P,+).

(3) Again, "P° C Aut(P, P°) < the functional equation of 3.5(5) is
valid Ve, a € P". For ¢ = o we obtain voator™! = (—a)* and so0 3.5(5) takes
on the form ¢t o(—a)*o(ct) to(c—(~c))" = (c—(a—c))". Now by a = c,
we obtain (—c)to(ct) to(c—(—c))t =id, i.e., (c—(—c))" = cto((—c)")™!
and finally ¢t o (—a)t = (c— (a —¢))T o (—c)T.

(4) Clearly if P° C Aut(P, P°), then v = 0° € Aut(P, P°) and Pt
P°ov~! C Aut(P,P°). If P* U {v} € Aut(P,P°) then P° = Pt ov
Aut(P, P°).

i

3.7. For a loop (P,+) the following conditions are equivalent:
(1) (P, P°) is selfhomogeneous.
(2) Ya,be P ato(-b)to((—a)")t=(a—(b—a))t.
(3) (P, P°) is an invariant reqular involution set.
(4) (P +) is a K-loop (= Bruck loop).

Proof. Let a,b € P and ¢ € P the solution of z —a = b then [a — b]o = ¢°
and so by 3.6(3) the conditions (1) and (2) are equivalent. From the equation
(2) we obtain a™ o (—=b)" = (a— (b—a))T o ((—a)*) hence a + (—=b+ ) =

(a—(b—a))+ (—a+ z) and so for x := —(—a), a + (=b — (—a)) =
a—(b—a),ie, —b—(—a) = —(b—a), showing that v is an automorphism
of (P,+). Now observing v € Aut(P,+) we obtain for x :== — — (b — a):

+(=b——(b—a)) = (a—(b—a))+(—a——(b—a)) = ohence a = b—(b—a) =
bTovobtov(a) =0b°0b°a),ie., b° € J in particular, 0° = 0T ov =v € J.
Consequently P° C J. Finally a®° = at ov = (a®°)™! = vo (a™)~! hence
(at)Hz)=voatov()=—(a—2)=—a——1=—a+z=(—a)T(z)
and v oat ov = (—a)T. Therefore the equation (2) assumes the form
atobtoa® = (a+(b+a))T saying that (P, +) is a Bol loop hence together
with v € Aut(P,+), (P,+) is a Bruck loop and moreover, a® o b° 0 a® =
atovobtovoatorv =ato(—b)ToaTov = (a+(—b+a))Tov € PTov = P°.
Consequently (P, P°) is an invariant regular involution set.
By [10], (3) and (4) are equivalent. Now let (P,+) be a Bruck loop.
Since (P,+) is also a Bol loop, we have at o bt oat = (a + (b + a))™
and obtain by substituting a := —b, (=b)T = (b*)7! and so (— —b)* =
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(=b)")~t = ((b")"1)"! = bt hence — — b = b, i.e., v?> = id. Then (since
v e Aut(P,+) ) ato(=b)Toa™ = (a+(—b+a))* ( + () +v(v(a) =
(a+v(b+v(a)™ =(a—(b—a))t and this is equation (2). O

3.8. For a left loop (P,+) with v € Sym P the following conditions are
equivalent:

(1) Pt C Aut(P,P°) and P* = (P*)7!

(2) (P,+) is a Bol loop.

Proof. (1) = (2) Let a,b € P then there is a ¢ € P with (a™)™! = ¢*
hence ¢ = ¢*(0) = (a )_1( ) implying a + ¢ = a*(¢) = o, ie.,, c = —a
hence (a*) = (—a)" and so —(—a) = a. By 3.6(1), at ob™ = (a+(b—
(—a)))T o (—a)" and by observing the previous facts we obtain a™ ob™ =
(a+(b+a)to(a)tor atobToa’t = (a+ (b+a))" telling us that
(P, +) is a Bol loop.

(2) = (1) Since in a Bol loop, for each a € P, (a™)™! = (—a)* and
—(—a) = a the characterizing functional equation a+ob+oa+ = (a+(b+a))™
of the Bol loop can be written in the form of the equation of 3.6(1) and
therefore the statements of (1) are verified. O

Remark 1. By 3.8, if (P, +) is a Bol loop then the permutation derivation
(P, P°) of (P,+) is a homogeneous Bol set (cf. 2.6) and so by 3.4(2),
if (P,4,) is the loop derivation of (P, P°) in an arbitrary point a € P,
then (P, +,) and (P, +) are isomorphic. This supplements 2.7(3) and more
precisely we have: The map (—a)™ is an isomorphism from the Bol loop
(P,+4) onto the Bol loop (P, +).

4. Involution sets

By [14] we have:

4.1. Let (P,+) be a left loop then the following statements are equivalent:
(1) veSymP and P° C J, i.e., (P, P°) is an involution set with
€ (P, P°),.
(2) (P,+) satisfies the condition (*) Va,b€ P a— (a—b)=0b.

4.2. Let (P,T') be a permutation set with P, :== (P,T'), # 0, let o € P, be
fized and let + =+, be the loop derivation of (P,T") in o. Then:

(1) T=T"!'< P.CJanddo(Pt)tos=Pr.

(2) If there is a V' € J with V' o (PY)"1ov/ = Pt thenT =T"1



60 H. Karzel

(3) If (P,T) is an involution set then (P,+) satisfies the condition (*).
(4) If (P,T) is an invariant involution set then (P,+) is a K-loop.

Proof. (1) If a € P, then a := [a — a] is the unique element of I' fixing
a and also @ '(a) = a. Therefore if ' = '"! then @ = a~!, ie., a € J, in
particular 6 = 0° € J. By PT = {7 = [0 — 2]0(0°) ! =2°06 |z € P} =
P°06=To00hence I'= P 06 we have:
IF'=Ptos=T"1=60(P")teo60(P")tos=P".

(2) Let v/ € J with v/ o (PT)"1ov/ = P* hence for each a € P 3b € P
with v/ 0 (a° 0 (0°) 1) tor/ =1/ 00%°0(a®) Lo/ =b°00°. Fora=o
we obtain id = v/ o v/ = b° 0 0° hence b° = (0°)~!. Consequently I'"! =
60(PP)t=60voPtor =T=Ptos ! ifandonlyif v/ =61, O

5. Defect functions
Let (P,T") be a permutation set with P, # () then the map

0:P-xPxI'—> SymP,
(a,0,7) = bapy = [a = a] o [y(b) = a] oy ola— b

is called the defect function of the permutation set (P,I') in the point a.
We have 04, +(a) = a. If P, = P we set

§:P® — Sym P; (a,b,¢) — Sape:=la—alo[c—alo[b—cola— b

Three points a, b, c € P are called defect free if 64y, = id.
If (P,+) is a left loop then the map

§:PxP— SymP; (a,b)+6,p=((a+b)")toatob"

is called the defect function of the left loop (P,+) and a,b € P are called
defect free if 0, = id, i.e., if (a +b)T =a™ ob™. Here o is the fixed point
of d45. We recall that the definition implies:

5.1. If (P,+) is a K-loop then A := ({64 | a,b € P}) < Aut (P,+).

6. Reflection structures and point reflection spaces
Let P be a non empty set. If there is a fixed point o € P and a map

°:P—J; x+— 2° with z°(0) =2 foreach z € P
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then the tripel (P, °,0) is called reflection structure (cf.[10]). If there is a
map

~:P—J, xw— T with Fiz T = {x} foreach z € P
satisfying the property
(M) foralla,be P Iym € P with m(a) =0

then the pair (P,~) is called point reflection structure (cf. [6], [5]). A
reflection structure (point reflection structure) is 4nvariant if for all a,b € P
there exists ¢ € P with a°o0b°0a® = ¢°, (aoboa = ¢). An invariant
reflection structure (P, °,0) is a point reflection structure if for each a € P,
|Fiz a®| = 1.

By the definitions and 2.5 follows:

6.1. Let (P, °,0) be a reflection structure and I' := P° := {x° | x € P}. If
(P,T) is regular, for each p € P we denote by p € T the permutation with
p(p) =p. Let P:={p | p € P}. Then:
(1) (P, P°) is an involution set, o a regular point hence o € (P, P°),
and the loop deriwation of (P, P°) in the point o gives us a left loop
(P,+) satisfying the condition (*).
(2) (P, °,0) is an invariant reflection structure < (P, P°) is an invar—
iant involution set with (P, P°), # (0 < (P,+) is a K-loop.
(3) (P, °,0) is an invariant point reflection structure < (P, P°) is an
invariant involution set with (P,P°), # 0 and any two points
a,b € P have exactly one midpoint m € P, i.e., if ¢® € P° with
m € Fixc® then °(a)=b< P=P° =T (P,+) is a K-loop
uniquely 2-divisible.
(4) If the reflection structure (P, °,0) (the point reflection structure
(P,~)) 1is invariant then for all a,b € P we have a°ob®oa® =
(a® o b°(a))°, (Goboa=a(b)).

Proof. All we have to show is that v € Sym P. Let € P then 7 = [0 —
z]ofo— 0]t =12°0(0°)"! = 2°00° hence (z+)~! = 0°02° and so v(z) =
—x = (27)71(0) = 0° 0 2°(0) = 0°(x). Therefore v = 0° € Sym P. O

6.2. If (P,T) is an involution set with P, = (P,T"), #0, o € P, fized and

x°:=[o — x| for each x € P then (P, °,0) is a reflection structure.

6.3. If (P,+) is a left loop satisfying (*) and z° := 2% ov for each x € P
then (P, °,0) is a reflection structure.
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Definition 4. Let (P,~) be a point reflection structure and let p :=
{(a,b,c) € P3| aoboée J} then (P,~) is called point reflection space if:
(R1) Va,b,c€p : aoboce P,
(R2) pis a ternary equivalence relation, i.e.,
(a,b,c) € p = (b,c,a),(b,a,c) € p and
a#b Ala,b,c),(ab,d) €p = (bc,d)Enp.

Remark 2. If (P, £, =, a) is an absolute geometry (cf. [10]) and if ~ is the
map which associates to each point p € P the reflection in p then (P,~) is
a point reflection space.

From now on let (P, ~) be a point reflection space, let P:={p|pe P},
and let G := (P) be the group generated by the point reflections p. Let the
point 0 € P be fixed. From (R1) follows that (P, P) is an invariant regular
involution set. Therefore by 4.2(4) the loop derivation (P, +) of (P, P) in o
is a K-loop. We call (P, ~) singular if p = P3 and ordinary otherwise. Any
two distinct points a,b € P determine an equivalence class

a,b:={x € P | (a,b,x) € p}.
We have:

6.4. A point reflection space (P, ~) is singular if one of the following equiv-
alent conditions is satisfied:

(1) The set P of all points forms the only equivalence class of p,

(2) PoPoP = ]5,
(3) Po P is a commutative subgroup of indez 2 in G, o
(4) The K-loop (P,+) is a commutative group (isomorphic with Po P).

For the rest of this section let (P,~) be an ordinary point reflection
space. Then the set P together with the set £ := {a,b | a,b € P,a # b} of
all equivalence classes of p — called lines — forms an incidence space (P, £)
where the set £ contains more than one line. A subset T C P is called
subspace of (P,~) if for all a,b € T with a # b we have a,b C T. Let T
be the set of all subspaces of (P, ~).

Remark 3. If (P, £, =, «) is an ordinary absolute geometry then the set of
lines £ coincides with the set of equivalence classes of the relation p.

6.5. An ordinary point reflection space (P,~) has the following properties:
(1) (P, £) in an incidence space.
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If L€, then Ya,b,c€ L3dE L with aoboc=d.
If a,be P witha#b, then a,b={zx e P|doboce J}.

For each T € X, and for each t € T it holds t(T)=T.

Let ~p : T — SymT; t— t~|T. Then (T, ~7) is a point reflection
space and (T, ~7) is singular if and only if T is a point or a line.
(6) (P)=G < Aut(P,~) = Aut(P,p) = Aut(P,£) = Aut(P,%)
and the automorphism group Aut(P, ~) acts transitively on the
point set P,

W N

,\,\,.\,.\
(G2 TSN
S N N

Since an absolute space (P, £,=,«) is also an ordered space (P, £, a)
and an ordered space is an exchange space (cf. [10] Theorem 1.5) there are
ordinary point reflection spaces (P, ~) such that the corresponding incidence
space (P, £) is an exchange space. For these spaces we can state:

6.6. Let (P, ~) be an ordinary point reflection space such that the correspon-
ding incidence space (P, £) is an exchange space. Then:
(1) (P,£) has a base B, two bases have the same cardinality and we
define dim(P,~) :=|B| — 1 as dimension of (P,~).
(2) If dim(P,~) >3 then (P,~) is desarquesian.
(3) If dim(P,~) >3 let € :={T €% |dimT =2} be the set of all
planes, for each p € P let £(p):={L € L |p€ L} and &(p) :=
{E € €| pe E}, then (£(p), €(p), C) is a projective space.

7. Nets, chain structures, webs and their properties

Let (P, ®1,®2) be a 2-net, i.e., P is a non empty set and &1, B, are subsets
of the powerset of P called generators such that:

(I1) VYpe P, Vie{1,2} 3 [p; € ; with p € [p];,

(I2) VX € 8,,VY € By [ X NY| =1

By (1), (12),if A, B € &; then A and B have the same cardinality and
there is a binary operation (cf. e.g. [4]):

O:PxP—P; (z,y) — zy:=[x]1 N[y]2
which has the properties:

7.1. Let a,b,c,d € P and let {a,b}" := {ab,ba} and {a,b;c,d}” =
{ab,ba;cd,dc}. Then:

(1) (ab)(cd) = ad,
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(2) 7ab="b< [a]1 = [b1”, "ab=a & [a]z = [b]2” and aa = a,
(3) ({a,0}")"” = {ab, ba}"" = {a, b},

(4) {a,b}7 ={a,b} & ab=a or ab=b< |{a,b}U{a,b}"| <4,
(5) ({a,b;c,d}P)E = {a,b;c,d}.

The set {a, b} is called parallel (joinable) if {a,b}" = {a,b}, ({a,b}" #
{a,b}) and a subset A C P is called joinable if for all {a,b} € (‘;1) we have
{a,b}7 # {a,b}. Let

¢.={Cec2l|vXec& Usd, CNX|=1}

be the set of all chains of the 2-net (P, B1, B3). If R C € then (P, &1, &9, R)
is called chain structure and (P, ®&q, &2, &) maximal chain structure. We
have:

@#@@VAE@l VB € &y |A‘ = |B|
If (P, &1, B9, R) satisfies the condition
(I;) Yai,...,a;} € (JZ) which are joinable 31 K € & with {a1,...,a;} C K

for i = 1,2,3 then (P, &1, 82, R) is called web, 2-structure, hyperbola struc-
ture, respectively. If (P, &1, 89, K) is a web, for each p € P we denote
the chain K € 8 which is uniquely determined by p € K with [p]s, hence
[p]3 € & and p € [pl3.

For A Be€andpe€ P let

pA:=[phNA, Ap:=[paNA and AB:P — P; z— (Bz)(zA).
Moreover we consider the 1- and 2-perspectivities:
[ALB]:A—DB; 2—2B, |[A>DB]:A— B; z+ Ba.
We note:

7.2. Let A, B,C € € then: -
(1) AB € Sym P wzth AB € Aut(P,®1U®B3) and AB(6p) = o,
BA = (AB) , 1 Fiz AB= AN B,
(2) AB(C) ¢, AB(A)=B, AB(B ) =4,
(3) A:=AA is an involution with Fix A = A, called reflection in A,
(4) AB CD & (A B) = (C D)
(6)

/—\_/ o~

moCoB,A: A,B(C), in particular Zoéog: A(C).
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By 7.2(2) there is the following ternary operation:
T:EXEXECE (A B,C)— 7(A,B,C) = AC(B).

Two chains A, B € € are called orthogonal, denoted by A | B, if A # B
and A(B) = B. Then A 1 B implies B L A. For a subset & C € we
denote by 8+ := {C € ¢ | VK € & C(K) = K} the orthogonal complement
of the chain set &.

Definition 5. Let (P, ®1, 89, 8) be a chain structure, T' € € and X €
G1UBs. (P, &1, By, R) is called covering if |JR = P. T is called transversal
of (P, 81,6y, R) if for each K € R

TNK #( and for each t € T 3K € K such that t € K.

T is called orthogonal transversal of (P, &1, ®2, ) if moreover for each
K € R it holds T L K. X is called transversal (quasi-transversal) of
(P, ®1,89, R) if the map

RA—=X;, K—KnX
is a bijection (injection).

7.3. Let E € € be fized and for A, B € € let A-B := AB(E). Then (€,-) is
a group isomorphic to Sym E with the neutral element E and we have the
representations:

7(A,B,C)=AC(B)=A-B~'-C and AB)=A-B7'- A

Definition 6. A subset & C € is called symmetric, if for all A,B € & it

holds 7(A, B, A) = A(BA)/E S, and double symmetric, if for all A, B,C € &
we have 7(A4, B,C) = A,C(B) € 6.

Clearly each double symmetric subset & is also symmetric, and the set
of all symmetric and double symmetric subsets, respectively, is closed with
respect to intersections. This allows us to define the two closure operations:
if % is an arbitrary subset of € and if €g and €gg, respectively, denotes the
set of all symmetric and double symmetric subsets of €, let

Q[N;:ﬂ{6§¢s|2lg6} and Q[NN;:ﬂ{Gg(’jSS|Ql§6},

respectively, be the smallest symmetric and double symmetric subset of €
containing 2.

Let A:={A| AecA} and A:={A B| A, BeA. Then:
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7.4. Let AC ¢ and M(2) := {AB,ABoC | A,B,C € A}. Then:
(1) A=A~ < Ais normal in A, (ie.,Vo,B €A aofoac),
(2) A=A~ & A is normal in AélN,
(e, VacAVBeYU Boaof e,
(3) if an element E € A is fized and the multiplication defined according
to 7.3, then A=A~ i.e., A is double symmetric & A < €,
(4) MR) <SymP <A<,

Remark 4. For a chain structure (P, &1, &9, 8) the General Rectangle Az-
iom

(R) VA, B,C € R : {[[a]lﬁB]gﬂ[[a]gﬂC]l | CLGA}ER,

formulated in [13] p.89, claims exactly that the set K of chains is double
symmetric, i.e., for all A, B,C € & it holds A-B~!.C € & Therefore
if a chain structure (P, &1, B9, 8) satisfies the General Rectangle Axiom
(R) then R is symmetric. For a web (P, &1, 5, f) the axiom (R) is called
Reidemeister Condition.

Remark 5. Another axiom formulated by W.Benz [3] for hyperbola struc-
tures (P, &1, &9, R) and called Symmetry Aziom is the following:

(S) VK,LeR : |[LK)NK|>2 = L(K)=K.

By [2] and [9] we have the result: For a hyperbola structure (P, 1, ®2, R)
the Symmetry Aziom (S) implies the Rectangle Aziom (R) and so for a hy-
perbola structure (P, &1, B9, R) satisfying the Symmetry Aziom (S) the set
of chains R is symmetric. But there are hyperbola structures (P, &1, &2, &)

where R is even double symmetric and the Symmetry Axiom () is violated
(cf. [13] p. 90 ff).

7.5. Let A,B,C,--- €€, E ¢ fized and let " -7 be defined according to
7.3. Then: - L
(1) FixAB=ANB, Fiz(ABoC)=(BNC)O(ANC),
(2) ABoCDo FG = (AD-'F)(GC~'B),
(3) ABoCD = (AD-'U)(UC-'B)oU,
(4) AoBoA=AB1A=A(B),
(5) AoBCo A= (AC-TA)(AB-14) = A(C), A(B),
(6) ABoEoCDoFE = (AC)(DB)oE.
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8. Symmetric chain structures as permutation sets

Let (P, &1, 2,€) be a maximal chain structure and let & C € be a sym-
metric subset of chains, hence for all S,T € &, S(T) € &. Therefore for
each S € G the map N B

S:6—-6; X SX)
is an involution of Sym & and so (&,8) with & := {S§]|S e &}is an

involution set. By 7.2(6), SoT oS = S(T), hence (&, &) is an invariant
involution set. From 2.3 and 4.2 we obtain:

8.1. Let (P,®1, 5, &) be a symmetric chain structure such that (&,8), #
0 and let E € (6,8), then:
(1) (&,6) is a regular invariant involution set,
(2) VA, BE6S 3Ce& C(A) =B (ie, [A— B =0),
(3) the loop derivation
+:6x6—6; (A,B)— A+B:=[E— Ao E(B)
of (6,8) in E produces a K-loop (S,+).

8.2. Let (P,®1,B2,8) be a web with G+ # 0, let T € &+ and for each
Se6 let g\T be the restriction of S onto T then:
(1) (7, é|T) with é|T = {§|T) | S € &} is a regular involution set and
for each S € & we have S = {xD§|T(:1:) | x € T}.
(2) The following statements are equivalent:
(i) & is symmetric,
(ii) (6,6) is a regular invariant involution set.

Proof. (1) Let a,b € T and C := [ab]3 be the chain C € & of our web
containing the point ab then C' L T and this implies C(T) = T and T(QQ) =
ba € T(C) = C hence C(a) = band so [a < b] := 5|T showing that (7', &7)
is a regular involution set.

(2) is a consequence of (1) and 8.1. O

9. Immersions of permutation sets in chain structures

We consider firstly the permutation set (E, Sym E) where E is a not empty
set. To (E, Sym E) there corresponds the following maximal chain structure
(P, B1,82,C) (cf. e.g. [1]) with:

P:=ExXE, &, :={Exz|x€E}, Gy :={zxxE|zeckFE}
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and € the set of all chains of the net (P, ®1,®5). If we identify E with the
subset {(z,z) | x € E} of P then E € € and in that way we see that € is
not empty. Let

kg :SymE — & o k(o) = {(z,0(x)) |z € E}.

Then for each 0 € Sym E, k(o) is a chain of €, the graph of o, and the
map K i8 a bijection between Sym E and €. The inverse map of kg is
given by

Ap:C€— SymE; Cw CEoCE.

Moreover if € is turned into a group (&, -) according to 7.3 then kg is an
isomorphism from the symmetric group (Sym E,o) onto the group (€, -).
Now let (E,T") be an arbitrary permutation set. Then R := kg(I") is a subset
of € and (P, 61,62, R) a chain structure called the envelope of (E,T). We
write €o(E,T") := (P, &1, B2, R). Between a permutation set (F,I') and her
envelope Ev(E,T') := (P, 81, B4, K) there are the following connections:

9.1. Let (E,T') be a permutation set and (P,®1,G2,R) = Co(E,T') her
envelope then:
(1) T<SymE < R<C,
(2) (E,T) is a reqular permutation set < (P, &1, B2, R) is a web,
(3) (E,T) is a regqular permutation group < (P, &1, &2, R) is a web
with R < &, i.e., a web satisfying the Reidemeister Condition;
in this case we call (P, 81,62, R) a webgroup,
(4) (E,T) is a sharply 2-transitive permutation set < (P, &1, ®9, R) is
a 2-structure,
(5) (E,T) is a sharply 2-transitive permutation group < (P, &1, &9, )
15 a 2-structure with K < €, 1.e., a 2-structure satisfying the rect—
angle aziom (R) (cf. [7]); in this case we call (P, &1, B9, R) a 2-
group,
(6) (E,T) is a sharply 3-transitive permutation set < (P, ®1, &9, R) is
a hyperbola structure,
(7) (E,T) is a sharply 3-transitive permutation group < (P, &1, &9, R)
15 a hyperbola structure with K < €, i.e., a hyperbola structure
satisfying the rectangle aziom; in this case we call (P, &1, &2, R) a
hyperbola group.

From now on we consider only permutation sets (F,T") with (E,T"), # (.
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9.2. Let (P,®1,89,8) be a chain structure with a transversal X € &1 of
(P,®1,65,R), let 0 € X be fired and let E € R with o € E. Then for
each a € E, oa is an element of X and so there is exactly one A € R
with oa € A. Therefore if we set a™ := Ag(A) and ET :={a* | a € £}
then (E, ET) becomes a permutation set with o € (E, E™1),, and (E,+) with
a+b:= at(b) becomes a left loop. Moreover we have kp(at) = A hence
R =kp(E") and the following three propositions are equivalent:

(1) (P,®1,89,R) is a web,

(ii) VX € &1 X is a transversal of (P, 61,62, K),

(iii) VX € By X is a transversal of (P, &1, H9, R).

9.3. Let (E,+) be a left loop, X := o0FE, R := kg(E™) and for a,b € E,
A= kp(at), B :=rp(b") then kp(at obtoat)=A-B-A= A(B™Y)
and we have:

(1) X € &5 is a transversal of (P, 61,2, R),

(2) atobtoat e Et & A-B-A=A(B™Y) e R,

(3) (E,+) is a Bol loop < R is symmetric.

From 9.3 we obtain the theorems:

Theorem 9.4. Let (E,+) be a Bol loop and let & := kg(E™) then K is
symmetric hence (by section 8) (&, R) is an invariant involution set and the
following statements are equivalent:
(i) (8, R) is regular,
(ii) for all a,b€ E the equation b=2x+ (—a+x) has exactly one
solution x € F,
(ii7) (E,4+) is uniquely 2-divisible, i.e., YVa € E 12 € FE with z+z = a,
(iv) VAe RF1A e B A'- A" = A (this implies: if A+ B:=A"-B- A
then (R,+) is a K-loop),
(v) R+ #0.

Proof. Let A,B € 8 and a™ := Ag(A), b" := Ag(B). If there is a C € &
such that B = C(A) = C - A™1 - C and if ¢t := Ag(C) then bT = ¢t o
(—a)T oct hence b = c+ (—a+c). If ¢ € E is a solution of the equation
b=x+(—a+x) and C := kg(CT) then C(A) = B. This shows the
equivalence of (i) and (i7) and if we set a := o in (i7) we see that (i7)
implies (4i7). Finally we assume (iii). For each a € F let ' € E such
that o/ + a’ = a then if A := kp(at) and A" := kp(a'") we have A/(E) =
A B-A=A-A =rpd") kp(d) =kp(d od™) = kp(at) = A. This
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shows (iv) and E € (&, ), and so by 2.3(4), (&, R) is a regular invariant
involution set, i.e., (iv) implies (7).
The equivalence of (i) and (v) is a consequence of 8.1. O

Weset A+ B:=A'oE(B)=A(BY)=A"B-A =rg(d") kgl
kp(a™) = kp(@t obtod™t) = kp(d + (b4 d))T € kp(ET) = & and so
by 8.1(3), (R, +) is a K-loop and moreover we have the result of P. T. Nagy
and K. Strambach [23].

Theorem 9.5. Let (E,+) be a Bol loop uniquely 2-divisible and for a € E
let a/ € E such that o +a = a, then (E,®) with a®b:=d + (b+d’) is
a K-loop.

10. Loops derived from point reflection spaces

In this section let (P,~) be a point reflection space, let a point o € P be
fixed and let (P, +) be the loop derivation of (P, ~) in o. If (P, ~) is singular
then by 6.4 the loop (P, +) is a commutative group. Therefore we assume
that (P,~) is ordinary. Then by 9.4, (P,+) is a proper K-loop uniquely
2-divisible. For p € P let p' € P such that p' +p' = p. We recall that the
operation "+" is given by a + b := a’/ 0 0(b) and that the pair (P, £), where
£ denotes the set of equivalence classes of the relation p, is an incidence
space (cf. section 6).
We show:

Theorem 10.1. Let § := £(0) := {L € £ | o € L} be the set of all
equivalence classes containing o and let a,b € P. Then:
(1) if atob™ =bt oa™ then a® obt € P, more precisely, a* o b™ =
(a+0d)*,
(2) For each F € F, F is a commutative subgroup of the loop (P,+),
and ifa € F\ {o} then F={x € P|aToxt =zToa™},
38) £={a+F |a€P, Fecg},
(4) the collineation group Aut(P,£) contains P,
(5) the set § is a fibration of the K-loop (P,+) consisting of commuta—
tive subgroups of the loop (P,+), i.e., for all A, B € § and for each

a€ P:
(F.1) Al =2,

(F.3) if A# B then AN B = {o}.
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Proof. (1) Byp+—p 00, the equation a™ ob+—a ooob’oo—b+oa+—
V' oooa oo implies a’cool/ =b oood, ie., da ogol/ € J and so by (R1),
there is a ¢ € P such that @’ 0o ¥ = ¢, Thereforea ob™ =cooe PT
and since at o b (0) = a™(b) = a + b this implies a0 bT = (a + b)*.

—_

(2) For p € P* the equatlonp—p( ) implies by 6.1(4), p—p()
p ocoop and p/ #ohenceOOp op= P e €Jandoopop' =oop'ooe J
and so by 6.5(3), p’ € 0,p and p € o,p’ hence 0,p = ﬁ Therefore:
reF=0a=o0,d &1 cF=o0,d&a000d =dooor’ & atoat =
r'o0od’ co=dooor'oo=atozxT = r+a=x"(a)=2"0a" (o) =
at oz (0) =a+x. N

(3), (4) If p € P then by 6.5(6) p+:p’05€ Aut(P, £), and therefore
if L€ £ peLthen F:= (p")"}(L) € Land o € F, ie., F € § and
a+F=a"(F)=L. O

11. Loops with fibrations

In 1987 Elena Zizioli introduced for loops the notion of an incidence fibration
(cf. [27], [16]) in the sense of the following definition:
Given a loop (P, +) and a set § C 27, § is called a fibration of (P, +) if:
(F1) VX e§ |X| > 2,
(F2) Us="P,
(F3) VA\Be§ A# B AnB={o}.
If furthermore the following conditions
(F4) Yae PYX €F oca+X = a+ X €5,
(F5) VXegVieA §6(X)eSF,

are valid then § is called an incidence fibration.

Remark 6. If (P, +,J) is a fibered loop then to each a € P* there is exactly
one fiber A € § with a € A which we denote by [a]. Then (F4) and (F5)
can be expressed in the form:

(F4) Ya € P* a+ [—a] = |a],

(F5) VYae P*V5e A §([a]) = [0(a)].

By [27] we have:

11.1. If § is an incidence fibration of a loop (P,+) let £:={a+ X | a €
P, X € §}. Then (P, £,+) is an incidence loop, i.e., (P, £) is an incidence
space, (P,+) is a loop and for each a € P the map a™ is a collineation of
(P, L).
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Remark 7. The fibration § corresponding to an ordinary point reflection
space (P, ~) according to 9.1 is an incidence fibration of the loop (P, +) since
the fiberes are subgroups of (P, +) and the maps a™ collineations of (P, £).
Moreover if A € Fand a € A\ {o} then A={z € P |zt oat =atoat}
is the centralizer of the element a in (P.+).

Now we ask, when do the centralizers of an arbitrary loop form a fibra-
tion or an incidence fibration, respectively? To answer this, we consider the
following two exchange conditions:

(Z1) For all a,b € P*if b € [a] then [a] C [b].

(Z2) Foralla,be P*ifat ob™ =0t oa™ then a™ o b™ € PT.

11.2. Let (P,+) be a loop, for any a € P* let [a] := {x € P |at o™ =
xt oat} be the centralizer of a and let 3 :={[a] | a € P*}. Then:

(1) 3 is a fibration of (P,+) if and only if the exchange condition (Z1)
18 verified,

(2) 3 is an incidence fibration if and only if (Z1) and the condition:
Na € P*VSe A: a+ [—a] =[a] and i([a]) = [0(a)]" are valid,

(3) if 3 is a fibration then on each fiber [a] the addition” +7 is com—
mautative,

(4) if (P,+) satisfies (Z1) and (Z2) then each fiber [a] is a commutative
subsemigroup of (P,+) and [a]™ := {z | x € [a]} is a commutative
subsemigroup of Sym P,

(5) if A< Aut(P,+) (i.e., (P,+) is an A;-loop, cf. [17] p. 35) then 3
satisfies (F5).

Proof. (3), (4) Let z,y € [a]\{o} . Then z+y = 2oyt (0) = yTozT(0) =
y+ z. If (Z2) is valid then (z + y)"(0) = z +y = 27 o y™(0) implies
(x+y)T =atoytandsoato(z+y)t =at ozt oyt =atoat oyt =
oyt oat =(x+y)toa', ie, z+y € [a] and moreover (x +y) + 2z =
(x4+y)t(z) = 2t oy (2) = = + (y + 2) showing that [a] and [a]t are
semigroups.

(5) Clearly if a € P* and « € Aut(P,+) then a([a]) = [a(a)]. O

If 3 is an incidence fibration we say that the loop (P, +) has a c¢(entralizer)-
fibration. In order to obtain more informations we claim from now on that
our loop (P, +) satisfies the left inverse property

Ya € P ato(—a)t =id



Loops related to geometric structures 73

11.3. Let (P,+) be a loop satisfying the left inverse property and (Z1) then:
(1) v e Aut(P,3) N J, more precisely v is the identity on 3,
(2) (F4) & VYa e P* [a]+ [a] C [a],
(3) if for each a € P* [a]+[a] C [a] then [a] is a commutative subgroup
of the loop (P,+),
(4) (P,+) has a c-fibration if and only if (Z1) and the condition:
'Na € P*V§ € A [a] + [a] = [a] and d([a]) = [6(a)]" are valid.

Proof. Let a € P* then (—a)™ = (a™)™! and so at o (—a)* = (—a)t oa™,

hence by (Z1), [a] = [—a], i.e. VEAut(PS)ﬂJanda+[ al =a+a] C
[a] + [a] C al. Ifxe[]theny.*(cﬁ) Yz) = (—a)T(z) = —a+x €
[a] + [a] C [a] hence = € at([a]) = a+ [a]. Together a + [—a] = [a] and this
shows the equivalence in (2). O

By 10.1, the loop (P, +) derived from an ordinary point reflection space
is a K-loop satisfying the exchange conditions (Z1) and (Z2). Since a K-
loop is an Aj-loop with left inverse property, (P, +) has a c-fibration.

11.4. Let (P,+) be a loop with left inverse property and where 3 is a c-
fibration, let (P,+, £) (with £ := {a+[b] | a € P, b € P*}) the corresponding
incidence loop (according 11.1) and let a € P* then:
(1) the restriction of v onto [a] is an automorphism of the commutative
group ([a],+), B
(2) foreachpe P peJandp fizes the bundle p+ 3 linewise,
(3) if v € Aut(P,+) then P° =Pt ov C Aut(P,£)NJ and forp € P
voptov=(w(p)t =(-p)*, p=ptoptov=pTop’, hence
P C Aut(P,£)N J.

We summarize:

Theorem 11.5. Let (P,~) be an ordinary point reflection space (cf. Defi-
nition 4), let o € P be fized and let (P,+) the loop derivation of (P,~) in
0. Then (P,+) is a proper K-loop uniquely 2-divisible, satisfying (Z1) and
(Z2) and 3 is an incidence fibration.

Theorem 11.6. Let (P, +) be a proper K-loop uniquely 2-divisible satisfying
(Z1) and (Z2) and let

~: P — J; pr—>ﬁ;:p+oyo(—p)+,

Then:
(1) 3 is an incidence fibration,
(2) (P,~) is an ordinary point reflection space.
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Proof. (1) A K-loop is an Aj-loop with left inverse property. Therefore by
11.2 and 11.3, (Z1) and (Z2) enforce that 3 is an incidence fibration.

(2) Since in an uniquely 2-divisible K-loop, v is an involutory auto-
morphism of (P,+) with Fizv = {0} and (—p)* = (p*)~', the map p is
an involution fixing exactly the point p and p = (p+p)T ov = (p + p)°
showing P° = Pt ov = P := {p | p € P}. By 3.7 and the 2-divisibility,
(P, P°) = (P, P) is a selfhomogeneous invariant regular involution set sat-
isfying (M ). Hence (P, ~) is a point reflection structure and p = p° ovop°.
If (a,b,c) € P3 are given and a’ := b° o a o b°(0) = b°oa(b), ¢ :=
b° 0 cob°(0) = b° o &(b) then a’° =b° 0@ o b® and ¢° := b° o co b° and we
have: (a,b,c) € paaoboceJ o d ovod®eJed odt =d o™
implying by (22), d°ov=dt =d'Todt =d°ovod®ovford:=d +V
hence d° = b odob’ovob’ocob® <& doboé="0b0d ob® € P° = P.
Thus (R1) is valid.

In order to show (R2) we use the same notation as in the proof of (R1).
By the invariance of P° and (R1), the relation p is symmetric. Therefore
let @ # b and (a,b,¢), (a,b,d) € phence d’ " odt =t od " and o/ od' T =
dtod ™ ie,d,d €la]andso d o =T od " implying again by (Z2)
for e := ¢ +d', Gobod = b°0e®0b® € P° = P. Consequently (c,b,d) € p and
so also (b, c,d) € p. Since (P,+) is not commutative, p # R® and therefore
(P, ~) is an ordinary point reflection space. O
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