
Quasigroups and Related Systems 15 (2007), 77− 94

Computing with small quasigroups and loops

Gábor P. Nagy and Petr Vojt¥chovský

Abstract

This is a companion to our lectures GAP and loops, to be delivered at the Workshops
Loops 2007, Prague, Czech Republic. In the lectures we introduce the GAP [6] package
LOOPS [15], describe its capabilities, and explain in detail how to use it. In this paper
we �rst outline the philosophy behind the package and its main features, and then we
focus on three particular computational problems: construction of loop isomorphisms,
classi�cation of small Frattini Moufang loops of order 64, and the search for loops of
nilpotency class higher than two with an abelian inner mapping group.

In particular, this is not a user's manual for LOOPS, which can be downloaded from
the distribution website of LOOPS.

1. Main features
On the one hand, since there is no useful representation theory for quasi-
groups and loops, we have decided to represent quasigroups and loops in
LOOPS by their Cayley tables, thus e�ectively limiting the scope of the
package to quasigroups of order at most 500 or so. (A future project is to
implement other loop representations, notably by connected transversals in
groups.)

On the other hand, to take advantage of the powerful methods for groups
already present in GAP, most calculations in LOOPS are delegated to the
permutation groups associated with quasigroups, rather than performed on
the level of Cayley tables. For instance, to decide if a loop is simple, we
check whether its multiplication group is a primitive permutation group.

2000 Mathematics Subject Classi�cation: Primary 20N05.
Keywords: loop, quasigroup, GAP, computation in nonassociative algebra, loop iso-
morphism, Latin square, Csörg® loop, small Frattini Moufang loop, LOOPS package,
code loop.
This paper was written during the Marie Curie Fellowship of the �rst author at the
University of Würzburg. The second author supported by the PROF 2006 grant of
the University of Denver.

78 G. P. Nagy and P. Vojt¥chovský

To avoid repeated calculations, we store most information obtained for a
given quasigroup as its attribute. In GAP, there is no syntactical di�erence
between calling a method or retrieving an attribute. For instance, when Q
is a quasigroup then Center(Q) calculates and stores the center Z(Q) of Q
when called for the �rst time, while it retrieves the stored attribute Z(Q)
when called anytime later.

Moreover, GAP uses simple deduction process��lters�to obtain addi-
tional information about an object without an explicit user's request. For
instance, if LOOPS knows that Q is a left Bol loop that is also commutative,
the built-in �lter (IsMoufangLoop, IsLeftBolLoop and IsCommutative)
automatically deduces that Q is a Moufang loop and stores this information
for Q. This is a powerful tool, since many �lters built into LOOPS are deep
theorems.

1.1. Creating quasigroups and loops
A (quasigroup) Cayley table is an n × n Latin square with integral entries
x1 < · · · < xn. A canonical Cayley table is a Cayley table with x1 = 1, . . . ,
xn = n.

When T is a Cayley table, QuasigroupByCayleyTable(T) creates a
quasigroup whose Cayley table is the canonical Cayley table obtained from
T by replacing xi with i. Should T be normalized�the �rst row and �rst
column reads x1, . . . , xn�then LoopByCayleyTable(T) returns the corre-
sponding loop. The Cayley table of a quasigroup Q can be retrieved by
CayleyTable(Q).

Throughout this paper, we illustrate the methods of LOOPS by ex-
amples, often without any comments for self-explanatory commands. The
syntax is that of GAP.

gap> Q := QuasigroupByCayleyTable([[2,1],[1,2]]); Elements(Q);
<quasigroup of order 2>
[q1, q2]
gap> L := LoopByCayleyTable([[3,5],[5,3]]); Elements(L); L.2;
<loop of order 2>
[l1, l2]
l2
gap> CayleyTable(Q);
[[2, 1], [1, 2]]
gap> Print(L);
<loop with multiplication table
[[1, 2],
[2, 1]]

>

Computing with loops 79

It is also possible to create quasigroups and loops by reading Cayley ta-
bles from �les (with very relaxed conditions on the form of the Cayley table),
by converting groups to quasigroups, by taking subquasigroups, subloops,
factor loops, direct products, etc. See the manual for details.

1.2. Conversions
Even if a quasigroup happens to have a neutral element, it is not considered
a loop in LOOPS unless it is declared as a loop. Similarly, a group of GAP
is not considered a loop. We therefore provide conversions between these
types of algebras:

gap> G := Group((1,2,3),(1,2)); AsLoop(G);
Group([(1,2,3), (1,2)])
<loop of order 6>
gap> Q := QuasigroupByCayleyTable([[2,1],[1,2]]); AsLoop(Q);
<quasigroup of order 2>
<loop of order 2>

The neutral element of any loop L in LOOPS is always the �rst element
of L, i.e., One(L) = L.1.

Given a quasigroup Q and elements f , g ∈ Q, the principal loop isotope
(Q, f, g) of Q is obtained from Q via the isotopism (R−1

g , L−1
f , id), cf. [17,

p. 60]. Then (Q, f, g) is a loop with neutral element fg.
The conversion AsLoop(Q) works as follows, starting with a quasigroup

Q:

(i) When Q does not have a neutral element, it is �rst replaced by the
principal loop isotope (Q,Q.1, Q.1), thus turning Q into a loop with
neutral element (Q.1)(Q.1).

(ii) When Q has a neutral element k, it is replaced by its isomorphic copy
via the transposition (1, k).

1.3. Subquasigroups and subloops
A new quasigroup Q2 is frequently obtained as a subquasigroup of an ex-
isting quasigroup Q1. Since all information about Q2 is already contained
in the Cayley table of Q1, and since it is often desirable to have access
to the embedding of Q2 into Q1, we provide a mechanism in LOOPS for
maintaining the inclusion of Q2 and Q1.

80 G. P. Nagy and P. Vojt¥chovský

When Q1 is a quasigroup and S is a subset of Q1, Subquasigroup(Q1,
S) returns the subquasigroup Q2 of Q1 generated by S. At the same time,
the attribute Parent(Q2) is set to Parent(Q1), hence ultimately pointing
to the largest quasigroup from which Q2 has been created. The elements of
Q2 and the Cayley table of Q2 are then calculated relative to the parent of
Q2.

gap> L := AsLoop(Group((1,2,3),(1,2))); S := Subloop(L,[3]);
<loop of order 6>
<loop of order 2>
gap> Parent(S) = L; PosInParent(S); Elements(S);
true
[1, 3]
[l1, l3]
gap> HasCayleyTable(S); CayleyTable(S);
false
[[1, 3], [3, 1]]

Note that the Cayley table of a subquasigroup is created only upon
user's request.

1.4. Bijections as permutations on {1, . . . , n}
When calculating isomorphisms, isotopisms, or other bijections of quasi-
groups of order n, the result is always returned as a permutation (triple of
permutations) of {1, . . . , n}. Equivalently, the quasigroups in question are
�rst replaced by isomorphic copies with canonical Cayley tables, and only
then the bijections are calculated. It is always possible to reconstruct the
original bijection using the attribute PosInParent.

1.5. A few words about the implementation
One of the biggest strengths of the computer algebra system GAP is that
most algebraic structures can be de�ned within it. In this subsection we
brie�y explain how the variety of quasigroups is implemented in LOOPS.
In order to understand the implementation, we will need the following GAP
terminology:

� A �lter, such as IsInteger and IsPermGroup, is a special unary func-
tion on the set of GAP objects which returns either true or false.
Roughly speaking, a �lter is an a priori attribute of an object.

Computing with loops 81

� A category is a class of objects de�ned by a collection of �lters. An
object can lie in several categories. For example, a row vector lies in
the categories IsList and IsVector.

� All GAP objects are partitioned into families. The family of an object
determines its relation to other objects. For instance, all permutations
form a family, and groups presented by generators and relations form
another family. However, a family is not a collection of objects, but
abstract information about objects.

� Beside its name, a family can have further labels.

� Every GAP object has a type. The type of an object determines if a
given operation can be performed with that object, and if so, how it
is to be performed. The type of an object is derived from its family
and its �lters.

� A given data structure can be made into an object by specifying its
type, that is, its family and its �lters.

The following function constructs a quasigroup Q with Cayley table ct.
First we de�ne a family corresponding to the elements of Q and tell GAP
that it will consist of quasigroup elements. Then we objectify the individual
elements in this family, and label the family by the set of its elements, by the
size of Q, and by the Cayley table. Then we objectify Q whose family will
be the collection of its elements. Finally, we set some important attributes
of Q.

function(ct)
local F, Q, elms, n;
constructing the family of the elements of this quasigroup
F := NewFamily("QuasigroupByCayleyTableFam", IsQuasigroupElement);
installing data ("labels") for the family
n := Length (ct);
F!.size := n;
elms := Immutable(List([1..n], i -> Objectify(

NewType(F, IsQuasigroupElement and IsQuasigroupElmRep), [i])));
F!.set := elms;
F!.cayleyTable := ct;
creating the quasigroup by turning it into a GAP object
the family of Q is the collection of its elements
Q := Objectify(NewType(FamilyObj(elms),

IsQuasigroup and IsAttributeStoringRep), rec());
setting some attributes for the quasigroup
SetSize(Q, n);
SetAsSSortedList(Q, elms);

82 G. P. Nagy and P. Vojt¥chovský

SetCayleyTable(Q, ct);
return Q;

end;

Operations in GAP are overloaded, i.e., the same operation can be ap-
plied to di�erent types of objects. In order to deal with this situation, GAP
uses a method selection: When an operation is called, GAP �rst checks the
types of the arguments, and then selects the appropriate method.

Here is how the multiplication of two quasigroup elements is imple-
mented:

InstallMethod(*, "for two quasigroup elements",
IsIdenticalObj,
[IsQuasigroupElement, IsQuasigroupElement],

function(x, y)
local F;
F := FamilyObj(x);
return F!.set[F!.cayleyTable[x![1]][y![1]]];

end);

Note that the underlying quasigroup is easily accessed since the element
x knows into which quasigroup it belongs.

2. What is in the package
Here is a very brief overview of the methods implemented in LOOPS, ver-
sion 1.4.0. See the manual for (much) more details. Argument Q stands
for a quasigroup, and L for a loop. Thus the methods with argument Q
apply to both quasigroups and loops, while those with argument L apply
only to loops. Any additional restrictions on the arguments are listed in
parentheses. The symbol . is a shortcut for returns.

2.1. Basic methods and attributes
Cayley tables and elements:

Elements(Q) . list of elements of Q,
CayleyTable(Q) . Cayley table of Q,
One(L) . the neutral element of L,
MultiplicativeNeutralElement(Q) . the neutral element of Q, or fail
Size(Q) . the size of Q,
Exponent(L) . the exponent of L (L power-associative).

Computing with loops 83

Arithmetic operations:
LeftDivision(x, y) . x\y,
RightDivision(x, y) . x/y,
LeftDivisionCayleyTable(Q) . Cayley table of left division in Q,
RightDivisionCayleyTable(Q) . Cayley table of right division in Q.

Powers and inverses:
LeftInverse(x) . xλ, where xλx = 1,
RightInverse(x) . xρ, where xxρ = 1,
Inverse(x) . the two-sided inverse of x, if it exists.

Associators and commutators:
Associator(x, y, z) . the unique element u with (xy)z = (x(yz))u,
Commutator(x, y) . the unique element v with xy = (yx)v.

Generators:
GeneratorsOfQuasigroup(Q) . a generating subset of Q,
GeneratorsOfLoop(L) . a generating subset of L,
GeneratorsSmallest(Q) . a generating subset of Q of size 6 log2 |Q|.

Subquasigroups:
IsSubquasigroup(Q,S) . true if S is a subquasigroup of Q,
IsSubloop(L, S) . true if S is a subloop of L,
AllSubloops(L) . list of all subloops of L,
RightCosets(L, S) . right cosets modulo S (S ≤ L),
RightTransversal(L, S) . a right transversal modulo S (S ≤ L).

Translations and sections:
LeftTranslation(Q, x) . the left translation Lx by x in Q (x ∈ Q),
RightTranslation(Q, x) . the right translation Rx by x in Q (x ∈ Q),
LeftSection(Q) . the set of all left translations in Q,
RightSection(Q) . the set of all right translations in Q.

Multiplication groups:
LeftMultiplicationGroup(Q) . the left multiplication group of Q,
RightMultiplicationGroup(Q) . the right multiplication group of Q,
MultiplicationGroup(Q) . the multiplication group of Q,
RelativeLeftMultiplicationGroup(L, S) . the group generated by all

left translations of L restricted to S (S ≤ L),
RelativeRightMultiplicationGroup(L, S) . the group generated by all

right translations of L restricted to S (S ≤ L),
RelativeMultiplicationGroup(L, S) . the group generated by all

translations of L restricted to S (S ≤ L).
Inner mapping groups:

84 G. P. Nagy and P. Vojt¥chovský

InnerMappingGroup(L) . the inner mapping group of L,
LeftInnerMappingGroup(L) . the group generated by L−1

yx LyLx,
RightInnerMappingGroup(L) . the group generated by R−1

xy RyRx.
Nuclei:

LeftNucleus(Q) . the left nucleus of Q,
RightNucleus(Q) . the right nucleus of Q,
MiddleNucleus(Q) . the middle nucleus of Q,
Nuc(Q), NucleusOfQuasigroup(Q) . the nucleus of Q.

Commutant, center and associator subloop:
Commutant(Q) . {x ∈ Q; xy = yx for every y ∈ Q},
Center(Q) . the center of Q,
AssociatorSubloop(L) . the smallest S E L such that L/S is a group.

Normal subloops:
IsNormal(L, S) . true if S is a normal subloop of L,
NormalClosure(L, S) . the smallest normal subloop of L containing S,
IsSimple(L) . true if L is a simple loop.

Factor loops:
FactorLoop(L,N) . L/N (N normal subloop of L),
NaturalHomomorphismByNormalSubloop(L,N) . the projection

L → L/N (N normal subloop of L).
Central nilpotency and central series:

NilpotencyClassOfLoop(L) . the (central) nilpotency class of L,
IsNilpotent(L) . true if L is nilpotent,
IsStronglyNilpotent(L) . true if the mult. group of L is nilpotent,
UpperCentralSeries(L) . the upper central series of L,
LowerCentralSeries(L) . the lower central series of L,

Solvability:
IsSolvable(L) . true if L is solvable,
DerivedSubloop(L) . the derived subloop of L,
DerivedLength(L) . the derived length of L,
FrattiniSubloop(L) . the Frattini subloop of L (L strongly nilpotent).

Isomorphisms and automorphisms:
IsomorphismLoops(L,M) . an isomorphism of loops L → M , or fail,
LoopsUpToIsomorphism(ls) . �ltered list ls of loops up to isomorphism,
AutomorphismGroup(L) . the automorphism group of L,
IsomorphicCopyByPerm(Q, p) . an isomorphic copy of Q via the

permutation p,
IsomorphicCopyByNormalSubloop(L, S) . an isomorphic copy of L in

Computing with loops 85

which SEL occupies the �rst |S| elements of L and where the remaining
elements correspond to the cosets of S in L.

Isotopisms:
IsotopismLoops(L,M) . an isotopism L → M , or fail,
LoopsUpToIsotopism(ls) . �ltered list ls of loops up to isotopism.

2.2. Testing properties of quasigroups and loops
Associativity, commutativity and generalizations:

IsAssociative(Q) . true if Q is associative,
IsCommutative(Q) . true if Q is commutative,
IsPowerAssociative(L) . true if L is power associative,
IsDiassociative(L) . true if L is diassociative.

Inverse properties:
HasLeftInverseProperty(L) . true if xλ(xy) = y,
HasRightInverseProperty(L) . true of (yx)xρ = y,
HasInverseProperty(L) . true if xλ(xy) = y = (yx)xρ,
HasTwosidedInverses(L) . true if xλ = xρ,
HasWeakInverseProperty(L) . true if (xy)λx = yλ,
HasAutomorphicInverseProperty(L) . true if (xy)λ = xλyλ,
HasAntiautomorphicInverseProperty(L) . true if (xy)λ = yλxλ.

Some properties of quasigroups:
IsSemisymmetric(Q) . true if (xy)x = y,
IsTotallySymmetric(Q) . true if Q is semisymmetric and commutative,
IsIdempotent(Q) . true it x2 = x,
IsSteinerQuasigroup(Q) . true if Q is totally symm. and commutative,
IsUnipotent(Q) . true if x2 = y2,
IsLeftDistributive(Q) . true if x(yz) = (xy)(xz),
IsRightDistributive(Q) . true if (xy)z = (xz)(yz),
IsDistributive(Q) . true if Q is left and right distributive,
IsEntropic(Q), IsMedial(Q) . true if (xy)(uv) = (xu)(yv).

Loops of Bol-Moufang type:
IsExtraLoop(L) . true if x(y(zx)) = ((xy)z)x,
IsCLoop(L) . true if x(y(yz)) = ((xy)y)z,
IsMoufangLoop(L) . true if (xy)(zx) = (x(yz))x,
IsRCLoop(L) . true if x((yz)z) = (xy)(zz),
IsLCLoop(L) . true if (xx)(yz) = (x(xy))z,
IsRightBolLoop(L) . true if x((yz)y) = ((xy)z)y,
IsLeftBolLoop(L) . true if x(y(xz)) = (x(yx))z,

86 G. P. Nagy and P. Vojt¥chovský

IsFlexible(Q) . true if x(yx) = (xy)x,
IsRightNuclearSquareLoop(L) . true if x(y(zz)) = (xy)(zz),
IsMiddleNuclearSquareLoop(L) . true if x((yy)z) = (x(yy))z,
IsLeftNuclearSquareLoop(L) . true if (xx)(yz) = ((xx)y)z,
IsRightAlternative(Q) . true if x(yy) = (xy)y,
IsLeftAlternative(Q) . true if (xx)y = x(xy),
IsAlternative(Q) . true if it is both left and right alternative.

Power alternative loops:
IsLeftPowerAlternative(L) . true if xn(xmy) = xn+my,
IsRightPowerAlternative(L) . true if (xyn)ym = xyn+m,
IsPowerAlternative(L) . true if L is left and right power alternative.

Conjugacy closed loops:
IsLCCLoop(L) . true if left translations are closed under conjugation,
IsRCCLoop(L) . true if right translations are closed under conjugations,
IsCCLoop(L) . true if L is left and right conjugacy closed.

Additional varieties of loops:
IsLeftBruckLoop(L), IsLeftKLoop(L) . true if L is left Bol and has

the automorphic inverse property,
IsRightBruckLoop(L), IsRightKLoop(L) . true if L is right Bol and

has the automorphic inverse property.
Here is a nice, albeit trivial illustration of the �lters built into the LOOPS
package:
gap> L := LoopByCayleyTable([[1,2],[2,1]]);
<loop of order 2>
gap> IsLeftBolLoop(L); L;
true
<left Bol loop of order 2>
gap> IsRightBolLoop(L); L;
true
<Moufang loop of order 2>
gap> IsAssociative(L); L;
true
<associative loop of order 2>

2.3. Libraries
Several libraries of small loops up to isomorphism are included in LOOPS.
As of version 1.4.0, the libraries contain:

� all nonassociative left Bol loops of order 6 16,

� all nonassociative Moufang loops of order 6 64 and = 81,

Computing with loops 87

� all nonassociative Steiner loops of order 6 16,

� all (three) nonassociative conjugacy closed loops of order p2, for every
odd prime p,

� all (one) nonassociative conjugacy closed loops of order 2p, for every
odd prime p,

� the smallest nonassociative simple Moufang loop (of order 120),

� all nonassociative loops of order 6 6.

There is also a library of all nonassociative loops of order 6 6 up to iso-
topism.

The mth loop of order n in a given library can be retrieved via

LeftBolLoop(n,m), MoufangLoop(n,m),

and so on.
We took great care to store the information in the libraries e�ciently.

For instance, the library of Moufang loops can be packed into less than 18
kilobytes, hence averaging about 4 bytes per loop.

Remark 2.1. All nonassociative Moufang loops of orderless than 64
can be found in [7]. Our numbering for these loops agrees with [7].

The 4262 nonassociative Moufang loops of order 64 were �rst con-
structed in [18], but it was proved (computationally) only in [16] that the
list is complete.

The 2038 nonassociative left Bol loops of order 16 were enumerated for
the �rst time by Moorhouse [12]. The �rst author obtained the same result
by a di�erent method, on which he will report in a separate paper [14].

The fact that for every odd prime p there are precisely three nonasso-
ciative conjugacy closed loops of order p2 was established by Kunen [10].
Drápal and Csörg® derived simple formulas for multiplication in these three
loops [4]. When p is an odd prime, Wilson [19] constructed a nonassociative
conjugacy closed loop of order 2p, and Kunen [10] showed there are no other
such loops.

Our counts of small loops agree with the known results, e.g. [11].
The library of small Steiner loops is based on [2].

88 G. P. Nagy and P. Vojt¥chovský

3. Constructing isomorphisms

There does not appear to be much research on the problem of �nding an
isomorphism between loops. In this section we explain the approach used
in LOOPS. It works surprisingly well for many varieties of loops, including
Moufang loops.

Let Q be a loop, and let P be a set of properties (of elements) invariant
under isomorphisms. The nature of P depends on Q. For instance, when Q
is power-associative, one of the invariant properties for an element x might
be the order |x|.

Given P and a collection C of loops, de�ne an equivalence on the (dis-
joint) union of C by x ∼ y if and only if ϕ(x) = ϕ(y) for every ϕ ∈ P.
Then, if f : Q → L is an isomorphism and C = {Q, L}, we must have
x ∼ f(x) for every x ∈ Q. In other words, P partitions the elements into
blocks invariant under isomorphism.

In order to �nd an isomorphism, we need a set of invariants P that is
easy to calculate but results in a �ne partition.

We have used the following invariants P for power-associative loops:

ϕ1(x) = |x|,
ϕ2(x) = |{y; y2 = x}|,
ϕ3(x) = |{y; y4 = x}|,

ϕ4,k(x) = |{y; xy = yx, |y| = k}|, for k ≥ 1.

The algorithm searching for an isomorphism f : Q → L �rst orders the
equivalence classes of ∼ by increasing size on both Q and L. If the equiva-
lence class sizes of Q and L do not match, it is clear that no isomorphism
f : Q → L exists, and fail is returned. Otherwise, a backtrack search
attempts to �nd an isomorphism respecting the partitions of ∼.

It would be an interesting project to analyze the speed of the algorithm
depending on the choice of P. We do not claim that the above P is optimized
in any sense. Note, for instance, that the invariants ϕ2, ϕ3 are useless for
many power associative loops of odd order, and ϕ4,k are useless for all
commutative loops.

Computing with loops 89

4. Classi�cation of small Frattini Moufang loops
of order 64

Let L be a loop and let the Frattini subloop Φ(L) be the normal subloop
generated by all squares, commutators and associators of L. In other words,
Φ(L) is the smallest normal subloop such that L/Φ(L) is an elementary
abelian p-group. Following Hsu [9], we say that L is a small Frattini p-loop
if |Φ(L)| 6 p.

In this section, L will denote a small Frattini Moufang 2-loop of order
2n+1. Moreover, in order to avoid trivialities, we assume that |Φ(L)| = 2.
Clearly, Φ(L) ≤ Z(L), L is nilpotent of class 2, and it has a unique nontrivial
square, commutator and associator element.

Remark 4.1. Small Frattini Moufang 2-loops are also called code loops due
to their connection to doubly even linear binary codes. Some of these loops
play an important role in the description of large sporadic simple groups.

We consider V = L/Φ(L) as a vector space over F2, and we identify Φ(L)
and F2. In particular, we sometimes write the group operations additively.

Let us take arbitrary elements u = x mod Φ(L), v = y mod Φ(L),
w = z mod Φ(L) of V . Then, the following maps are well de�ned:

σ : V → F2, σ(u) = x2,
κ : V × V → F2, κ(u, v) = [x, y],
α : V × V × V → F2, α(u, v, w) = [x, y, z].

Moreover, α is an alternating trilinear form, κ is alternating, and we have

σ(u + v) = σ(u) + σ(v) + κ(u, v),
κ(u + v, w) = κ(u,w) + κ(v, w) + α(u, v, w).

Hence, by de�nition, V is a symplectic cubic space.
There are di�erent ways in which a small Frattini Moufang 2-loop is

obtained from a symplectic cubic space (cf. Griess [8], Chein and Goodaire
[1], Hsu [9]). All of the above constructions induct on the dimension of V .
In contrast, a new approach, [13], takes advantage of groups with triality
and constructs the loop globally.

For this, let σi, κij and αijk be the structure constants of σ, κ, α with
respect to a �xed basis ov V . We de�ne the group G with gerenators

90 G. P. Nagy and P. Vojt¥chovský

gi, fi, hi, i ∈ {1, . . . , n}, u and v by the following relations:

g2
i = uσi , f2

i = vσi , h2
i = u2 = v2 = 1,

[gi, gj] = uκij , [fi, fj] = vκij ,

[gi, fj] = (uv)κij

n∏

k=1

h
αijk

k ,

[gi, hj] = uδij , [fi, hj] = vδij ,

[hi, hj] = [gi, u] = [fi, u] = [hi, u] = [gi, v] = [fi, v] = [hi, v] = 1.

Then, G is a group and the maps

τ : gi ↔ fi, hi 7→ hi, u ↔ v

ρ : gi 7→ fi, fi 7→ (gifi)−1, hi 7→ hi, u 7→ v, v 7→ uv

extend to triality automorphisms of G. The following function returns the
Moufang loop associated to the group G with triality automorphisms τ, ρ:
TrialityGroupToLoop := function(G, tau, rho)

local ccl, ct;
ccl := Elements(ConjugacyClass(G, tau));
ct := List(ccl, s1 ->

List(ccl, s2 ->
Position(ccl, s1^rho * s2^(rho^2) * s1^rho)

)
);

return LoopByCayleyTable(NormalizedQuasigroupTable(ct));
end;

To complete the classi�cation of small Frattini Moufang 2-loops of order
64, it now su�ces to classify the symplectic cubic spaces of order 32. For a
�xed basis, such a space is given by

(
5
3

)
+

(
5
2

)
+ 5 = 25

structure constants, which give rise to a 25-dimensional vector space W over
F2.

Any linear map A of V de�nes a new symplectic cubic space with maps

σA(u) = σ(Au), κA(u, v) = κ(Au,Av), αA(u) = α(Au,Av, Aw),

and hence A induces a linear map on W . This de�nes an action of GL(5, 2)
on W .

Computing with loops 91

It is easy to show the 1-1 correspondence of loop isomorphisms and
linear isomorphisms of symplectic cubic spaces. This implies that the orbits
of GL(5, 2) on W will correspond precisely to the isomorphism classes of
small Frattini Moufang 2-loops of order 64.

Since |GL(5, 2)| and 225 are still too large for GAP to compute the
needed orbits, one has to have a closer look at invariant subspaces of W .
Once this is done, the classi�cation is complete, with the result that there
are precisely 80 nonisomorphic small Frattini Moufang loops of order 64.

5. An interesting Csörg® loop
One of the longer-standing problems in loop theory was the question if
there is a loop with nilpotency class higher than two whose inner mapping
group is abelian. In [3], Csörg® constructed such a loop (of order 128 and
nilpotency class 3). The following GAP code returns this loop L. The code
follows [3], where some insight is given.

constructing a group of order 8192 by presenting relations
f := FreeGroup(13);
G := f/[f.1^2, f.2^2, f.3^2, f.4^2, f.5^2, f.6^2, f.7^2, f.8^2, f.9^2, f.10^2,
f.11^2, f.12^2, f.13^2, (f.1*f.2)^2, (f.1*f.3)^2, (f.1*f.4)^2, (f.1*f.5)^2,
(f.1*f.6)^2, (f.1*f.7)^2, (f.1*f.8)^2, (f.1*f.9)^2, (f.1*f.10)^2, (f.1*f.11)^2,
(f.1*f.12)^2, (f.1*f.13)^2, (f.2*f.3)^2, (f.2*f.4)^2, (f.3*f.4)^2, (f.2*f.5)^2,
(f.2*f.6)^2, (f.2*f.7)^2, (f.3*f.5)^2, (f.3*f.6)^2, (f.3*f.7)^2, (f.4*f.5)^2,
(f.4*f.6)^2, (f.4*f.7)^2, (f.2*f.9)^2, (f.2*f.10)^2, (f.3*f.8)^2, (f.3*f.10)^2,
(f.4*f.8)^2, (f.4*f.9)^2, f.1*f.2*f.8*f.2*f.8, f.1*f.3*f.9*f.3*f.9,
f.1*f.4*f.10*f.4*f.10, (f.2*f.11)^2, (f.2*f.12)^2, (f.2*f.13)^2, (f.3*f.11)^2,
(f.3*f.12)^2, (f.3*f.13)^2, (f.4*f.11)^2, (f.4*f.12)^2, (f.4*f.13)^2, (f.5*f.6)^2,
(f.5*f.7)^2, (f.6*f.7)^2, (f.5*f.9)^2, (f.5*f.10)^2, (f.6*f.8)^2, (f.6*f.10)^2,
(f.7*f.8)^2, (f.7*f.9)^2, f.1*f.5*f.8*f.5*f.8, f.1*f.6*f.9*f.6*f.9,
f.1*f.7*f.10*f.7*f.10, (f.5*f.12)^2, (f.5*f.13)^2, (f.6*f.11)^2, (f.6*f.13)^2,
(f.7*f.11)^2, (f.7*f.12)^2, f.1*f.11*f.5*f.11*f.5, f.1*f.12*f.6*f.12*f.6,
f.1*f.13*f.7*f.13*f.7, f.2*f.5*f.9*f.10*f.9*f.10, f.3*f.6*f.8*f.10*f.8*f.10,
f.4*f.7*f.8*f.9*f.8*f.9, (f.8*f.11)^2, (f.9*f.12)^2, (f.10*f.13)^2,
f.8*f.12*f.8*f.4*f.12*f.7, f.8*f.13*f.8*f.3*f.13*f.6, f.10*f.11*f.10*f.3*f.11*f.6,
f.9*f.11*f.9*f.11*f.7, f.9*f.13*f.9*f.13*f.5, f.10*f.12*f.10*f.12*f.5,
(f.11*f.12)^2, (f.11*f.13)^2, (f.12*f.13)^2];
auxiliary data
g := GeneratorsOfGroup(G);
N := Subgroup(G, [g[5], g[6], g[7], g[1]]);
W := Subgroup(G, [g[5]*g[2], g[6]*g[3], g[7]*g[4], g[1]]);
A_0 := [One(G), g[8], g[9], g[10], g[8]*g[9], g[8]*g[10], g[9]*g[10]*g[2],

g[8]*g[9]*g[10]*g[2]];
B_0 := [One(G), g[8]*g[11], g[9]*g[12], g[10]*g[13], g[8]*g[11]*g[9]*g[12],

g[8]*g[11]*g[10]*g[13]*g[3], g[9]*g[12]*g[10]*g[13],
g[8]*g[11]*g[9]*g[12]*g[10]*g[13]*g[3]];

A := Union(List(Elements(N), x -> A_0*x));
B := Union(List(Elements(W), x -> B_0*x));

92 G. P. Nagy and P. Vojt¥chovský

H := Subgroup(G, [g[2], g[3], g[4], g[11], g[12], g[13]]);
constructing the loop
ListPosition := function(S, x)

local i; i := 1; while not x in S[i] do i := i + 1; od; return i;
end;
m := MappingByFunction(Domain(Elements(G)), Domain([1..8192]),

x -> Position(Elements(G), x));
CA := List(A, x -> x*Elements(H));
mCA := List(CA, c -> Set(c, x -> x^m));
T := List([1..128],i->[1..128]);
for ii in [1..128] do for jj in [1..128] do

T[ii][jj] := ListPosition(mCA, (A[ii]*B[jj])^m);
od; od;
p := SortingPerm(T[1]);
T := List(T, r -> Permuted(r, p));
L := LoopByCayleyTable(T);

In addition, the following properties hold for L: (a) the nucleus of L is
elementary abelian of order 16, (b) the left and middle nuclei have order
32, (c) the right nucleus has order 16, (d) the two-element center coincides
with the associator subloop.

An interesting, more symmetric loop K is obtained from L by this greedy
algorithm:

Given a groupoid Q, let µ(Q) = |{(a, b, c) ∈ Q×Q×Q; a(bc) 6= (ab)c}|.
Hence µ(Q) is a crude measure of (non)associativity of Q.

Let T be a multiplication table of L split into blocks of size 16 × 16
according to the cosets of the nucleus of L. Let h be the nontrivial central
element of L.

(*) For 1 6 i 6= j 6 16, let Tij be obtained from T by multiplying the
(i, j)th block and the (j, i)th block of T by h. Let (s, t) be such that µ(Tst)
is minimal among all µ(Tij). If µ(Tst) ≥ µ(T), stop, and return T . Else
replace T by Tst, and repeat (*).

It turns out that the multiplication table T found by the above greedy
algorithm yields another loop K of nilpotency class 3 whose inner mapping
group is abelian. In addition, the following properties hold for K: (a)
the nucleus is elementary abelian of order 16, (b) the left, middle, and right
nuclei have order 64, (c) the two-element center coincides with the associator
subloop. In particular, K is not isomorphic to L. Among other peculiar
features, it contains a nonassociative power associative loop of order 64 that
is the union of its nuclei.

The construction of L takes a minute or so in GAP, since calculations
in free groups are slow. A more direct, systematic, and much faster con-
struction of L and K will be presented elsewhere [5].

Computing with loops 93

References
[1] O. Chein and E. G. Goodaire: Moufang loops with a unique nonidentity

commutator (associator, square), J. Algebra 130 (1990), 369− 384.

[2] C. J. Colbourn and A. Rosa: Triple systems, Oxford Mathematical Mono-
graphs, The Clarendon Press, Oxford University Press, New York, 1999.

[3] P. Csörg®: Abelian inner mappings and nilpotency class greater than two,
European J. Combin., to appear.

[4] P. Csörg® and A. Drápal: Left conjugacy closed loops of nilpotency class
two, Results Math. 47 (2005), 242− 265.

[5] A. Drápal and P. Vojt¥chovský: Explicit constructions of loops with com-
muting inner mappings, submitted.

[6] The GAP Group: GAP � Groups, Algorithms, and Programming, Version
4.4.9; 2006. http://www.gap-system.org

[7] E. G. Goodaire, S. May and M. Raman: The Moufang loops of order
less than 64, Commack, NY: Nova Science Publishers, 1999.

[8] R. L. Griess, Jr.: Code loops, J. Algebra 100 (1986), 224− 234.

[9] T. Hsu:Explicit constructions of code loops as centrally twisted products,
Math. Proc. Cambridge Philos. Soc. 128 (2000), 223− 232.

[10] K. Kunen: The structure of conjugacy closed loops, Trans. Amer. Math. Soc.
352 (2000), 2889− 2911.

[11] B. D. McKay, A. Meynert and W. Myrvold: Small Latin squares,
quasigroups and loops, J. Combinatorial Designs, to appear.

[12] G. E. Moorhouse: Bol loops of small order, available at
http://www.uwyo.edu/moorhouse/pub/bol/

[13] G. P. Nagy: Direct construction of code loops, Discr. Math., to appear.
[14] G. P. Nagy: Doubling of �nite Bol loops, in preparation, 2007.
[15] G. P. Nagy and P. Vojt¥chovský: LOOPS � a GAP package, version

1.4.0, Feb. 2007, http://www.math.du.edu/loops
[16] G. P. Nagy and P. Vojt¥chovský: The Moufang loops of order 64 and 81,

submitted.
[17] H. O. P�ugfelder: Quasigroups and Loops: Introduction, Sigma Series in

Pure Math. 8, Heldermann Verlag, Berlin, 1990.
[18] P. Vojt¥chovský: Toward the classi�cation of Moufang loops of order 64,

European J. Combin. 27, issue 3 (April 2006), 444− 460.

94 G. P. Nagy and P. Vojt¥chovský

[19] R. L. Wilson, Jr.: Quasidirect products of quasigroups, Comm. Algebra 3
(1975), 835− 850.

Received February 25, 2007
Gábor P. Nagy Petr Vojt¥chovský
Bolyai Institute Department of Mathematics
University of Szeged University of Denver
Aradi vértanúk tere 1 2360 S Gaylord St
H-6720 Szeged Denver, Colorado 80208
Hungary U.S.A.
E-mail: nagyg@math.u-szeged.hu E-mail: petr@math.du.edu

