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Connected transversals and
multiplication groups of loops

Markku Niemenmaa and Miikka Rytty

Abstract

Several properties of loops and their multiplication groups can be reduced to the proper-
ties of connected transversals in groups. We discuss these transversals and prove group
theoretical results which have direct loop theoretical consequences. We are particularly
interested in the case where the inner mapping group is abelian and we show that it can
never be a �nite nontrivial cyclic group.

1. Introduction
The purpose of this paper is to explore the connection between loops and
groups. The left and right translations of a loop Q generate a group M(Q)
called the multiplication group of the loop. The multiplication group can be
characterized in purely group theoretical terms (Theorem 5.1 of this paper)
and the notion of connected transversals to a subgroup H in a group G is
central to this characterization. Here G corresponds to M(Q) and H is the
inner mapping group I(Q) of Q.

The �rst three sections are devoted to H-connected transversals in a
group G. We consider their basic properties and after that we are partic-
ularly interested in the case where H is abelian (the subcase where H is
cyclic gets a very thorough treatment in section four). One of our goals is to
show how loop theory is a source of interesting group theoretical problems
� some of which are not easy at all to solve. Our results are not necessarily
new but some of the proofs are and, in some cases, we have added some
new spice to the old proofs. The reader should not be worried about the
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amount of group theory in this paper. After all, groups are nothing but
associative loops.

In sections �ve and six we go to the other direction: we introduce the
loop theoretic interpretations of the results that we have proved in the group
theory sections. We see that the inner mapping group I(Q) can never be a
�nite nontrivial cyclic group and we also see that �nite loops with abelian
inner mapping groups are centrally nilpotent. We also discuss the recent
interesting results and constructions where the inner mapping group I(Q)
is an abelian p-group and the nilpotency class of Q equals either two or
three.

As pointed out earlier, our approach is based on abstract group theory
and the e�cient use of connected transversals. Naturally, it is possible
to deal with these problems by using permutation group theory combined
with elementary (or advanced) loop theory (see Drápal [7]). We shall not go
into the details of this approach in this paper and we also omit some other
important questions like the relation between solvable loops and solvable
multiplication groups or the structure of multiplication groups in the case
of Moufang loops. The reader interested in these topics should consult
Vesanen [16] and the excellent survey by Nagy and Vojt¥chovský [13].

Some words about our notation. We bring with us some bad habits from
abstract group theory: we write maps to the left of their arguments. If G
is a group and x, y are two elements from G, the commutator x−1y−1xy
is denoted by [x, y]. If X,Y are nonempty subsets of G, then [X,Y ] =
〈[x, y] | x ∈ X, y ∈ Y 〉, the subgroup generated by all commutators [x, y].
The subgroup G′ = [G,G] is the derived group (or commutator subgroup)
of G.

If H is a subgroup of G, then the largest normal subgroup of G contained
in H is said to be the core of H in G and we denote it by HG (thus HG =⋂

x∈G Hx). The conjugate of H is the subgroup x−1Hx which we denote by
Hx. The subgroup NG(H) = {x ∈ G | Hx = H} is the normalizer of H in
G. A subgroup H is subnormal in G, if there are subgroups H0,H1, . . . , Hn

of G such that H0 = H, Hn = G and Hi−1 is normal in Hi for every
i = 1, 2, . . . , n. We say that H is a characteristic subgroup of G, if H
is invariant under every automorphism of G. Naturally, if N is a normal
subgroup of G and M is a characteristic subgroup of N , then M is normal in
G. Finally, we assume that the reader is familiar with the Sylow theorems.



Connected transversals and multiplication groups of loops 97

2. Connected transversals in groups
Let G be a group and H ≤ G. A subset A of G is said to be a left transversal
to H in G if it contains exactly one element from each left coset of H. A
right transversal is de�ned similarly. If A and B are two left transversals
to H in G and [A, B] ≤ H, then we say that these two transversals are H-
connected. In the case that [A,A] ≤ H, we say that A is H-selfconnected.
If A and B are H-connected transversals, then A and B are both left and
right transversals to H in G (see [14], Lemma 2.1).

We shall now prove some elementary results about connected transver-
sals. These results turn out to be very useful when we prove more sub-
stantial results which have interesting interpretations in loop theory. In the
following lemmas A and B are H-connected transversals to H in G. Thus
a−1b−1ab ∈ H for every a ∈ A and b ∈ B.

Lemma 2.1. If HG = 1, then Z(G) ⊆ A ∩B.

Proof. Let z ∈ Z(G) and assume that z = ah, where a ∈ A and h ∈ H.
Then b−1hb = b−1a−1zb = b−1a−1bz = b−1a−1bah ∈ H for every b ∈ B.
Thus h ∈ ⋂

b∈B Hb−1
= 1, hence z = a ∈ A. In similar way, we can show

that z ∈ B.

Remark 2.2. If HG = 1, then by Lemma 2.1, 1 ∈ A ∩B.

Lemma 2.3. Let C ⊆ A ∪B and K = 〈H,C〉. Then C ⊆ KG.

Proof. Let c ∈ C and assume that c ∈ A and x = bh, where b ∈ B and
h ∈ H. Now x−1c−1x = h−1b−1c−1bh = h−1b−1c−1bcc−1h. As b−1c−1bc ∈
H, we may conclude that x−1c−1x ∈ K, hence x−1cx ∈ K and c ∈ KG. If
c ∈ B, then the same conclusion holds.

In the proof of our following lemma, we need two results on commuta-
tors:

1. [xy, z] = [x, z]y [y, z] and

2. if H ≤ G, then [H,G] is a normal subgroup of G.

For the proofs, see [10], p. 253− 255.

Lemma 2.4. If HG = 1, then NG(H) = H × Z(G).
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Proof. Let K = NG(H) = A1H = B1H, where A1 ⊆ A and B1 ⊆ B. As
H is normal in K and K/H is abelian, we may conclude that K ′ ≤ H. By
Lemma 2.3, 〈A1, B1〉 ≤ KG. Thus [A1, B1] ≤ K ′

G ≤ K ′ ≤ H. Now K ′
G is

normal in G and since HG = 1, it follows that K ′
G = [A1, B1] = 1.

If g = ah ∈ G (here a ∈ A and b ∈ H) and b ∈ B1, then [b, g] =
b−1h−1a−1bah = kb−1a−1bah, where k ∈ H. Thus [b, g] ∈ H. As KG is
abelian and a−1b−1a ∈ KG, we have

[
b−1, g

]
= bh−1a−1b−1ah = dba−1b−1ah

= da−1b−1abh ∈ H (here d ∈ H). Further, if b, c ∈ B1, then [bc, g] =
[b, g]c [c, g] ∈ H. Thus D = [〈B1〉, G] ≤ H and since D is normal in G and
HG = 1, it follows that [〈B1〉, G] = 1 and 〈B1〉 ≤ Z(G). Now it is clear that
NG(H) = H × Z(G).

Lemma 2.5. If HG = 1 and [A,B] = 1, then A and B are isomorphic
subgroups of G.

Proof. If we write C = 〈A〉 ∩H, then bc = cb for every c ∈ C and b ∈ B. If
x ∈ G, then x = bh, where b ∈ B and h ∈ H. Thus x−1cx = (bh)−1cbh =
h−1b−1cbh = h−1ch ∈ H whenever c ∈ C. This means that c ∈ Hx for
every x ∈ G and, in fact, c ∈ HG = 1. We have shown that 〈A〉 ∩H = 1
and therefore 〈A〉 = A. It is also clear that 〈B〉 = B. For every a ∈ A
there exists a unique f(a) ∈ B such that a−1H = f(a)H. If a, d ∈ A, then
f(ad)H = (ad)−1H = d−1f(a)H = f(a)d−1H = f(a)f(d)H and we see
that A ∼= B.

We conclude this section by proving a result which deals with simple
groups.

Lemma 2.6. If G is a simple group and H is a proper subgroup of G, then
H is maximal in G.

Proof. Let a ∈ (G \H)∩A and write K = 〈a, H〉. By Lemma 2.3, a ∈ KG.
As KG > 1 and G is simple, it follows that KG = G. But then K = G, and
thus H is a maximal subgroup of G.

3. Connected transversals to abelian subgroups
In this section we assume that H ≤ G is an abelian p-group (for a prime
number p) and there exist H-connected transversals A and B in G. For
the proof of our next theorem we need the following well-known result by
Burnside (see [10], p. 419− 420).
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Lemma 3.1. Let G be a �nite group and P a Sylow p-subgroup of G such
that P ≤ Z(NG(P )) (or NG(P ) = CG(P )). Then there exists a normal
subgroup K of G such that G = KH and K ∩H = 1.

Now we are ready to prove

Theorem 3.2. Let G be a �nite group and H ≤ G an abelian p-group.
Assume further that HG = 1 and G = 〈A,B〉. Then Z(G) > 1.

Proof. Assume that the claim is not true and Z(G) = 1. As HG = 1, we
can apply Lemma 2.4 and thus NG(H) = H × Z(G) = H. If H < P ≤ G,
where P is a p-group, then H < NP (H), a contradiction. We conclude that
H is a Sylow p-subgroup of G. Now NG(H) = CG(H) and by Lemma 3.1
there exists a normal subgroup K of G such that G = KH and K ∩H = 1.
As G/K ∼= H is abelian, it follows that G′ ≤ K. Thus a−1b−1ab ∈ G′∩H ≤
K ∩H = 1 and we get ab = ba for every a ∈ A and b ∈ B.

The subgroup L = H ∩ 〈A〉 is normal in H and as NG(L) ⊇ B, it
follows that NG(L) ≥ 〈H, B〉 = G. Since HG = 1, we conclude that L = 1.
This means that 〈A〉 = A is a normal subgroup of G. Similarly, B is a
normal subgroup of G. Thus K = A = B and as G = 〈A,B〉, we have a
contradiction. We conclude that Z(G) > 1.

Corollary 3.3. Assume that the conditions of Theorem 3.2 hold for G and
H. Then H is subnormal in G.

Remark 3.4. By using a similar but somewhat more complicated argu-
mentation we could prove that the result of Theorem 3.2 also holds in the
case that H is an abelian subgroup. Naturally, in this case H would be
subnormal in G, too.

4. Connected transversals to cyclic subgroups
We �rst consider the situation that H is cyclic of order p (here p is a prime
number) and then we proceed to more general cases. Naturally A and B
are connected transversals to H in G.

Lemma 4.1. Let H be a cyclic subgroup of order p. If G = 〈A, B〉, then
G′ ≤ H.

Proof. If HG > 1, then H = HG is normal in G and G′ ≤ H. Thus we
assume that HG = 1. By Lemma 2.4 we know that NG(H) = H × Z(G).
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Let a ∈ A and b ∈ B such that aH = bH and a−1b 6= 1. Then
H = 〈a−1b〉 and (a−1b)a = a−1ba = a−1bb−1a−1ba ∈ H. This means that
a ∈ NG(H) = H × Z(G), hence a ∈ Z(G). By Lemma 2.1, it follows that
A = B.

Let a and d be two elements from A. If a, d ∈ Z(G), then ad ∈ Z(G) ⊆
A. Now assume that a 6∈ Z(G) and write ad = ch, where c ∈ A and
h ∈ H. It follows that d−1a−1da = d−1a−1a−1ada = h−1c−1a−1cha =
h−1c−1a−1caa−1ha ∈ H and thus ha ∈ H. If h 6= 1, then a ∈ NG(H), hence
a ∈ Z(G), a contradicting the choise of a. Thus h = 1 and ad = c ∈ A.
Furthermore, let a−1 = bh where b ∈ A and h ∈ H. Then h = b−1a−1 and
h−1 = ab ∈ A ∩H = 1. Thus a−1 ∈ A and A = B is a subgroup of G and
this contradicts the condition G = 〈A,B〉.

Now we proceed to the situation where H is a cyclic group of prime
power order. In the following lemma we can very e�ciently use the result
of Theorem 3.2.

Lemma 4.2. Let G be a �nite group and H ≤ G a cyclic p-group. If
G = 〈A,B〉, then G′ ≤ H.

Proof. Let G be a minimal counterexample. If HG > 1, then we consider
the group G/HG and the subgroup H/HG. Then (G/HG)′ ≤ H/HG, hence
G′ ≤ H.

Thus we may assume that HG = 1. By Theorem 3.2, Z(G) > 1. Let
z ∈ Z(G) such that |z| = q, where q is a prime number. We now consider
the groups G/〈z〉 and H〈z〉/〈z〉 and conclude that G′ ≤ H〈z〉. This means
that H〈z〉 is normal in G. If p 6= q, then H is a Sylow p-subgroup of H〈z〉.
As H is characteristic in H〈z〉, it follows that H is normal in G and G′ ≤ H.
Thus we may assume that q = p. We write E = 〈xp | x ∈ H〈z〉〉. Clearly,
E ≤ H and as E is characteristic in H〈z〉, it follows that E is normal in G.
Since HG = 1, we conclude that E = 1 and thus |H| = p. Now the claim
follows from Lemma 4.1.

We are now ready to prove our main result on connected transversals to
cyclic subgroups.

Theorem 4.3. Let G be a �nite group and H a cyclic subgroup. If G =
〈A,B〉, then G′ ≤ H.

Proof. Let G be a minimal counterexample. Clearly, we can assume that
HG = 1 and H is not of prime power order. If NG(H) > H, then Z(G) > 1
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by Lemma 2.1. Let z ∈ Z(G) and |z| = q, where q is a prime number. Then
G′ ≤ H〈z〉 and H contains a Sylow p-subgroup P (with p 6= q) such that P
is normal in G, a contradiction.

Thus we may assume that NG(H) = H. Let P be a Sylow p-subgroup
of H such that NG(P ) > H. Now CG(P ) is normal in NG(P ) and therefore
CG(P ) > H. If CG(P ) = G, then P is normal in G, which is not possible.
Thus G has a subgroup T such that H < T ≤ CG(P ) < G. By Lemma
2.3, TG > 1. We consider the groups G/TG and HTG/TG = T/TG and get
G′ ≤ T . It follows that T is normal in G. Now P ≤ Z(T ) and Z(T ) ≤ H.
Since Z(T ) is characteristic in T , we conclude that Z(T ) is normal in G.
As HG = 1, this is not possible.

Thus we may assume that NG(P ) = CG(P ) = H for every Sylow sub-
group P of H. All Sylow subgroups of H are also Sylow subgroups of G and
by applying Lemma 3.1, we conclude that there exist a normal subgroup K
of G such that G = KH and K ∩H = 1. By standard arguments (as in the
proof of Theorem 3.2), it follows that K = A = B is a normal subgroup of
G. But this contradicts G = 〈A,B〉 and our proof is ready.

We shall next prove that the result of Theorem 4.3 also holds in the case
that G is in�nite. We �rst introduce a useful lemma (which was introduced
to the �rst author by Tomá² Kepka some thirteen years ago).

Lemma 4.4. Let H be a �nite subgroup of G, HG = 1 and G = 〈A,B〉.
Then G/Z(G) is �nite.

Proof. Let a be a �xed element of A, h �xed element of H and write
F (a, h) = {b ∈ B | a−1b−1ab = h}. If b, c ∈ F (a, h), then bc−1 ∈ CG(a) and
b ∈ CG(a)c. Thus F (a, h) ⊆ CG(a)b(h), where b(h) is a �xed element from
F (a, h). Further, B =

⋃
F (a, h), where h goes through all the elements of

H. Now G = BH ⊆ CG(a){b(h) | h ∈ H}H, hence [G : CG(a)] ≤ |H|2.
As H is a �nite subgroup of 〈A,B〉, we may conclude that [G : CG(H)] is
�nite. Then [G : NG(H)] is �nite and since NG(H) = H × Z(G), we have
G/Z(G) �nite.

Theorem 4.5. Let H be a �nite cyclic subgroup of G and let G = 〈A,B〉.
Then G′ ≤ H.

Proof. We proceed by induction on |H|. It is obvious that we may assume
that HG = 1. By using Lemma 4.4, we consider the �nite group G/Z(G)
and its cyclic subgroup HZ(G)/Z(G). By Theorem 4.3, G′ ≤ HZ(G).
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Let p | |H| be a prime number and E = 〈x ∈ HZ(G) | xp = 1〉. Now
E is characteristic in HZ(G), hence E is normal in G. As |HE/E| < |H|,
we apply induction and get G′ ≤ HE. Thus HE is normal in G. The
group L = 〈xp | x ∈ HE〉 is characteristic in HE and L ≤ H is normal in
G. Since HG = 1, it follows that |H| = p. But now the result follows from
Lemma 4.1.

Remark 4.6. By using Zorn's lemma and the result of the previous theorem
it is possible to prove that G′ ≤ H also in the case that H is an in�nite
cyclic group (for the details, see [12]).

Remark 4.7. Drápal [7] uses elementary loop theory combined with per-
mutation group theory and proves results which are basicly the same as
the preceding results of this section. In Drápal's article it also remains an
open question whether it is necessary to use Zorn's lemma when proving
the result of Theorem 4.5 for an in�nite cyclic subgroup H.

We now have a very good understanding of the situation when H is a
�nite cyclic subgroup of G and G = 〈A,B〉. How does the situation change
if H ∼= Cp × Cp?

Theorem 4.8. Let H ∼= Cp × Cp and G = 〈A,B〉. Then G′ ≤ NG(H).

Proof. If HG > 1, then G′ ≤ H by Lemma 4.1. Thus we may assume that
HG = 1. By Lemma 2.4, NG(H) = H × Z(G) and from Lemma 4.4 we
conclude that G/Z(G) is �nite. Consider the subgroup HZ(G)/Z(G) of
G/Z(G). If the core of HZ(G) in G properly contains Z(G), then G′ ≤
HZ(G) = NG(H) (again we use Lemma 4.1). We next assume that the
core of HZ(G) in G is Z(G). By Lemma 2.4,

NG/Z(G)(HZ(G)/Z(G)) = HZ(G)/Z(G)× Z(G/Z(G)).

We write M/Z(G) = Z(G/Z(G)). Then NG(HZ(G)) = HM , where M is
normal in G and H ∩M = 1. By Theorem 3.2, Z(G) is a proper subgroup
of M . Then we write HM = CH = DH, where C ⊆ A and D ⊆ B. By
Lemma 2.1, M/Z(G) ⊆ AZ(G)/Z(G) ∩ BZ(G)/Z(G), which means that
M ⊆ CZ(G) ∩ DZ(G). If m ∈ M , then m = cz1 = dz2, where c ∈ C,
d ∈ D and z1, z2 ∈ Z(G). If x ∈ A ∪ B, then [x,m] ∈ M ∩ H = 1. Thus
CG(m) ≥ 〈A,B〉 = G and consequently m ∈ Z(G). But then M = Z(G), a
contradiction.
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If H ∼= Cp × Cp × Cp, then things get more complicated. However, in
2006 Csörg® [5] managed to prove the following

Theorem 4.9. If G is �nite group, H ∼= Cp × Cp × Cp and G = 〈A,B〉,
then G′ ≤ NG(H).

5. Multiplication groups of loops
Let Q be a loop (a groupoid with unique division and neutral element e).
For each a ∈ Q we have two permutations La (left translation) and Ra

(right translation) on Q de�ned by La(x) = ax and Ra(x) = xa for every
x ∈ Q. The set of all left and right translations generates a subgroup M(Q)
of SQ called the multiplication group of the loop Q. The stabilizer of the
neutral element e is called the inner mapping group of the loop Q and we
denote it by I(Q). The concept of multiplication groups was introduced by
Albert in [1] and [2] and in his famous article [3], Bruck laid the foundation
for the theory of multiplication and inner mapping groups. If Q is a group,
then I(Q) consists of the inner automorphims of Q. It is well-known that
the inner mapping group is generated by the set

{R−1
yx RxRy, L

−1
xy LxLy, L

−1
x Rx | x, y ∈ Q}.

If we write A = {La | a ∈ Q} and B = {Ra | a ∈ Q}, then A and B are
transversals to I(Q) in M(Q) and as L−1

a R−1
b LaRb(e) = e, we see that A

and B are I(Q)-connected transversals in M(Q). Now M(Q) is transitive
on Q and therefore, if 1 < N ≤ I(Q), N is not normal in M(Q) (thus
the core of I(Q) in M(Q) is trivial). As a matter of fact, we have now
introduced all the properties which completely characterize multiplication
groups of loops. We state this characterization that was proved by Kepka
and Niemenmaa [14] in 1990 as

Theorem 5.1. A group G is isomorphic to the multiplication group of a
loop if and only if there exist a subgroup H of G satisfying HG = 1 and
H-connected transversals A and B such that G = 〈A,B〉.
Proof. Assume that the group G has a subgroup H and H-connected transver-
sals A and B satisfying the conditions of the theorem. For each x ∈ G there
exists exactly one f(x) of A such that xH = f(x)H. Let K be the set of
left cosets of H. Now we de�ne a binary operation (∗) on the set K by
(xH) ∗ (yH) = f(x)yH.
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If xH = uH and yH = vH, then f(x) = f(u) and f(x)yH = f(x)vH =
f(u)vH. We conclude that (∗) is well-de�ned. Now we shall show that the
groupoid (K, ∗) is a loop. By Lemma 2.1, we have that 1 ∈ A. Therefore
(1H)∗(yH) = f(1)yH = yH and (xH)∗(1H) = f(x)H = xH, which means
that 1H is the neutral element of K. If xH and yH are �xed elements in
(xH) ∗ (yH) = zH, then yH = f(x)−1zH is a unique element from the set
K. Respectively let yH and zH be known elements in K and consider the
equation (xH) ∗ (yH) = zH. For every y ∈ G there exists exactly one g(y)
of B such that yH = g(y)H. Since A and B are H-connected, we have
(xH) ∗ (yH) = f(x)g(y)H = g(y)f(x)H = g(y)xH. Thus xH = g(y)−1zH
is the unique solution for the equation (xH) ∗ (yH) = zH, so the groupoid
(K, ∗) is a loop.

Now we consider the action of G on K by left multiplication as its
permutation representation is a homomorphism from G to M(K) with the
kernel HG = 1. Since G = 〈A,B〉 and the left and right translations
are of the form LxH(yH) = (xH) ∗ (yH) = f(x)yH and RxH(yH) =
(yH) ∗ (xH) = f(y)g(x)H = g(x)f(y)H = g(x)yH where f(x) ∈ A and
g(x) ∈ B, we conclude that the image of the permutation representation is
the whole M(K). Therefore G is isomorphic to M(K).

When we combine Theorems 4.5 and 5.1, we immediately have

Theorem 5.2. Let Q be a loop. If I(Q) is a �nite cyclic group, then
I(Q) = 1 and Q is an abelian group.

From the previous result we see that a nontrivial �nite cyclic group can
never be in the role of I(Q). On the other hand, there are �nite abelian
groups which are isomorphic to inner mapping groups of loops. Thus we
pose

Problem 1. Classify those �nite abelian groups which are (are not) iso-
morphic to inner mapping groups of loops.

6. Centrally nilpotent loops
The centre Z(Q) of a loop Q consists of all elements a, which satisfy the
equations (ax)y = a(xy), (xa)y = x(ay), (xy)a = x(ya) and ax = xa for
all x, y ∈ Q. Thus a ∈ Z(Q) if and only if U(a) = a for every U ∈ I(Q).
Clearly, Z(Q) is an abelian group and normal in Q. The following well-
known result was �rst proved by Albert [1].
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Lemma 6.1. We have Z(Q) ∼= Z(M(Q)).

Proof. Let T ∈ Z(M(Q)). Thus LxT (e) = TLx(e) and it follows that
xT (e) = T (x) for every x ∈ Q. We see that T = RT (e). If U ∈ I(Q),
then UT (e) = TU(e) = T (e) and so T (e) ∈ Z(Q). We conclude that
Z(M(Q)) = {Rc | c ∈ Z(Q)}.

If we put Z0 = 1, Z1 = Z(Q) and Zi/Zi−1 = Z(Q/Zi−1), then we
obtain a series of normal subloops of Q. If Zn−1 is a proper subloop of Q
and Zn = Q, then Q is centrally nilpotent of class n.

Now the mapping f : I(Q) → I(Q/Z(Q)) de�ned by f(P )(xZ(Q)) =
P (x)Z(Q) is a surjective homomorphism and

Ker(f) = {P ∈ I(Q) | P (x)Z(Q) = xZ(Q) for every x ∈ Q}.
We thus get

Lemma 6.2. If K = {P ∈ I(Q) | P (x) ∈ xZ(Q) for every x ∈ Q}, then
K is a normal subgroup of I(Q) and I(Q/Z(Q)) ∼= I(Q)/K.

We combine the preceding lemma with Theorem 3.2.

Theorem 6.3. Let Q be a �nite loop and I(Q) an abelian group of prime
power order. Then Q is centrally nilpotent.

Proof. By Theorem 3.2, Z(M(Q)) > 1 and thus Z(Q) > 1, by Lemma
6.1. If K is as in Lemma 6.2, we have I(Q/Z(Q)) ∼= I(Q)/K. Again,
Z(Q/Z(Q)) > 1. We continue like this and it follows that Q is centrally
nilpotent.

Remark 6.4. The result of Theorem 6.3 also holds if I(Q) is abelian with-
out any restrictions on the order of I(Q) (for the details see [11] and [15]).

In the light of Theorem 6.3 is quite natural to pose the following problem.

Problem 2. Assume that Q is a �nite loop and I(Q) is an abelian p-group
whose structure is known. What can we say about the nilpotency class of a
loop Q?

We now recall a nilpotency criterion given by Bruck [3]. First write
I0 = I(Q) and Ii = NM(Q)(Ii−1) for each i ≥ 1.

Theorem 6.5. A necessary and su�cient condition that Q be centrally
nilpotent of class n is that In = M(Q) but In−1 6= M(Q).
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If Q is centrally nilpotent of class ≤ 2, then NM(Q)(I(Q)) = I(Q) ×
Z(M(Q)) is normal in M(Q). It follows that I(Q)′ is normal in M(Q),
hence I(Q)′ = 1 and I(Q) is an abelian group.

The results given in Theorems 4.8 and 4.9 can now easily be interpreted
in loop theory.

Theorem 6.6. If Q is a �nite loop and I(Q) ∼= Cp × Cp or I(Q) ∼= Cp ×
Cp × Cp, then Q is centrally nilpotent of class 2.

One is tempted to think that if I(Q) is an elementary abelian p-group,
then Q is centrally nilpotent of class 2. However, in a recent article Csörg®
[4] has constructed an example of a �nite group G of order 213 such that
G has an elementary abelian subgroup H of order 26 with H-connected
transversals A and B, G = 〈A,B〉 and G′ 6≤ NG(H). These conditions
naturally imply the existence of a loop Q of order 27 with elementary abelian
I(Q) of order 26 and with nilpotency class greater than two.

Remark 6.7. Drápal and Vojt¥chovský [9] have also constructed examples
of loops Q with I(Q) an abelian 2-group and Q centrally nilpotent of class
3 by means of a special group modi�cation. It is interesting to note that in
the case of a left conjugacy closed loop Q, it is centrally nilpotent of class
2 if and only if its inner mapping group is a nontrivial abelian group. This
result is due to Csörg® and Drápal [6]. Finally, Drápal and Kinyon [8] have
constructed a Buchsteiner loop of order 128 whose inner mapping group is
abelian and nilpotency class is three.

We shall put an end to this article with the following

Problem 3. Let Q be a loop such that I(Q) is an abelian p-group. Is it
possible that the nilpotency class of Q is greater than three?
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