
Quasigroups and Related Systems 15 (2007), 141− 168Gyrogroups, the grouplike loopsin the servie of hyperboli geometry andEinstein's speial theory of relativityAbraham A. UngarAbstratIn this era of an inreased interest in loop theory, the Einstein veloity addition law hasfresh resonane. One of the most fasinating aspets of reent work in Einstein's speialtheory of relativity is the emergene of speial grouplike loops. The speial grouplikeloops, known as gyroommutative gyrogroups, have thrust the Einstein veloity additionlaw, whih previously has operated mostly in the shadows, into the spotlight. We will �ndthat Einstein (Möbius) addition is a gyroommutative gyrogroup operation that formsthe setting for the Beltrami-Klein (Poinaré) ball model of hyperboli geometry just asthe ommon vetor addition is a ommutative group operation that forms the settingfor the standard model of Eulidean geometry. The resulting analogies to whih thegrouplike loops give rise lead us to new results in (i) hyperboli geometry; (ii) relativistiphysis; and (iii) quantum information and omputation.
1. IntrodutionThe author's two reent books with the ambitious titles, �Analyti hyper-boli geometry: Mathematial foundations and appliations� [56℄, and �Be-yond the Einstein addition law and its gyrosopi Thomas preession: Thetheory of gyrogroups and gyrovetor spaes� [53, 66℄, raise expetations fornovel appliations of speial grouplike loops in hyperboli geometry and inrelativisti physis. Indeed, these books lead their readers to see what some2000 Mathematis Subjet Classi�ation: 20N05, 51P05, 83A05Keywords: Grouplike loops, gyrogroups, gyrovetor spaes, hyperboli geometry,speial relativity.



142 A. A. Ungarspeial grouplike loops have to o�er, and thereby give them a taste of loopsin the servie of the hyperboli geometry of Bolyai and Lobahevsky andthe speial relativity theory of Einstein.Seemingly strutureless, Einstein's relativisti veloity addition is nei-ther ommutative nor assoiative. Einstein's failure to reognize and ad-vane the rih, grouplike loop struture [52℄ that regulates his relativis-ti veloity addition law ontributed to the elipse of his veloity additionlaw of relativistially admissible 3-veloities, reating a void that ould be�lled only with the Lorentz transformation of 4-veloities, along with itsMinkowski's geometry.Minkowski haraterized his spaetime geometry as evidene that pre-established harmony between pure mathematis and applied physis doesexist [42℄. Subsequently, the study of speial relativity followed the lineslaid down by Minkowski, in whih the role of Einstein veloity addition andits interpretation in the hyperboli geometry of Bolyai and Lobahevskyare ignored [5℄. The tension reated by the mathematiian Minkowski intothe speialized realm of theoretial physis, as well as Minkowski's strategyto overome disiplinary obstales to the aeptane of his reformulation ofEinstein's speial relativity is skillfully desribed by Sott Walter in [64℄.Aording to Leo Corry [11℄, Einstein onsidered Minkowski's reformu-lation of his theory in terms of four-dimensional spaetime to be no morethan �super�uous erudition�. Admitting that, unlike his seemingly stru-tureless relativisti veloity addition law, the Lorentz transformation is anelegant group operation, Einstein is quoted as saying:�If you are out to desribe truth, leave elegane to the tailor.�Albert Einstein (1879 � 1955)One might, therefore, suppose that there is a prie to pay in math-ematial elegane and regularity when replaing ordinary vetor additionapproah to Eulidean geometry with Einstein vetor addition approah tohyperboli geometry. But, this is not the ase sine grouplike loops, alledgyroommutative gyrogroups, ome to the resue. It turns out that Einsteinaddition of vetors with magnitudes < c is a gyroommutative gyrogroupoperation and, as suh, it possesses a rih nonassoiative algebrai andgeometri struture. The best way to introdue the gyroommutative gy-rogroup notion that regulates the algebra of Einstein's relativisti veloityaddition law is o�ered by Möbius transformations of the dis [29℄. The sub-sequent transition from Möbius addition, whih regulates the Poinaré ball



Gyrogroups, the grouplike loops 143model of hyperboli geometry, Fig. 1, to Einstein addition, whih regulatesthe Beltrami-Klein ball model of hyperboli geometry, Fig. 6, expressedin gyrolanguage, will then turn out to be remarkably simple and elegant[56, 57℄.Evidently, the grouplike loops that we naturally all gyroommutativegyrogroups, along with their extension to gyrovetor spaes, form a new toolfor the twenty-�rst entury exploration of lassial hyperboli geometry andits use in physis.2. Möbius transformations of the disMöbius transformations of the dis D,
D = {z ∈ C : |z| < 1} (1)of the omplex plane C o�er an elegant way to introdue the grouplike loopsthat we all gyrogroups. More than 150 years have passed sine AugustFerdinand Möbius �rst studied the transformations that now bear his name[35℄. Yet, the rih struture he thereby exposed is still far from beingexhaustedAhlfors' book [1℄, Conformal Invariants: Topis in Geometri FuntionTheory, begins with a presentation of the Möbius self-transformation of theomplex open unit dis D,

z 7→ eiθ a + z

1 + az
= eiθ(a⊕Mz) (2)

a, z∈D, θ∈R, where a is the omplex onjugate of a [14, p. 211℄ [19, p. 185℄[36, pp. 177 � 178℄. Suggestively, the polar deomposition (2) of Möbiustransformation of the dis gives rise to Möbius addition, ⊕M ,
a⊕Mz =

a + z

1 + az
. (3)Naturally, Möbius subtration, ⊖M , is given by a⊖Mz = a⊕M(−z), so that

z⊖Mz = 0 and ⊖Mz = 0⊖Mz = 0⊕M(−z) = −z. Remarkably, Möbiusaddition possesses the automorphi inverse property
⊖M(a⊕Mb) = ⊖Ma⊖Mb (4)and the left anellation law
⊖Ma⊕M(a⊕Mz) = z (5)



144 A. A. Ungarfor all a, b, z∈D, [56, 53℄.Möbius addition gives rise to the Möbius dis groupoid (D,⊕M), reallingthat a groupoid (G,⊕) is a nonempty set, G, with a binary operation, ⊕,and that an automorphism of a groupoid (G,⊕) is a bijetive self map fof G that respets its binary operation ⊕, that is, f(a⊕b) = f(a)⊕f(b).The set of all automorphisms of a groupoid (G,⊕) forms a group, denoted
Aut(G,⊕).Möbius addition ⊕M in the dis is neither ommutative nor assoiative.To measure the extent to whih Möbius addition deviates from assoiativitywe de�ne the gyrator

gyr : D× D→ Aut(D,⊕M) (6)by the equation
gyr[a, b]z = ⊖M(a⊕Mb)⊕M{a⊕M(b⊕Mz)} (7)for all a, b, z∈D.The automorphisms

gyr[a, b] ∈ Aut(D,⊕M) (8)of D, a, b∈D, alled gyrations of D, have an important hyperboli geometriinterpretation [63℄. Thus, the gyrator in (6) generates the gyrations in(8). In order to emphasize that gyrations of D are also automorphisms of
(D,⊕M), as we will see below, they are also alled gyroautomorphisms.Clearly, in the speial ase when the binary operation ⊕M in (7) is asso-iative, gyr[a, b] redues to the trivial automorphism, gyr[a, b]z = z for all
z∈D. Hene, indeed, the self map gyr[a, b] of the dis D measures the extentto whih Möbius addition ⊕M in the dis D deviates from assoiativity.One an readily simplify (7) in terms of (3), obtaining

gyr[a, b]z =
1 + ab

1 + ab
z (9)

a, b, z∈D, so that the gyrations
gyr[a, b] =

1 + ab

1 + ab
=

a⊕Mb

b⊕Ma
(10)are unimodular omplex numbers. As suh, gyrations represent rotationsof the dis D about its enter, as shown in (9).



Gyrogroups, the grouplike loops 145Gyrations are invertible. The inverse, gyr−1[a, b] = (gyr[a, b])−1, of agyration gyr[a, b] is the gyration gyr[b, a],
gyr−1[a, b] = gyr[b, a] (11)Moreover, gyrations respet Möbius addition in the dis,

gyr[a, b](c⊕Md) = gyr[a, b]c⊕Mgyr[a, b]d (12)for all a, b, c, d∈D, so that gyrations of the dis are automorphisms of thedis, as antiipated in (8).Identity (10) an be written as
a⊕Mb = gyr[a, b](b⊕Ma) (13)thus giving rise to the gyroommutative law of Möbius addition. Further-more, Identity (7) an be manipulated, by mean of the left anellation law(5), into the identity

a⊕M(b⊕Mz) = (a⊕Mb)⊕Mgyr[a, b]z (14)thus giving rise to the left gyroassoiative law of Möbius addition.The gyroommutative law, (13), and the left gyroassoiative law, (14),of Möbius addition in the dis reveal the grouplike struture of Möbiusgroupoid (D,⊕M), that we naturally all a gyroommutative gyrogroup. Tak-ing the key features of Möbius groupoid (D,⊕M) as axioms, and guided byanalogies with group theory, we thus obtain the following de�nitions ofgyrogroups and gyroommutative gyrogroups.De�nition 1. (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if itsbinary operation satis�es the following axioms. In G there is at least oneelement, 0, alled a left identity, satisfying(G1) 0⊕a = afor all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) suh that foreah a ∈ G there is an element ⊖a ∈ G, alled a left inverse of a, satisfying(G2) ⊖a⊕a = 0 .Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ Gsuh that the binary operation obeys the left gyroassoiative law(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .



146 A. A. UngarThe map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism ofthe groupoid (G,⊕), that is,(G4) gyr[a, b] ∈ Aut(G,⊕) ,and the automorphism gyr[a, b] of G is alled the gyroautomorphism, or thegyration, of G generated by a, b ∈ G. The operator gyr : G×G→ Aut(G,⊕)is alled the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generatedby any a, b ∈ G possesses the left loop property(G5) gyr[a, b] = gyr[a⊕b, b] .The gyrogroup axioms (G1) � (G5) in De�nition 1 are lassi�ed intothree lasses:
(1) The �rst pair of axioms, (G1) and (G2), is a reminisent of the groupaxioms.
(2) The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs ofaxioms in (1) and (2).The loop property (G5) turns out to be equivalent to the gyration-freeidentity

x⊕(y⊕(x⊕z)) = (x⊕(y⊕x))⊕z (15)whih loop theorists reognize as the left Bol identity [46, 47℄.As in group theory, we use the notation a⊖b = a⊕(⊖b) in gyrogrouptheory as well.In full analogy with groups, gyrogroups are lassi�ed into gyroommu-tative and non-gyroommutative gyrogroups.De�nition 2. (Gyroommutative gyrogroups). A gyrogroup (G,⊕)is gyroommutative if its binary operation obeys the gyroommutative law(G6) a⊕ b = gyr[a, b](b⊕ a)for all a, b ∈ G.Some �rst gyrogroup theorems, some of whih are analogous to grouptheorems, are presented in [56, Chap. 2℄. Thus, in partiular, the gyrogroupleft identity and left inverse are idential with their right ounterparts, andthe resulting identity and inverse are unique, as in group theory. Further-more, the left gyroassoiative law and the left loop property are assoiatedwith orresponding right ounterparts.



Gyrogroups, the grouplike loops 147A gyrogroup operation ⊕ omes with a dual operation, the ooperation(or, o-operation, for larity) ⊞ [56, Def. 2.7℄, given by the equation
a ⊞ b = a⊕gyr[a,⊖b]b (16)so that
a ⊟ b = a⊖gyr[a, b]b (17)for all a, b ∈ G, where we de�ne a ⊟ b = a ⊞ (⊖b). The gyrogroup oop-eration shares with its assoiated gyrogroup operation remarkable dualitysymmetries as, for instane [56, Theorem 2.10℄,

a ⊞ b = a⊕gyr[a,⊖b]b

a⊕b = a ⊞ gyr[a, b]b
(18)Interestingly, by [56, Theorem 3.4℄, a gyrogroup ooperation is ommu-tative if and only if its orresponding gyrogroup is gyroommutative.The gyroautomorphisms have their own rih struture as we see, forinstane, from the gyroautomorphism inversion property

(gyr[a, b])−1 = gyr[b, a] (19)from the loop property (left and right)
gyr[a, b] = gyr[a⊕b, b]

gyr[a, b] = gyr[a, b⊕a]
(20)and from the elegant nested gyroautomorphism identity

gyr[a, b] = gyr[⊖gyr[a, b]b, a] (21)for all a, b ∈ G in any gyrogroup G = (G,⊕). More gyroautomorphismidentities and important gyrogroup theorems, along with their appliations,are found in [53, 56, 62℄ and in [6, 13, 25, 26, 30, 45, 46, 47, 63℄.Thus, without losing the �avor of the group struture we have gener-alized it into the gyrogroup struture to suit the needs of Möbius additionin the dis and, more generally, in the open ball of any real inner produtspae [61℄, as we will show in Se. 3. Gyrogroups abound in group theory,as shown in [15℄ and [16℄, where �nite and in�nite gyrogroups, both gyro-ommutative and non-gyroommutative, are studied. Plenty of gyrogrouptheorems are found in [53, 56, 62℄. Furthermore, any gyrogroup an be ex-tended into a group, alled a gyrosemidiret produt group [56, Se. 2.6℄ [28℄.



148 A. A. UngarHene, the generalization of groups into gyrogroups bears an intriguing re-semblane to the generalization of the rational numbers into the real ones.The beginner is initially surprised to disover an irrational number, like √2,but soon later he is likely to realize that there are more irrational numbersthan rational ones. Similarly, the gyrogroup struture of Möbius additioninitially omes as a surprise. But, interested explorers may soon realize thatin some sense there are more non-group gyrogroups than groups.In our �gyrolanguage�, as the reader has notied, we attah the pre-�x �gyro� to a lassial term to mean the analogous term in our study ofgrouplike loops. The pre�x stems from Thomas gyration, whih is the math-ematial abstration of the relativisti e�et known as Thomas preession,explained in [53℄. Indeed, gyrolanguage turns out to be the language weneed to artiulate novel analogies that the lassial and the modern in thispaper and in [53, 56, 62℄ share.3. Möbius addition in the ballIf we identify omplex numbers of the omplex plane C with vetors of theEulidean plane R
2 in the usual way,
C ∋ u = u1 + iu2 = (u1, u2) = u ∈ R

2 (22)then the inner produt and the norm in R
2 are given by the equations

ūv + uv̄ = 2u·v

|u| = ‖u‖
(23)These, in turn, enable us to translate Möbius addition from the omplexopen unit dis D into the open unit dis R

2
s=1 = {v∈R

2 : ‖v‖ < s = 1} of
R

2 [29℄:
D ∋ u⊕Mv =

u + v

1 + ūv

=
(1 + uv̄)(u + v)

(1 + ūv)(1 + uv̄)

=
(1 + ūv + uv̄ + |v|2)u + (1− |u|2)v

1 + ūv + uv̄ + |u|2|v|2

=
(1 + 2u·v + ‖v‖2)u + (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2
= u⊕Mv ∈ R

2
s=1

(24)



Gyrogroups, the grouplike loops 149for all u, v ∈ D and all u,v ∈ R
2
s=1. The last equation in (24) is a vetorequation, so that its restrition to the ball of the Eulidean two-dimensionalspae R

2
s=1 is a mere artifat. As suh, it survives unimpaired in higherdimensions, suggesting the following de�nition of Möbius addition in theball of any real inner produt spae.De�nition 3. (Möbius addition in the ball). Let V be a real innerprodut spae [33℄, and let Vs be the s-ball of V,

Vs = {Vs ∈ V : ‖v‖ < s} (25)for any �xed s > 0. Möbius addition ⊕M in the ball Vs is a binary operationin Vs given by the equation
u⊕Mv =

(1 + 2
s2 u·v + 1

s2 ‖v‖2)u + (1− 1
s2 ‖u‖2)v

1 + 2
s2 u·v + 1

s4 ‖u‖2‖v‖2
(26)

u,v∈Vs, where · and ‖·‖ are the inner produt and norm that the ball Vsinherits from its spae V.Without loss of generality, one may selet s = 1 in De�nition 3. We,however, prefer to keep s as a free positive parameter in order to exhibitthe result that in the limit as s→ ∞, the ball Vs expands to the whole ofits real inner produt spae V, and Möbius addition ⊕M in the ball reduesto vetor addition in the spae. Remarkably, like the Möbius dis groupoid
(D,⊕M), also the Möbius ball groupoid (Vs,⊕M) forms a gyroommutativegyrogroup, alled a Möbius gyrogroup.Möbius addition in the ball Vs is known in the literature as a hyper-boli translation [2, 43℄. Following the disovery of the gyroommutativegyrogroup struture in 1988 [50℄, Möbius hyperboli translation in the ball
Vs now deserves the title �Möbius addition� in the ball Vs, in full analogywith the standard vetor addition in the spae V that ontains the ball.Möbius addition in the ball Vs satis�es the gamma identity

γu⊕Mv = γuγv

√

1 +
2

s2
u·v +

1

s4
‖u‖2‖v‖2 (27)for all u,v ∈ Vs, where γu is the gamma fator

γv =
1

√

1− ‖v‖
2

s2

(28)



150 A. A. Ungarin the s-ball Vs.Following (16), Möbius ooperation, also alled Möbius oaddition, inthe ball is ommutative, given by the equation
u ⊞M v =

γ2
uu + γ2

vv

γ2
u + γ2

v − 1
(29)for all u,v∈Vs. Note that v ⊞M 0 = v and v ⊟M v = 0, as expeted.4. Gyrogroups are loopsA loop is a groupoid (G,⊕) with an identity element, 0, suh that eah ofits two loop equations for the unknowns x and y,

a⊕x = b

y⊕a = b
(30)possesses a unique solution in G for any a, b ∈ G [39, 40℄. Any gyrogroup isa loop. Indeed, if (G,⊕) is a gyrogroup then the respetive unique solutionsof the gyrogroup loop equations (30) are [56, Se. 2.4℄

x = ⊖a⊕b

y = b ⊟ a
(31)The ogyrogroup (G, ⊞), assoiated with any gyrogroup (G,⊕), is also aloop. The unique solutions of its two loop equations

a ⊞ x = b

y ⊞ a = b
(32)are [56, Theorem 2.38℄

x = ⊖(⊖b⊕a)

y = b⊖a
(33)Note that, in general, the two loop equations in (32) are identiallythe same equation if and only if the gyrogroup ooperation ⊞ is ommu-tative. Hene, their solutions must be, in general, idential if and only ifthe gyrogroup ooperation ⊞ is ommutative. Indeed, a gyrogroup (G,⊕)possesses the gyroautomorphi inverse property, ⊖(a⊕b) = ⊖a⊖b, if and



Gyrogroups, the grouplike loops 151only if it is gyroommutative [56, Theorem 3.2℄. Hene, the two solutions,
x and y, in (33) are, in general, equal if and only if the gyrogroup (G,⊕)is gyroommutative. This result is ompatible with the result that a gy-rogroup is gyroommutative if and only if its ooperation ⊞ is ommutative[56, Theorem 3.4℄.The ogyrogroup is an important and interesting loop. Its algebraistruture is not grouplike, but it plays a ruial role in the study of the gy-roparallelogram law of Einstein's speial relativity theory and its underlyinghyperboli geometry, Figs. 4, 5 and 8.It follows from the solutions of the loop equations in (30) and (32) thatany gyrogroup (G,⊕) possesses the following anellation laws [56, Table2.1℄:

a⊕(⊖a⊕b) = b

(b ⊟ a)⊕a = b

a ⊟ (⊖b⊕a) = b

(b⊖a) ⊞ a = b

(34)The �rst (seond) anellation law in (34) is alled the left (right) an-ellation law. The last anellation law in (34) is alled the seond rightanellation law. The two right anellation laws in (34) form one of theduality symmetries that the gyrogroup operation and ooperation share,mentioned in the paragraph of (18). It is thus lear that in order to main-tain analogies between gyrogroups and groups, we need both the gyrogroupoperation and its assoiated gyrogroup ooperation.In the speial ase when a gyrogroup is gyroommutative, it is alsoknown as (i) aK-loop (a term oined by Ungar in [51℄; see also [27, pp. 1, 169-170℄); and (ii) a Bruk loop [27, pp. 168℄. A new term, (iii) �dyadi symset�,whih emerges from an interesting work of Lawson and Lim in [31℄, turnsout, aording to [31, Theorem 8.8℄, to be idential with a two-divisible,torsion-free, gyroommutative gyrogroup [56, p. 71℄.5. Möbius salar multipliation in the ballHaving developed the Möbius gyrogroup as a grouplike loop, we do not stopat the loop level. Enouraged by analogies gyrogroups share with groups,we now seek analogies with vetor spaes as well. Aordingly, we unoverthe salar multipliation, ⊗M , between a real number r ∈R and a vetor



152 A. A. Ungar
v∈Vs, that a Möbius gyrogroup (Vs,⊕M) admits, so that we an turn theMöbius gyrogroup into a Möbius gyrovetor spae (Vs,⊕M ,⊗M). For anynatural number n∈N we de�ne and alulate n⊗Mv := v⊕M . . . ⊕Mv (n-terms), obtaining a result in whih we formally replae n by a real number
r, suggesting the following de�nition of the Möbius salar multipliation.De�nition 4. (Möbius salar multipliation). Let (Vs,⊕M) be a Möbiusgyrogroup. Then its orresponding Möbius gyrovetor spae (Vs,⊕M ,⊗M)involves the Möbius salar multipliation r⊗Mv = v⊗Mr in Vs, given by theequation

r⊗Mv = s

(

1 +
‖v‖
s

)r

−
(

1− ‖v‖
s

)r

(

1 +
‖v‖
s

)r

+

(

1− ‖v‖
s

)r

v

‖v‖

= s tanh(r tanh−1 ‖v‖
s

)
v

‖v‖

(35)
where r∈R, v∈Vs, v 6= 0; and r⊗M0 = 0.Extending De�nition 4 by abstration, we obtain the abstrat gyrovetorspae, studied in [56, Chap. 6℄. As we go through the study of gyrovetorspaes, we see remarkable analogies with lassial results unfolding. Inpartiular, armed with the gyrovetor spae struture, we o�er a gyrovetorspae approah to the study of hyperboli geometry [56℄, whih is fullyanalogous to the ommon vetor spae approah to the study of Eulideangeometry [24℄. Our basi examples are presented in the sequel and shownin several �gures.6. Möbius gyroline and moreIn full analogy with straight lines in the standard vetor spae approah toEulidean geometry, let us onsider the gyroline equation in the ball Vs,

LAB := A⊕(⊖A⊕B)⊗t (36)
t∈R, A, B ∈ Vs, in a Möbius gyrovetor spae (Vs,⊕,⊗). For simpliity,we use in this setion the notation ⊕M = ⊕ and ⊗M = ⊗. The gyrosegment
AB is the part of the gyroline (36) that links the points A and B. Hene,it is given by (36) with 0 6 t 6 1, Fig. 1.
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a

b

ma,b

p

d⊖(a,p)⊕d⊖(p,b) = d⊖(a,b)

a⊕(⊖a⊕b)⊗t

0 ≤ t ≤ 1

Figure 1. The gyrosegment that links the two
pointsa andb in the Möbius gyrovector plane
(R2

s,⊕,⊗). p is a generic point betweena
andb, andma,b is the midpoint of the points
a andb.

a

b

mc
a,b

p

d⊟(a,p) ⊞ d⊟(p,b) = d⊟(a,b)

(b ⊟ a)⊗t⊕a

0 ≤ t ≤ 1

b ⊟ mc
ab

p ⊟ a

Figure 2. The cogyrosegment that links the
two pointsa andb in the Möbius gyrovector
plane(R2

s,⊕,⊗). p is a generic point cobe-
tweena andb andma,b is the comidpoint of
the pointsa andb.For any t∈R the point P (t) = A⊕(⊖A⊕B)⊗t lies on the gyroline LAB .Thinking of t as time, at time t = 0 the point P lies at P (0) = A and,owing to the left anellation law in (34), at time t = 1 the point P lies at

P (1) = B. Furthermore, the point P reahes the gyromidpoint MAB of thepoints A and B at time t = 1/2,
MAB = A⊕(⊖A⊕B)⊗1

2 = 1
2⊗(A ⊞ B) (37)[56, Se. 6.5℄. Here MAB is the unique gyromidpoint of the points A and

B in the gyrodistane sense, d(A, MAB ) = d(B, MAB ), the gyrodistanefuntion being d(A, B) = ‖⊖A⊕B‖ = ‖B⊖A‖.In the speial ase when Vs = R
2
s, the gyroline LAB , shown in Fig. 1, isa irular ar that intersets the boundary of the s-dis R

2
s orthogonally. Astudy of the onnetion between gyrovetor spaes and di�erential geometry[56, Chap. 7℄ [57℄ reveals that this gyroline is the unique geodesi thatpasses through the points A and B in the Poinaré dis model of hyperboligeometry.The ogyroline equation in the ball Vs, similar to (36), is

Lc
AB := (B ⊟ A)⊗t⊕A (38)
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α

β

γ

a

b

c

A

B

C

a = ⊖C⊕B

b = ⊖C⊕A

c = ⊖B⊕A

a = ‖a‖, b = ‖b‖, c = ‖c‖

a2

s2 = cos α+cos(β+γ)
cos α+cos(β−γ)

b2

s2 = cos β+cos(α+γ)
cos α+cos(α−γ)

c2

s2 = cos γ+cos(α+β)
cos γ+cos(α−β)

cos γ = ⊖C⊕A
‖⊖C⊕A

· ⊖C⊕B
‖⊖C⊕B

δ = π − (α + β + γ) > 0

Figure 3. Möbius gyrotriangle and its standard notation and identities in a Möbius gyrovector
space(Vs,⊕,⊗). Remarkably, in the limit ass → ∞ the equations in the figure reduce to
their Euclidean counterparts. Thus, for instance, in that limit we havecos α + cos(β + γ) = 0
implying the Euclidean theorem according to which the triangle angle sum isπ, α+β +γ = π.

t∈R, A, B ∈ Vs, in a Möbius gyrovetor spae (Vs,⊕,⊗). The ogyroseg-ment AB is the part of the ogyroline (38) that links the points A and B.Hene, it is given by (38) with 0 6 t 6 1, Fig. 2.For any t∈R the point P (t) = (B ⊟ A)⊗t⊕A lies on the ogyroline Lc
ABin (38). Thinking of t as time, at time t = 0 the point P lies at P (0) = Aand, owing to the right anellation law in (34), at time t = 1 the point

P lies at P (1) = B. Furthermore, the point P reahes the ogyromidpoint
M c

AB of the points A and B at time t = 1/2,
M c

AB = (B ⊟ A)⊗1
2⊕A = 1

2⊗(A⊕B) (39)[56, Theorem 6.34℄. Here M c
AB is the unique ogyromidpoint of the points

A and B in the ogyrodistane sense, dc(A, M c
AB ) = dc(B, M c

AB ), the ogy-rodistane funtion being dc(A, B) = ‖⊖A ⊞ B‖ = ‖B ⊟ A‖.In the speial ase when Vs = R
2
s, the ogyroline Lc

AB , shown in Fig. 2,is a irular ar that intersets the boundary of the s-dis R
2
s diametrially.Let A, B, C∈G be any three non-gyroollinear points of a Möbius gy-rovetor spae G = (G,⊕,⊗). In Fig. 3 we see a gyrotriangle ABC whoseverties, A, B, and C, are linked by the gyrovetors a, b, and c; and whose
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A

B

C

D◮

◮
◮

The Gyroparallelogram Law

(⊖A⊕B) ⊞ (⊖A⊕C) = ⊖A⊕D

b ⊞ c = d

b = ⊖A⊕B

c = ⊖A⊕C

d = ⊖A⊕D
b

c

d

Figure 4. The Möbius gyroparallelogram
ABDC and its associated gyroparallelogram
addition law of gyrovectors in a M̈obius gy-
rovector space(Vs,⊕,⊗) is shown.

A

B

C

D◮

◮

◮

The Gyroparallelogram Law

(⊖B⊕A) ⊞ (⊖B⊕D) = ⊖B⊕C

a ⊞ d = c

a = ⊖B⊕A

c = ⊖B⊕C

d = ⊖B⊕D

a

c

d

Figure 5. As a second example, the same
Möbius gyroparallelogramABDC in Fig. 4
gives rise to a second gyroparallelogram addi-
tion of gyrovectors.side gyrolengths are a, b, and c, given by the equations

a = ⊖C⊕B, a = ‖a‖
b = ⊖C⊕A, b = ‖b‖
c = ⊖B⊕A, c = ‖c‖

(40)With the gyrodistane funtion d(A, B) = ‖⊖A⊕B‖ = ‖B⊖A‖, we havethe gyrotriangle inequality [56, Theorem 6.9℄ d(A, C) 6 d(A, B)⊕d(B, C),in full analogy with the Eulidean triangle inequality.A gyrovetor v = ⊖A⊕B in a Möbius gyrovetor plane (R2
s,⊕,⊗) andin a Möbius three-dimensional gyrovetor spae (R3

s,⊕,⊗) is representedgraphially by the direted gyrosegment AB from A to B as, for instane,in Figs. 4 � 5 and 8.Two gyrovetors, (i) ⊖A⊕B, from A to B, and (ii) ⊖A′⊕B′, from A′ to
B′, in a gyrovetor spae G = (G,⊕,⊗) are equivalent if

⊖A⊕B = ⊖A′⊕B′ (41)In the same way that vetors in Eulidean geometry are equivalenelasses of direted segments that add aording to the parallelogram law,



156 A. A. Ungargyrovetors in hyperboli geometry are equivalene lasses of direted gy-rosegments that add aording to the gyroparallelogram law. A gyroparal-lelogram, the hyperboli parallelogram, sounds like a ontradition in termssine parallelism in hyperboli geometry is denied. However, in full anal-ogy with Eulidean geometry, but with no referene to parallelism, thegyroparallelogram is de�ned as a hyperboli quadrilateral whose gyrodiag-onals interset at their gyromidpoints, as in Figs. 4 � 5. Indeed, any threenon-gyroollinear points A, B, C in a gyrovetor spae (G,⊕,⊗) form agyroparallelogram ABDC if and only if D satis�ed the gyroparallelogramondition D = (B ⊞ C)⊖A [56, Se. 6.7℄.An interesting ontrast between Eulidean and hyperboli geometry isobserved here. In Eulidean geometry vetor addition oinides with theparallelogram addition law. In ontrast, in hyperboli geometry gyrove-tor addition, given by Möbius addition, and the Möbius gyroparallelogramaddition law are distint.7. Einstein operations in the ballDe�nition 5. (Einstein addition in the ball). Let V be a real innerprodut spae and let Vs be the s-ball of V,
Vs = {v ∈ V : ‖v‖ < s} (42)where s > 0 is an arbitrarily �xed onstant (that represents in physis thevauum speed of light c). Einstein addition ⊕E is a binary operation in Vsgiven by the equation

u⊕Ev =
1

1 + u·v
s2

{

u +
1

γu

v +
1

s2

γu

1 + γu

(u·v)u

} (43)where γu is the gamma fator, (28), in Vs, and where · and ‖·‖ are the innerprodut and norm that the ball Vs inherits from its spae V.We may note that the Eulidean 3-vetor algebra was not so widelyknown in 1905 and, onsequently, was not used by Einstein. Einstein al-ulated in his founding paper [12℄ the behavior of the veloity omponentsparallel and orthogonal to the relative veloity between inertial systems,whih is as lose as one an get without vetors to the vetorial version(43).
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a, t = 0

b, t = 1

The Einstein Gyroline
through the points a and b

a⊕
E
(⊖

E
a⊕

E
b)⊗

E
t

−∞ < t <∞

Figure 6. The unique gyroline in an Ein-
stein gyrovector space(Vs,⊕E,⊗E) through
two given pointsa and b. The case of the
Einstein gyrovector plane, whenVs = R

2

s is
the real open unit disc, is shown graphically.

a, t = 0

b, t = 1

b ⊟E a

The Cogyroline
through the points a and b

(b ⊟E a)⊗
E
t⊕

E
a

−∞ < t <∞

Figure 7. The unique cogyroline in an Ein-
stein gyrovector space(Vs,⊕E,⊗E) through
two given pointsa and b. The case of the
Einstein gyrovector plane, whenVs = R

2

s is
the real open unit disc, is shown graphically.Seemingly strutureless, Einstein veloity addition ould not play in Ein-stein's speial theory of relativity a entral role. Indeed, Borel's attemptto �repair� the seemingly �defetive� Einstein veloity addition in the yearsfollowing 1912 is desribed in [65, p. 117℄. Fortunately, however, there isno need to �repair� the Einstein veloity addition law sine, like Möbiusaddition in the ball, Einstein addition in the ball is a gyroommutative gy-rogroup operation, whih gives rise to the Einstein ball gyrogroups (Vs,⊕E)and gyrovetor spaes (Vs,⊕E ,⊗E), Figs. 6 � 7 [53, 8℄. Furthermore, Ein-stein's gyration turns out to be the Thomas preession of relativity physis[52℄, so that Thomas preession is a kinemati e�et rather than a dynamie�et as it is usually portrayed [58℄. A brief history of the disovery ofThomas preession is presented in [53, Se. 1.1℄.The gamma fator is related to Einstein addition by the gamma identity

γu⊕Ev = γuγv

(

1 +
u·v
s2

) (44)This gamma identity provided the histori link between Einstein's speialtheory of relativity and the hyperboli geometry of Bolyai and Lobahevsky,as explained in [60℄.Einstein salar multipliation in the ball Vs is idential with Möbiussalar multipliation, (35), in the ball Vs, r⊗Ev = r⊗Mv for all r∈R and
v∈Vs. Hene Einstein and Möbius salar multipliation are denoted here,olletively, by ⊗.The isomorphism between Einstein addition ⊕E and Möbius addition
⊕M in the ball Vs is surprisingly simple when expressed in gyrolanguage,



158 A. A. Ungarthe language of gyrovetor spaes. As we see from [56, Table 6.1℄, thegyrovetor spae isomorphism between (Vs,⊕E ,⊗) and (Vs,⊕M ,⊗) is givenby the equations
u⊕Ev = 2⊗(1

2⊗u⊕M 1
2⊗v)

u⊕Mv = 1
2⊗(2⊗u⊕E2⊗v)

(45)Following (16), Einstein ooperation, also alled Einstein oaddition, inthe ball is ommutative, given by the equation
u ⊞E v = 2⊗γuu + γvv

γu + γv

(46)for all u,v∈Vs. Clearly, v ⊟E v = 0. Noting the Einstein half,
1
2⊗v = γv

1+γv

v (47)and the salar assoiative law of gyrovetor spaes [56, p. 138℄, it is learfrom (46) � (47) that v ⊞E 0 = v, as expeted.Einstein noted in 1905 that�Das Gesetz vom Parallelogramm der Geshwindigkeiten giltalso nah unserer Theorie nur in erster Annäherung.�A. Einstein [12℄, 1905[Thus the law of veloity parallelogram is valid aording to our theory onlyto a �rst approximation.℄We now see that with our gyrovetor spae approah to hyperboli ge-ometry, Einstein's nonommutative addition ⊕E gives rise to an exat hy-perboli parallelogram addition ⊞E , Fig. 8, whih is ommutative. Theogyrogroup (Vs, ⊞) is thus an important ommutative loop that regulatesalgebraially the hyperboli parallelogram [59℄.An interesting ontrast between Eulidean and hyperboli geometry isthus observed here. In Eulidean geometry and in lassial mehanis vetoraddition oinides with the parallelogram addition law. In ontrast, in hy-perboli geometry and in relativisti mehanis gyrovetor addition, givenby Einstein addition, u⊕Ev, and the gyroparallelogram addition, u ⊞E v in
Vs, are distint. We thus fae the problem of whether the ultimate relativis-ti veloity addition is given by the (i) non-ommutative Einstein veloityaddition law in (43), or by the (ii) ommutative Einstein gyroparallelogram
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◮

◮
◮

A

B

C
D

u

v w

D = (B ⊞ C)⊖A

u = ⊖A⊕B
v = ⊖A⊕C
w = ⊖A⊕D

u ⊞ v = w

Figure 8. The Einstein gyroparallelogram addition law of relativistically admissible veloci-
ties. LetA, B, C∈R

3

s be any three nongyrocollinear points of an Einstein gyrovector space
(R3

s,⊕,⊗), giving rise to the two gyrovectorsu = ⊖A⊕B andv = ⊖A⊕C. Furthermore,
let D be a point of the gyrovector space such thatABDC is a gyroparallelogram, that is,
D = (B ⊞ C)⊖A. Then, Einstein coaddition ofu andv, u⊞ v = w, obeys the gyroparallelo-
gram law,w = ⊖A⊕D, just as vector addition in(R3, +) obeys the parallelogram law. Einstein
coaddition,⊞, thus gives rise to the gyroparallelogram addition law of Einsteinian velocities,
which is commutative and fully analogous to the parallelogram addition law of Newtonian
velocities.addition law in Fig. 8. Fortunately, a osmi phenomenon that an providethe ultimate resolution of the problem does exist. It is the stellar aberration,illustrated lassially and relativistially for partile aberration in Figs. 9and 10.A osmi experiment in our osmi laboratory, the Universe, that anvalidate the Einstein gyroparallelogram addition law, Fig. 8, and its asso-iated gyrotriangle addition law of Einsteinian veloities shown in Fig. 10,is the stellar aberration [48℄. Stellar aberration is partile aberration wherethe partile is a photon emitted from a star. Partile aberration, in turn,is the hange in the apparent diretion of a moving partile aused by therelative motion between two observers. The ase when the two observersare E (at rest relative to the Earth) and S (at rest relative to the Sun) isshown graphially in Fig. 9 (lassial interpretation) and Fig. 10 (relativistiinterpretation). Obviously, in order to detet stellar aberration there is noneed to plae an observer at rest relative to the Sun sine this e�et variesduring the year. It is this variation that an be observed by observers atrest relative to the Earth.The lassial interpretation of partile aberration is obvious in terms ofthe triangle law of Newtonian veloity addition (whih is the ommon vetoraddition in Eulidean geometry), as demonstrated graphially in Fig. 9. The
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ESQ

P

ps pe

← v

b

a
θs θe

→→

v = −E + S ∈ R
3

+ being a group operation

in (R3,+)

Figure 9. Particle Aberration: Classical in-
terpretation in terms of the triangle law of
addition of Newtonian velocities in the stan-
dard model of 3-dimensional Euclidean geom-
etry (R3, +). Two dimensions are shown for
graphical clarity. Here + is the common vector
addition inR

3.
A particleP moves with Newtonian velocity
pe (ps) relative to the EarthE (the SunS),
making an angleθe (θs) with the Newtonian
velocityv of the SunS relative to the EarthE.
In order to calculate the Newtonian (classical)
particle aberrationθs − θe, the Euclidean tri-
angleESP is augmented into the Euclidean
right-angled triangleEQP , allowing elemen-
tary trigonometry to be employed.
Points are given by their orthogonal Cartesian
coordinates(x, y, z), x2+y2 +z2 < ∞. The
coordinates are not shown.
The Euclidity of(R3, +) is determined by the
Euclidean metric in which the distance be-
tween two pointsA, B is ‖ − A + B‖.

ESQ

P

ps pe

← v

b

a
θs θe

→→
v = ⊖E⊕S ∈ R

3
c

⊕ being a loop operation

in (R3
c ,⊕)

Figure 10. Particle Aberration: Relativistic
interpretation in terms of the gyrotriangle law
of addition of Einsteinian velocities in the
Beltrami-Klein ball model of 3-dimensional
hyperbolic geometry(R3

c,⊕). Here⊕ is Ein-
stein addition in thec-ball R3

c ⊂ R
3.

A particleP moves with Einsteinian velocity
pe (ps) relative to the EarthE (the SunS),
making an angleθe (θs) with the Einsteinian
velocityv of the SunS relative to the EarthE.
In order to calculate the relativistic particle
aberrationθs − θe, the gyrotriangleESP

is augmented into the right-gyroangled gy-
rotriangle EQP , allowing elementary gy-
rotrigonometry to be employed [62].
Points are given by their orthogonal Cartesian
coordinates(x, y, z), x2 +y2 +z2 < c2. The
coordinates are not shown.
The hyperbolicity of(R3

c,⊕) is determined by
the hyperbolic gyrometric in which the dis-
tance between two pointsA,B is given by
‖⊖A⊕B‖.relativisti interpretation of partile aberration is, however, less obvious.Relativisti partile aberration is illustrated in Fig. 10 in terms of analo-gies that it shares with its lassial interpretation in Fig. 9. These analogiesare just analogies that gyroommutative gyrogroups share with ommuta-tive groups and gyrovetor spaes share with vetor spaes. Remarkably,the resulting expressions that desribe the relativisti stellar aberration phe-nomenon, obtained by our gyrovetor spae approah, agree with expres-sions that are obtained in the literature by employing the relativisti Lorentztransformation group. Our gyrovetor spae approah is thus apable of re-overing known results in astrophysis, to whih it gives new geometri



Gyrogroups, the grouplike loops 161interpretations that are analogous to known, lassial interpretations.8. Dark matter of the universeWhat is the universe made of? We do not know. If stan-dard gravitational theory is orret, then most of the matterin the universe is in an unidenti�ed form that does not emitenough light to have been deteted by urrent instrumenta-tion. Astronomers and physiists are ollaborating on analyzingthe harateristis of this dark matter and in exploring possiblephysis or astronomial andidates for the unseen material.S. Weinberg and J. Bahall [4, p. v℄Fortunately, our gyrovetor spae approah is apable of disovering anovel result in astrophysis as well, proposing a viable mehanism for theformation of the dark matter of the Universe.We have seen in Se. 8 that the osmi e�et of stellar aberration sup-ports our gyrovetor gyrospae approah guided by analogies that it shareswith the ommon vetor spae approah. Another osmi e�et that maysupport a relativisti physial novel result obtained by our gyrovetor spaeapproah to Einstein's speial theory of relativity is related to the elusiverelativisti enter of mass. The di�ulties in attempts to obtain a satis-fatory relativisti enter of mass de�nition were disussed by Born andFuhs in 1940 [7℄, but they did not propose a satisfatory de�nition. Para-doxially, �In relativity, in ontrast to Newtonian mehanis, the entre ofmass of a system is not uniquely determined�, as Rindler stated with a sup-porting example [44, p. 89℄. Indeed, in 1948 M.H.L. Prye [41℄ reahed theonlusion that �there appears to be no wholly satisfatory de�nition of the[relativisti℄ mass-entre.� Subsequently, Prye's onlusion was on�rmedby many authors who proposed various de�nitions for the relativisti enterof mass; see for instane [3, 17, 32℄ and referenes therein, where variousapproahes to the onept of the relativisti enter of mass are studied.Consequently, Goldstein stated that �a meaningful enter-of-mass (some-times alled enter-of-energy) an be de�ned in speial relativity only interms of the angular-momentum tensor, and only for a partiular frame ofreferene.� [18, p. 320℄.Fortunately, the spaetime geometri insight that our novel grouplikeloop approah o�ers enables the elusive �manifestly ovariant� relativisti



162 A. A. Ungarenter of mass of a partile system with proper time to be identi�ed. It turnsout to be analogous to the lassial enter of mass to the mass of whih aspei�ed �titious mass must be added so as to render it �manifestly ovari-ant� with respet to the motions of hyperboli geometry. Spei�ally, let
S = S(mk,vk, Σ0, N), be an isolated system of N noninterating materialpartiles the k-th partile of whih has mass mk > 0 and veloity vk∈R

3
crelative to a rest frame Σ0, k = 1, . . . , N . Then, lassially, the system Sof N partiles an be viewed as a �titious single partile loated at theenter of mass of S, with mass m0 =

∑N
k=1 mk that equals the total massof the onstituent partiles of S. Relativistially, however, symmetries aredetermined by gyrogroup, rather than group, symmetries. As in the lassi-al ounterpart, the system S an be viewed in Einstein's speial theory ofrelativity as a �titious single partile loated at the relativisti enter ofmass of S (spei�ed in [62℄), with mass m0 that we present in (48) below.In order to obey neessary relativisti symmetries, the mass m0 of therelativisti enter of mass of S must exeed, in general, the total mass ofthe onstituent partiles of S aording to the equation

m0 =

√

√

√

√

√

√

(

N
∑

k=1

mk

)2

+ 2
N

∑

j,k=1
j<k

mjmk(γ⊖vj⊕vk
− 1) ≥

N
∑

k=1

mk (48)as explained in [62℄.The additional, �titious mass m0 −
∑N

k=1 mk in (48) of the system Sresults from relative veloities, ⊖vj⊕vk, j, k = 1, . . . , N , between partilesof the system S. The �titious mass of a rigid partile system, therefore,vanishes. The �titious mass of nonrigid galaxies does not vanish and,hene, ould aount for the dark matter needed to gravitationally �glue�eah nonrigid galaxy together.Indeed, the osmi laboratory, our Universe, may support the existeneof the predited �titious mass in (48) as the mass of the dark matter inthe Universe that astrophysiists are fored to postulate but annot detet[4, 34, 10, 37, 49℄. Hene, in order to unover a viable mehanism thataounts for the formation of dark matter that manifests itself only throughgravitational interation, there is no need to modify the laws of physis, asMilgrom proposed in [34℄. Rather, one an �nd it in our grouplike loopapproah that improves our understanding of Einstein's speial theory ofrelativity and its underlying hyperboli geometry of Bolyai and Lobahevsky[62℄.



Gyrogroups, the grouplike loops 1639. The Bloh gyrovetor of QICBloh vetor is well known in the theory of quantum information and om-putation (QIC). We will show that, in fat, Bloh vetor is not a vetorbut, rather, a gyrovetor [9, 54, 55℄. It is easy to predit that in the presenttwenty-�rst entury it is quantum mehanis that will inreasingly in�ueneour lives. Hene, it would be interesting to see what gyrovetor spaes haveto o�er in QIC.A qubit is a two state quantum system ompletely desribed by the qubitdensity matrix ρv,
ρv = 1

2

(

1 + v3 v1 − iv2

v1 + iv2 1− v3

) (49)parametrized by the vetor v = (v1, v2, v3)∈B
3 in the open unit ball B

3 =
R

3
s=1 of the Eulidean 3-spae R

3. The vetor v in the ball is known in QICas the Bloh vetor. However, we will see that it would be more appropriateto all it a gyrovetor rather than a vetor.The density matrix produt of the four density matries in the followingequation, whih are parametrized by two distint Bloh vetors u and v,an be written as a single density matrix parametrized by the Bloh vetor
w, multiplied by the trae of the matrix produt,

ρuρvρvρu = tr[ρuρvρvρu]ρw (50)
u,v∈B

3. Here tr[m] is the trae of a square matrix m, and
w = u⊕M(2⊗v⊕Mu) = 2⊗(u⊕Mv) (51)Identity (51) is one of several identities available in [9, 54, 55℄ that demon-strate the ompatibility of density matrix manipulations and gyrovetorspae manipulations.Two Bloh vetors u and v generate the two density matries ρu and

ρv that, in turn, generate the Bures �delity F(ρu, ρv) that we may alsowrite as F(u,v). The Bures �delity F(u,v) is a most important distanemeasure between quantum states ρu and ρv of the qubit in QIC, given bythe equations
F(u,v) =

[

tr
√√

ρuρv

√
ρu

]2

= 1
2

1 + γu⊕Ev

γuγv

(52)The �rst equation in (52) is well known [38, 67℄, and the seond equation in(52) is a gyrovetor spae equation veri�ed in [56, Eq. 9.69℄. Identity (51)



164 A. A. Ungarand the seond identity in (52) indiate that in density matrix manipulationsin QIC, Bloh vetors appear to behave like gyrovetors in Möbius gyrove-tor spaes (R3
s=1,⊕M ,⊗) and in Einstein gyrovetor spaes (R3

s=1,⊕E ,⊗).Indeed, sine the Bures �delity has partiularly wide urreny todayin QIC geometry, Nielsen and Chuang had to admit for their hagrin [38,p. 410℄ that�Unfortunately, no similarly [alluding to Eulidean geometriinterpretation℄ lear geometri interpretation is known for the�delity between two states of a qubit�.It is therefore interesting to realize that while Bures �delity has noEulidean geometri interpretation, as Nielsen and Chuang admit, it doeshave a hyperboli geometri interpretation, whih is algebraially regulatedby our grouplike loops and their assoiated gyrovetor spaes.Referenes[1℄ L. V. Ahlfors: Conformal invariants: topis in geometri funtion theory,MGraw-Hill Book Co., New York, 1973.[2℄ L. V. Ahlfors: Möbius transformations in several dimensions, Univ. of Min-nesota Shool of Mathematis, Minneapolis, Minn., 1981.[3℄ D. Alba, L. Lusanna and M. Pauri: Centers of mass and rotationalkinematis for the relativisti N -body problem in the rest-frame instant form,J. Math. Phys. 43(4) (2002), 1677− 1727.[4℄ J. Bahall, T. Piran and S. Weinberg (eds.): Dark Matter in the Uni-verse, se. ed. Kluwer Aademi Publishers Group, Dordreht, 2004.[5℄ J. F. Barrett, Speial relativity and hyperboli geometry, Univ. Sunderland,Sunderland, UK, 1998. Physial Interpretations of Relativity Theory. Pro-eedings, London, UK, 11�14 September 1998.[6℄ G. S. Birman and A. A. Ungar: The hyperboli derivative in the poinaréball model of hyperboli geometry, J. Math. Anal. Appl. 254 (2001), 321−333.[7℄ M. Born and K. Fuhs: The mass entre in relativity, Nature 145 (1940),
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