A note on a union of hyper K-algebras

Mohammad A. Nasr-Azadani and Mohammad M. Zahedi

Abstract

In this paper, at first by some examples we show that the Theorem 3.7 of [1] is not true in general. Then we give a correct version of it. Moreover we give the notion of a union of a family of hyper K-algebras and investigate some of its properties. Finally by considering the concept of (closed set)-decomposable, we show that a hyper BCK-algebra is (closed set)-decomposable if and only if it is the union of a family of hyper BCKalgebras.

1. Introduction and Preliminaries

The study of BCK-algebra was initiated by Imai and Iséki [2] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi. Borzooei, et.al. [1, 3] applied the hyper structure to BCK-algebras and introduced the concept of hyper BCK-algebra and K-algebra in which each of them is a generalization of BCK-algebra. They have defined the notion of a union of two hyper K-algebra as an extension of a union of BCK-algebra [1]. Now we follow them and obtain some results such as mentioned in the abstract.

2000 Mathematics Subject Classification: 06F35, 03G25 Keywords:(P)-closed union decomposition, union hyper K-algebra, positive implicative and implicative hyper K-algebra, S-absorbing, (P)-Decomposition for all $x, y, z \in H$, where $x < y(x \ll y)$ means $0 \in x \circ y$. Moreover for any $A, B \subseteq H, A < B$ if $\exists a \in A, \exists b \in B$ such that a < b and $A \ll B$ if $\forall a \in A, \exists b \in B$ such that $a \ll b$.

The readers could see some definitions and results about hyper K-algebra and hyper BCK-algebra in [1, 4, 5].

Definition 2. [6] Let I and S be non-empty subsets of H. Then we say that I is *S*-absorbing if $x \in I$ and $y \in S$ then $x \circ y \subseteq I$.

Theorem 1. [6] Let H be a hyper BCK-algebra and I be a hyper BCK-ideal or closed set. Then I is H-absorbing.

Definition 3. [6] A hyper K-algebra H is called (P)-decomposable if there exists a family $\{A_i\}_{i\in\Omega}$ of subsets of H with P-property such that:

(i) $H \neq \{A_i\}$ for all $i \in \Omega$, (ii) $H = \bigcup_{i \in \Omega} A_i$, (iii) $A_i \cap A_j = \{0\}, i \neq j$.

In this case, we write $H = \bigoplus_{i \in \Omega} A_i(\mathbf{P})$ and say that $\{A_i\}_{i \in \Omega}$ is a (P)decomposition for H. If each $A_i, i \in \Omega$, is S-absorbing we write $H \stackrel{\text{S}}{=} \bigoplus_{i \in \Omega} A_i(\mathbf{P})$. Moreover we say that this decomposition is a *closed union*, in short (P)-CUD, if $\bigcup_{i \in \Delta} A_i$ has P-property for any non-empty subset Δ of Ω . If there exists a (P)-CUD for H, then we say that H is (P)-CUD.

Theorem 2. [6] Let $H \stackrel{\text{H}}{=} \bigoplus_{i \in \Omega} A_i$ (a hyper K-ideal). Then H is (hyper K-ideal)-CUD.

2. Union hyper K-algebras

In this section at first we show that Theorem 3.7 [1] as follows is not true in general, then we give a correct version of it.

Theorem 3.7 of [1]: $Let(H_1, \circ_2, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras (resp. hyper BCK-algebras) such that $H_1 \cap H_2 = \{0\}$ and $H = H_1 \cup H_2$. Then $(H, \circ, 0)$ is hyper K-algebra (resp. hyper BCK-algebras), where the hyperoperation \circ on H is defined as follows:

$$x \circ y := \begin{cases} x \circ_1 y & \text{if } x, y \in H_1, \\ x \circ_2 y & \text{if } x, y \in H_2, \\ \{x\} & \text{otherwise,} \end{cases}$$

for all $x, y \in H$.

Remark 1. This theorem is not true in general. Because we have $0 \circ 0$ is a subset of H_1 and H_2 . Hence $0 \circ 0$ must be $\{0\}$ in any H_i , i = 1, 2, but the authors have not considered this fact, this yields that \circ is not well-defined. To see this, consider the following example.

Example 1. Let $H_1 = \{0, 1, 2\}$ and $H_2 = \{0, 3, 4\}$. Then $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ with hyperoperations \circ_1 and \circ_2 as follows are hyper K-algebras.

\circ_1	0	1	2	\circ_2	0	3	4
0	$\{0,1\}$	$\{0\}$	{0}	0	$\{0,3,4\}$	{0}	{0}
1	{1}	$\{0,1\}$	$\{1\}$ $\{0,1,2\}$	3	{1}	$\{0,3,4\}$	$\{3\}$
2	$\{2\}$	$\{2\}$	$\{0,1,2\}$	4	$\{4\}$		$\{0,3,4\}$.

By the definition of hyper operation \circ for the union of two hyper K-algebras in theorem 3.7 of [1] we have: (i): $0 \circ 0 = \{0, 1\}$, because $0 \in H_1$. (ii): $0 \circ 0 = \{0, 3, 4\}$, because $0 \in H_2$. (iii): $0 \circ 0 = \{0\}$, because $0 \in H_1 \cap H_2$. Thus \circ is not well-defined.

Theorem 3.7 [1] is not correct even if we assume $0 \circ 0 = \{0\}$. For this, consider the following example.

Example 2. Let $H_1 = \{0, 1, 2\}$, $H_2 = \{0, 3, 4\}$ with hyperoperation \circ_1 and \circ_2 respectively as follows:

\circ_1	0	1	2	\circ_2	0	3	4
0	{0}	$\{0,\!1\}$	$\{0,1,2\}$	0	{0}	$\{0,3\}$	$\{0,4\}$
1	{1}	$\{0,1,2\}$	$\{0,1\}$	3	{3}	$\{0,3,4\}$	$\{0,3,4\}$
2	$\{2\}$	{2}	$\{0,1,2\}$	4	{4}	$\{3,4\}$	$\{0,3,4\}$

Then $H_1 = (H, \circ_1, 0)$ and $H_2 = (H, \circ_2, 0)$ are hyper K-algebras and $H_1 \cap H_2 = \{0\}$. Thus by considering the hyperoperation \circ of the theorem 3.7 of [1] we have $H = H_1 \cup H_2 = \{0, 1, 2, 3, 4\}$ with hyperoperation \circ as follows:

0	0	1	2	3	4
0	{0}	$\{0,1\}$	$\{0,1,2\}$	$\{0,3\}$	$\{0,4\}$
1	{1}	$\{0,\!1,\!2\}$	$\{0,\!1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,\!1,\!2\}$	$\{2\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,3,4\}$	$\{0,3,4\}$
4	$\{4\}$	$\{4\}$	$\{4\}$	$\{3,\!4\}$	$\{0,3,4\}$

But $(H, \circ, 0)$ is not hyper K-algebra. Since $(1 \circ 1) \circ 3 = \{0, 1, 2, 3\} \neq (1 \circ 3) \circ 1 = \{0, 1, 2\}$, i.e., K2 does not hold.

Now we give not only a correct version of it, but also we extend it.

Theorem 3. Let $(H_i, \circ_i, 0), i \in \Omega$ be a family of hyper K-algebras such that $H_i \cap H_j = \{0\}, i \neq j \in \Omega$ and 0 be a left scalar in each $H_i, i \in \Omega$. Then $(H, \circ, 0)$ is hyper K-algebra where, $H = \bigcup_{i \in \Omega} H$ and \circ on H is defined as follows:

$$x \circ y := \begin{cases} x \circ_i y & \text{if } x, y \in H_i, \\ \{x\} & \text{if } x \in H_i, y \notin H_i \end{cases}$$

Proof. Since 0 is a left scalar in H_i for all $i \in \Omega$, then $0 \circ 0 = \{0\}$ and \circ is well-defined. Now we prove H satisfies K1-K5. If $x, y, z \in H_i$ for some $i \in \Omega$ then, by hypothesis, H satisfies K1 - K5, otherwise we consider the following cases:

- (I) $x \in H_i$ and $y, z \notin H_i$,
- (II) $x, y \in H_i$ and $z \notin H_i$,
- (III) $x, z \in H_i$ and $y \notin H_i$.
- **K1**: $(x \circ z) \circ (y \circ z) < x \circ y, \forall x, y, z \in H.$

If (I) holds and $0 \notin y \circ z$, then $(x \circ z) \circ (y \circ z) = x \circ (y \circ z) = \{x\} < x \circ y = \{x\}$. Otherwise $(x \circ z) \circ (y \circ z) = x \circ (y \circ z) = x \circ 0 < x \circ y = \{x\}$, since $x \in x \circ 0$. If (II) holds, then $(x \circ z) \circ (y \circ z) = x \circ_i y < x \circ_i y$. If (III) holds, by considering $x \circ z \subseteq H_i$ and 0 is a left scalar, then $(x \circ z) \circ (y \circ z) = (x \circ_i z) \circ y = x \circ_i z < x \circ y = \{x\}$.

K2: $(x \circ y) \circ z = x \circ y = (x \circ z) \circ y, \forall x, y, z \in H$.

If (I) holds, then $(x \circ y) \circ z = x \circ z = \{x\} = (x \circ z) \circ y$. If (II) holds, then $(x \circ y) \circ z = x \circ_i y = (x \circ z) \circ y$, even if $0 \in x \circ y$. Since 0 is a left scalar and $x \circ y \subseteq H_i$, so we have $(x \circ y) \circ z = x \circ_i y$ and K2 holds. If (III) holds, then as proof (II) we have $(x \circ y) \circ z = x \circ_i z = (x \circ_i z) \circ y$, and K2 holds.

The proof of K3 and K5 are straightforward.

K4: If x < y and y < x, then x = y. Let $x, y \in H$ be such that x < yand y < x. We consider two cases (i): $x \in H_i, y \notin H_i$ and (ii): $x, y \in H_i$. If (i) holds, then $0 \in x \circ y = \{x\}$ and $0 \in y \circ x = \{y\}$, hence x = y = 0. If (ii) holds, then H satisfies K4. Therefore $(H, \circ, 0)$ is a hyper K-algebra.

Definition 4. Let $(H_i, \circ_i, 0), i \in \Omega$ be hyper K-algebras such that $H_i \cap H_j = \{0\}, i \neq j \in \Omega$ and 0 be a left scalar in each $H_i, i \in \Omega$. Then the hyper K-algebra $(H, \circ, 0)$ which has been defined in Theorem 3 is called the *union* of a family $\{H_i : i \in \Omega\}$ of hyper K-algebras and it is denoted by $H = \bigoplus_{i \in \Omega} H_i$ (hyper K-algebra).

Now we consider some properties of H_i 's, $i \in \Omega$ in which they can be extended to $H = \bigoplus_{i \in \Omega} H_i$ (hyper K-algebra).

Theorem 4. Let $H = \bigoplus_{i \in \Omega} H_i$ (hyper K-algebra). Then

- (i) whenever 0 is a right scalar, the hyper K-algebra H is positive implicative if and only if each H_i , $i \in \Omega$ is positive implicative;
- (ii) whenever 0 is a right scalar, the hyper K-algebra H is strong implicative if and only if each H_i , $i \in \Omega$ is strong implicative;
- (iii) the hyper K-algebra H is weak implicative (implicative) if and only if each H_i , $i \in \Omega$ is weak implicative (implicative).

Proof. Since the proof of (\Rightarrow) is clear, we prove only (\Leftarrow) .

(i) Let each H_i , $i \in \Omega$ satisfies the identity:

$$(x \circ y) \circ z = (x \circ z) \circ (y \circ z). \tag{1}$$

We have to show that H satisfies (1) for all $x, y, z \in H$. For briefly, we denote $(x \circ y) \circ z$ by A and $(x \circ z) \circ (y \circ z)$ by B and proceed the proof by following cases.

Case 1: If $x, y, z \in H_i$ for some $i \in \Omega$, then the proof is clear.

Case 2: If $x, y \in H_i$ and $z \in H_j$ where $i \neq j \in \Omega$, then from the definition of \circ and the fact that 0 is a left scalar in each H_i , we have $A = x \circ_i y = B$. **Case 3**: If $x, z \in H_i$ and $y \in H_j$ where $i \neq j$, then by K2 and Case 2 the proof is obvious.

Case 4: If $x \in H_i$ and $y, z \in H_j$ where $i \neq j$, then $A = \{x\}$. Since $y \circ z \subseteq H_j$ and 0 is a right scalar, so we have $B = x \circ (y \circ z) = \{x\}$, hence A = B.

Case 5: If $x \in H_i$, $y \in H_j$ and $z \in H_k$ where $i \neq j$, $i \neq k$, $j \neq k$ and $i, j, k \in \Omega$, then $A = \{x\} = B$, which completes the proof of (i).

(*ii*) We know H is strong implicative if $x \circ 0 \subseteq x \circ (y \circ x)$. Let $x, y \in H$. For $x, y \in H_i$, $i \in \Omega$, the proof is obvious. For $x \in H_i$, $y \in H_j$, where $i \neq j \in \Omega$, the fact that 0 is a right scalar implies $x \circ 0 = \{x\} \subseteq x \circ (y \circ x) = \{x\}$, which completes the proof.

(*iii*) If H is weak implicative (implicative) then $x < x \circ (y \circ x)$ (resp. $x \in x \circ (y \circ x)$). Thus the case $x, y \in H_i, i \in \Omega$, is obvious. In the case $x \in H_i, y \in H_j, i \neq j \in \Omega$, we have $x \circ (y \circ x) = \{x\}$. Hence $x < x \circ (y \circ x)$ (resp. $x \in x \circ (y \circ x)$).

Theorem 5. Let $H = \bigoplus_{i \in \Omega} H_i$ (hyper K-algebra). Then $H \stackrel{\text{H}}{=} \bigoplus_{i \in \Omega} H_i$ (hyper K-ideal), moreover H is (hyper K-ideal)-CUD.

Proof. It is sufficient to prove that each H_i , $i \in \Omega$, is an H-absorbing hyper K-ideal in H. By Theorem 2, H is (hyper K-ideal)-CUD. Let $x \neq 0$, $x \circ y <$

 H_i and $y \in H_i$. If $x \notin H_i$, then we have $0 \in (x \circ y) \circ t = \{x\}$, for some $t \in H_i$, hence x = 0 which is a contradiction. So, $x \in H_i$ and H_i is a hyper K-ideal of H. Since $H_i \cap H_j = \{0\}, i \neq j$, and $H = \bigcup H_{i \in \Omega}$, by Definition 3 we conclude that $H = \bigoplus_{i \in \Omega} H_i$ (hyper K-ideal). Also $H_i, i \in \Omega$ is H-absorbing. Indeed, for $x, y \in H_i$ we have $x \circ y = x \circ_i y \subseteq H_i$. For $x \in H_i, y \notin H_i$, we have $x \circ y = \{x\} \subset H_i$. Hence each H_i is H-absorbing.

Corollary 1. Let $H = \bigoplus_{i \in \Omega} H_i$ (hyper K-algebra). Then $H \stackrel{\text{H}}{=} \bigoplus_{i \in \Omega} H_i$ (closed set), moreover H is (closed set)-CUD

Proof. Since a hyper K-ideal is closed set, the proof follows from Theorem 5. \Box

Now we show that there exists a (hyper K-ideal)-decomposable hyper K-algebra such that it is not a union of any family of hyper K-algebras. Hence the converse of Theorem 5, is not true in general. In the next section we show that if H is (hyper BCK-ideal)-decomposable, then it is a union of a family of hyper BCK-algebras.

Example 3. Let $H = \{0, 1, 2, 3\}$ and consider the following table:

0	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,\!1\}$	$\{0,1\}$	$\{1,\!2\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,\!3\}$

Then $(H, \circ, 0)$ is a hyper K-algebra and $H = \{0, 1, 2\} \oplus \{0, 3\}$. It is clear that $\{0, 1, 2\}$ and $\{0, 3\}$ are hyper K-subalgebras of H, but H is not the union of $H_1 = \{0, 1, 2\}$ and $H_2 = \{0, 3\}$ because $1 \circ 3 = \{1, 2\} \neq \{1\}$.

3. Union hyper BCK-algebras

In this section we show that a hyper BCK-algebra is (closed set)-decomposable if and only if it is the union of a family of hyper BCK-algebras.

Lemma 1. Let $(H, \circ, 0)$ be a hyper BCK-algebra. If $0 \in (x \circ u) \circ 0$ where $x, u \in H$, then $x \ll u$.

Proof. Suppose $0 \in (x \circ u) \circ 0$, then there is an element $t \in x \circ u$ in which $0 \in t \circ 0$, that is, $t \ll 0$. Since $0 \ll t$ and HK4 holds, we conclude that t = 0. Since $t \in x \circ u$, thus $0 \in x \circ u$ or $x \ll u$.

Theorem 6. In any hyper BCK-algebra 0 is a scalar.

Proof. In any hyper BCK-algebra we have $0 \circ x = \{0\}$, i.e., 0 is a left scalar. Now we show that 0 is a right scalar, i.e., $x \circ 0 = \{x\}$. We know $x \in x \circ 0$. Now let $u \in x \circ 0$. Then we show that u = x. From $0 \in u \circ u$ and HK2 we get that $0 \in (x \circ 0) \circ u = (x \circ u) \circ 0$. Hence by Lemma 1, $x \ll u$. On the other hand we have $x \circ 0 \ll x$, so $u \ll x$. By considering HK4, from $u \ll x$ and $x \ll u$ we conclude that u = x. Thus $x \circ 0 = \{x\}$.

Theorem 7. Let $(H_i, \circ_i, 0), i \in \Omega$ be hyper BCK-algebras such that $H_i \cap H_j$ = $\{0\}, i \neq j \in \Omega$. Then $(H, \circ, 0)$, where $H = \bigcup_{i \in \Omega} H$ and

$$x \circ y := \begin{cases} x \circ_i y & \text{for } x, y \in H_i \\ \{x\} & \text{for } x \in H_i, y \notin H_i, \end{cases}$$

is a hyper BCK-algebra. We denote it by $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-algebra).

Proof. By Lemma 6, the element 0 is a scalar in any hyper BCK-algebra, hence the proof follows from Theorem 3. \Box

Theorem 8. Let $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-algebra). Then each H_i , $i \in \Omega$ is weak implicative (implicative, strong implicative) if and only if H is weak implicative (implicative, strong implicative).

Proof. Since 0 is a scalar, the proof follows from Theorem 4.

Lemma 2. Any closed subset of a hyper BCK-algebra is a hyper BCK-subalgebra. \Box

Theorem 9. (Main Theorem) Let $(H, \circ, 0)$ be a hyper BCK-algebra. Then $H = \bigoplus_{i \in \Omega} A_i$ (closed set) if and only if $H = \bigoplus_{i \in \Omega} A_i$ (hyper BCK-algebra).

Proof. (\Rightarrow) Let $H = \bigoplus_{i \in \Omega} A_i$ (closed set). Then by Lemma 2, A_i is a hyper BCK-subalgebra for any $i \in \Omega$. Now, suppose $0 \neq x \in A_i$ and $y \notin A_i$. In view of Theorem 7, we must show $x \circ y = \{x\}$. We assume that $y \in A_j$ where $i \neq j \in \Omega$. If $0 \in x \circ y$, i.e., $x \ll y$ then $x \in A_j$, because $y \in A_j$ and A_j is a closed set. This is a contradiction to $A_i \cap A_j = \{0\}$. So, let $0 \notin x \circ y$. We know $x \circ y \ll x$. Let $u \in x \circ y$. Then $u \ll x$, and $0 \in (x \circ y) \circ u = (x \circ u) \circ y$. Therefore $0 \in (x \circ u) \circ y$. Hence there exists $t \in x \circ u$ in which, $0 \in t \circ y$, i.e., $t \ll y$. Since $y \in A_j$ and A_j is a closed set we get that $t \in A_j$. By Theorem 1, as A_i is H-absorbing, we have $t \in x \circ u \subseteq A_i$ and consequently

 $t \in A_i \cap A_j$. This implies that t = 0 and hence $0 \in x \circ u$, i.e., $x \ll u$. On the other hand we had $u \ll x$, these imply that x = u. Therefore $x \circ y = \{x\}$. (\Leftarrow) The proof follows from Corollary 1.

Corollary 2. Let $(H, \circ, 0)$ be a hyper BCK-algebra. Then $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-algebra) if and only if $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-ideal). \Box

Corollary 3. Let $(H, \circ, 0)$ be a hyper BCK-algebra. Then $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-ideal) if and only if $H = \bigoplus_{i \in \Omega} H_i$ (closed set).

References

- R. A. Borzooei, A. Hasankhani, M. M. Zahedi, and Y.B. Jun: On hyper K-algebras, Math. Japonicae 52 (2000), 113 – 121.
- [2] Y. Imai and K. Iséki: On axiom systems of propositional calculi xiv, Proc. Japan Academy 42 (1966), 19 – 22.
- [3] Y. B. Jun, X. L. Xin, E. H. Roh, and M. M. Zahedi: Strong on hyper BCK-ideals of hyper BCK-algebras, Math. Japonicae 51 (2000), 493-498.
- [4] Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzooei: On hyper BCK-algebra, Italian J. Pure and Appl Math. 10 (2000), 127-136.
- [5] M. A. Nasr-Azadani and M. M. Zahedi: Quasi union on hyper Kalgebras, Quasigroups and Related Systems 16 (2008), 65 - 74.
- [6] M. A. Nasr-Azadani and M. M. Zahedi: S-absorbing set and (P)decommposition in hyper algebras, Italian J. Pure and Appl. Math. (2008), (to appear).

Received October 10, 2007

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran E-mail: nasr@shahed.ac.ir, zahedi mm@mail.uk.ac.ir