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Greedy quasigroups

Theodore A. Rice

Abstract
The paper investigates the quasigroup Qs constructed on the well-ordered
set of natural numbers by placing a number s known as the seed in the
top left-hand corner of the body of the multiplication table, and then com-
pleting the Latin square using the greedy algorithm that chooses the least
possible entry at each stage. The initial motivation comes from the theory of
combinatorial games, where Q0 gives the usual nim sum, while Q1 gives the
corresponding sums for positions in misère nim. The multiplication groups
of these quasigroups are analyzed. The alternating group of the natural
numbers is a subgroup of the multiplication groups. It is shown that these
so-called greedy quasigroups Qs are mutually non-isomorphic. The quasi-
group Q1 is subdirectly irreducible. For s > 1, the greedy quasigroups Qs

are simple, and for s > 2 they are rigid, possessing no non-trivial automor-
phisms. Indeed in this case the endomorphism monoid contains just the
identity and a single constant. The subquasigroup structures of the Qs are
also determined. While Q0, Q1 have uncountably many subquasigroups,
and Q2 has just one proper, non-trivial subquasigroup, Qs has none for
s > 2.

1. Introduction
In this paper, quasigroups motivated by combinatorial games, nim in par-
ticular, are examined. They form a countably in�nite family of in�nite
quasigroups with some curious properties. The underlying set Q of the
quasigroups is taken to be the well-ordered set of natural numbers includ-
ing 0. A quasigroup is constructed by �lling in the multiplication table in
a greedy fashion with the rows and columns labelled by the elements of Q
in their natural order. For each proper subset S, of Q, de�ne the minimal
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excluded number mexS of S to be the least element of the (non-empty) com-
plement of S in Q. (This element is uniquely de�ned by the well-ordering
principle.) Fix a natural number s, known as the seed. De�ne

0 · 0 := s. (1)

One may then use the following greedy algorithm to de�ne the remaining
products of natural numbers l and m inductively:

l ·m := mex({i ·m | i < l} ∪ {l · j | j < m}). (2)

The algorithm guarantees that the body of the multiplication table will be
a (in�nite) Latin square, and therefore that (Q, ·) becomes a quasigroup
Qs, known as the greedy quasigroup seeded by s. As an illustration, the
following table

0 1 2 3 4 5 6 7 8 9 10
0 5 0 1 2 3 4 6 7 8 9 10
1 0 1 2 3 4 5 7 6 9 8 11
2 1 2 0 4 5 3 8 9 6 7 12
3 2 3 4 0 1 6 5 8 7 10 9
4 3 4 5 1 0 2 9 10 11 6 7
5 4 5 3 6 2 0 1 11 10 12 8
6 6 7 8 5 9 1 0 2 3 4 13
7 7 6 9 8 10 11 2 0 1 3 4
8 8 9 6 7 11 10 3 1 0 2 5
9 9 8 7 10 6 12 4 3 2 0 1
10 10 11 12 9 7 8 13 4 5 1 0

Table 1. Part of the multiplication table of Q5.

gives the �rst few entries of the multiplication table of Q5.
Seeding with 0, one obtains Q0 as a countable elementary abelian 2-

group. In the theory of combinatorial games, the multiplication of Q0 is
known as nim sum [5]. Greedy quasigroups will be seen as a generalization
of nim. Each position X in the game of nim is assigned a natural number
value x, and the nim sum x⊕y denotes the value of the nim position X +Y
obtained by juxtaposing X with a second position Y of value y. Seeding
with 1, the quasigroup Q1 gives a comparable description of the juxtaposi-
tion of positions in the game of misère nim � nim played to lose. Section
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discusses elementary properties of the greedy quasigroups: commutativity,
associativity, total symmetry, and the existence of identity, idempotent, and
nilpotent elements. The next two sections (which may be skipped at �rst
reading) comprise a number of technical lemmas about the multiplication
by 2 and 3 in Qs for s > 0. These lemmas drive the theorems regarding
the multiplication groups in Section . Section examines the subquasigroup
structure of the greedy quasigroups. It transpires that while Q0, Q1 have
uncountably many subquasigroups, Q2 has just one proper, non-trivial sub-
quasigroup, and Qs has none for s > 2 (Theorem 6.2). It is also shown
that for s > 2, the quasigroup Qs is simple. The congruences of Q0 corre-
spond directly to its subgroups, essentially forming a projective geometry
of countable dimension over the 2-element �eld. For s > 1, the greedy
quasigroups Qs are shown to be simple in Theorem 6.3. Section considers
homomorphisms between greedy quasigroups. It is shown that the greedy
quasigroups are mutually non-isomorphic (Theorem 7.1), and indeed that
for distinct positive seeds s, t, the only homomorphism from Qs to Qt is the
constant map taking the value 1 (Theorem 7.11). Finally, Theorem 7.12
shows that for s > 2, the only endomorphisms of Qs are the constant and
the identity. In particular, Qs is rigid in the sense of having a trivial auto-
morphism group. It may be worth noting that the properties of the greedy
quasigroups Qs for s > 2, namely simplicity, rigidity, and lack of proper,
non-trivial subalgebras, are reminiscent of the Foster-Pixley characteriza-
tion of (necessarily �nite) primal algebras [7]. The paper concludes with a
brief characterization of greedy quasigroups in terms of combinatorial game
theory. For algebraic concepts and conventions that are not otherwise ex-
plained here, especially involving quasigroups, readers are referred to [8].
Note that mappings are usually placed to the right of their arguments, al-
lowing composition in natural order, and minimizing the number of brackets
that otherwise proliferate in the study of non-associative structures such as
quasigroups.

2. Elementary properties
Recall that a quasigroup (Q, ·, /, \) is said to be commutative or associative
respectively if its multiplication · is commutative or associative.

Proposition 2.1. For each seed s, the quasigroup Qs is commutative.

Proof. By induction, using (2):
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l ·m = mex({i ·m | i < l} ∪ {l · j | j < m})
= mex({m · i | i < l} ∪ {j · l | j < m})
= mex({i · l | i < m} ∪ {m · j | j < l}) = m · l.

(The induction hypothesis is used for the second equality.)

Proposition 2.2. Suppose s > 0.

1. ∀ 0 < x 6 s, 0 · x = x · 0 = x− 1.

2. ∀ x > s, 0 · x = x · 0 = x.

3. ∀ 0 6 x 6 s, 1 · x = x · 1 = x.

Proof. (1) Since 0 · 0 = s, 1 · 0 = 0, and applying (2) to each successive
term, one has x · 0 = mex{s, 0, 1, . . . , (x− 1) · 0 = (x− 2)} = x− 1.

(2) For x = s + 1, (2) gives 0 · x = mex{s, 0, 1, . . . , s− 1} = s + 1. Then
0 · x = x for x > s by induction.

(3) Note 0 · 1 = 0. Then for x 6 s, induction yields

x · 1 = mex{0, 1, . . . , x− 1, 0 · x = x− 1} = x.

Corollary 2.3. For s > 0, the quasigroup Qs is not associative.

Proof. (0 · 0) · (s + 1) = s · (s + 1) 6= 0 · (s + 1) = 0 · (0 · (s + 1)).

De�nition 2.4. The hub of a greedy quasigroup Qs is de�ned to be the
subset Hs = {0, . . . , s}.

In Table 1, the hub H5 is marked o� by separating lines.

Remark 2.5. The element 0 is the identity element of the group Q0. For
s > 0, the quasigroup Qs does not have a universal identity element. How-
ever, the later parts of Proposition 2.2 may be interpreted as saying that 1 is
an identity for the hub, while 0 is an identity outside the hub. In particular,
1 is the only idempotent element of Qs, i.e., the only element x forming a
singleton subquasigroup {x}.

A quasigroup (Q, ·, /, \) is said to be totally symmetric if its three binary
operations agree, i.e., if the implication

x1 · x2 = x3 ⇒ x1π · x2π = x3π (3)
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holds for all permutations π of the index set {1, 2, 3}. (Commutativity
means that (3) holds for π = (12).) Note that Q0, like any elementary
abelian 2-group, is totally symmetric. Now outside the hub, the multipli-
cation on Q1 is constructed exactly as in Q0. Furthermore, the hub of Q1

is totally symmetric, being isomorphic to the subgroup {0, 1} of Q0. Thus
Q1 is also totally symmetric.

Lemma 2.6. Suppose s > 0. For x > s,

x · 1 =

{
x + 1, x− s ≡2 1
x− 1, x− s ≡2 0.

Proof. As an induction basis, note:

(s + 1) · 1 = mex{0, 1, . . . , s, (s + 1) · 0 = s + 1} = s + 2;
(s + 2) · 1 = mex{0, 1, . . . , s, s + 2, (s + 2) · 0} = s + 1.

Consider x > s. By induction, for x− s ≡2 1,

x · 1 = mex{0, 1, . . . , x− 1, x · 0} = x + 1,

and for x− s ≡2 0,

x · 1 = mex{0, 1, 2, . . . , x− 3 + 1, x− 2− 1, x− 1 + 1, x · 0} = x− 1.

Recall that in any quasigroup (Q, ·, /, \), the square x2 of an element
x is x · x. An element of a greedy quasigroup is described as nilpotent if
its square is 0. All but at most two elements of a greedy quasigroup are
nilpotent, and 0 is the only square of in�nitely many elements.

Theorem 2.7. For x > 1 in any greedy quasigroup, x2 = 0.

Proof. The result is immediate in Q0, so suppose s > 0. Recall 0 · 1 = 0 =
1 · 0. Thus the �rst place 0 can appear in the 2-column of the Latin square
is the 2-row, so it must appear there. Then the �rst place 0 can and must
appear in the 3-column is the 3-row. Fill in the �rst n columns (labelled
0, . . . , n− 1) by induction. The �rst place 0 can appear in the n-column is
in the n-row. Thus by induction n · n = 0 for all n > 1.

Corollary 2.8. Consider the greedy quasigroup Qs.

1. If s = 1, then 02 = 12 = 1.

2. For s 6= 1, the element 0 is the only square of more than one element.
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3. Multiplication by 2

Throughout the next two technical sections, which may be skipped at �rst
reading, assume s > 0. (Later, it will be implicitly necessary to assume that
s is �su�ciently large.�) Consider the inductive construction of the Latin
square that forms the body of the multiplication table of Qs. There is a
critical dependence on the congruence class of the seed to certain moduli.
A column is said to be complete at entry n if its �rst n + 1 elements are
precisely the numbers 0, 1, . . . , n. The proofs are by induction and can be
done by hand in a similar fashion to those above.

Lemma 3.1. For x < s,

x · 2 =

{
x + 1, x ≡3 0, 1;
x− 2, x ≡3 2.

The post-hub behavior of the 2-column depends on the congruence class
of the seed modulo 3. We consider each class in turn.

Lemma 3.2. For s ≡3 0 and s ≡3 1 and x > s + 1 :

x · 2 =

{
x + 1, x− s ≡2 0;
x− 1, x− s ≡2 1.

Lemma 3.3. For s ≡3 2, and x > s,

x · 2 =

{
x + 2, x− s ≡4 1, 2;
x− 2, x− s ≡4 3, 0.

4. Multiplication by 3

Multiplication by 3 is the last detailed case that is analyzed in this paper.
Its structure is slightly more di�cult than in the earlier cases. For each of
the following lemmas, suppose that the seed is su�ciently large. The �rst
lemma collects some preliminary calculations.

Lemma 4.1. 0 · 3 = 2, 1 · 3 = 3, 2 · 3 = 4, 3 · 3 = 0, 4 · 3 = 1.
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Lemma 4.2. For 5 6 x 6 s :

x · 3 =





x + 1, x ≡9 5, 8;
x + 2, x ≡9 6, 1, 2;
x− 2, x ≡9 7, 0, 4;
x− 1, x ≡9 3.

After each ninth step, the column becomes complete.
In the remainder of this section, only the 3-column of the multiplication

table for s ≡3 2 is considered, since this is the only case needed for the
subsequent results. Note that s ≡9 2, 5, 8. Each case yields a di�erent
pattern after the row labelled by the seed.
Lemma 4.3. For x > s ≡9 2 :

x · 3 =

{
x− 2, x− s ≡4 1, 2;
x + 2, x− s ≡4 3, 0.

Lemma 4.4. For x > s ≡9 5 :

x · 3 =

{
x− 1, x− s ≡2 1;
x + 1, x− s ≡2 0.

Lemma 4.5. For s ≡9 8, (s + 1) · 3 = s− 1. For x > s + 2 :

x · 3 =

{
x + 1, x− s ≡2 0;
x− 1, x− s ≡2 1.

5. Multiplication groups
In this section, the multiplication groups for each Qs are analyzed. The
analysis yields easy proofs of some later theorems.

Consider
G = 〈R(0), R(1), R(2)〉 < Mlt(Qs).

R(0) = (0, s, s− 1, s− 2, . . . , 1)
R(1) = (s + 1, s + 2)(s + 3, s + 4) . . . (s + 2n + 1, s + 2n + 2) . . .

R(2) = (0, 2, 1)(3, 5, 4) . . .

But one has to consider the seed mod 3.
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• For s ≡3 0, one has (0, 2, 1) . . . (s−3, s−1, s−2)·(s, s+1)(s+2, s+3) . . .

• For s ≡3 1, one has (0, 2, 1) . . . (s, s + 1, s− 1) · (s + 2, s + 3) . . .

• For s ≡3 2, one has (0, 2, 1) . . . (s− 1, s, s− 2) · (s + 1, s + 3)(s + 2, s +
4)(s + 5, s + 7)(s + 6, s + 8) . . .

Consider R(0), R(1), R(2) in SN. A natural question is whether or not
the groups

G = 〈R(0), R(1), R(2)〉
and

F = 〈R(0), R(1), R(2), R(3)〉
have transitive actions on Qs. If so, are the groups multiply transitive?

5.1. Transitivity
Lemma 5.1. For all s, 〈R(0)〉 acts transitively on the hub.

Proof. By Lemma 2.2, 0 · x = x − 1 for 0 < x 6 s and 0 · 0 = s. Thus
xR(0)x = 0, and 0R(0)y+1 = s − y. Therefore for x, z = s − y ∈ H, there
is an n such that xR(0)n = z.

Lemma 5.2. For s ≡3 0, 1, Qs\Hs is in one orbit of the action of G on Qs.
Moreover, one can choose g ∈ G so that x1g = x2 for any x1, x2 ∈ Qs \Hs

and g stabilizes 1.

Proof. Let x = s+2n− i, y = s+2m− j, where n,m ∈ N and i, j ∈ {0, 1}.
Let τ = R(1)i(R(2)R(1))m−nR(1)j . Now it is shown that xτ = y. The
initial multiplication by R(1)i sends both s + 2n − i to s + 2n. Now by
Lemmas 2.6 and 3.1 an application of R(2)R(1) sends s + 2n to s + 2n + 2.
So (R(2)R(1))t sends s + 2n to s + 2n + 2t. Therefore R(1)i(R(2)R(1))t

sends s+2n− i to s+2n+2t. Finally R(1)j sends this to to s+2n+2t− j.
Therefore (s+2n−i)τ = s+2n+2(m−n)−j = s+2m−j. To stabilize 1, use
σ = R(1)iR1(2, 0)m−nR(1)j . Note that since R1(2, 0) = R(2)R(0)R(1)−1,
on Qs\Hs, R1(2, 0) behaves like R(2)R(1), since xR(0) = x and xR(1)2 = x
for x ∈ Qs \Hs. Thus xσ = xR(1)i(R(2)R(1))n−mR(1)j = y as above.

Theorem 5.3. The group G acts transitively on Qs for s ≡3 0, 1.
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Proof. Using Lemmas 5.1 and 5.2, it remains to show that a hub element
can be sent to a non-hub element. Note that s · 2 = s + 1 in this case.
So to send a hub element h to a non-hub element s + 2n − j, use σ =
R(0)h+1R(2)R(1) (R(2)R(1))n−1 R(1)j .

For s ≡3 2 the situation is more complex.

Lemma 5.4. Let σk,i = R(2)kR(1)i for k, i ∈ {0, 1}. Then in Qs for
s ≡3 2, σk,i sends s + 4n− 2k − i to s + 4n.

Proof. Since multiplication by 2 adds or subtracts 2, R(2)k sends s + 4n−
2k− i to s + 4n− i. Now multiplication by 1 adds or subtracts 1. So R(1)i

sends s + 4n− i to s + 4n.

Lemma 5.5. For s ≡9 5, 8, τ = R(3)R(2)R(1) sends s + 4n to s + 4n + 4.

Proof. First, (s + 4n)R(3) = s + 4n + 1 by Lemmas 4.4 and 4.5. Then
(s+4n+1)R(2) = s+4n+3 by Lemma 3.3 and (s+4n+3)R(1) = s+4n+4
by Lemma 2.6. Thus (4n)τ = (4n)R(3)R(2)R(1) = 4n + 4.

Lemma 5.6. For s ≡9, 2 τ = R(3)R(2) sends sends s + 4n to s + 4n + 4

Proof. First (s + 4n)R(3) = (s + 4n + 2) by Lemma 4.3. Then (s + 4n)
(R(3)R(2)) = s + 4n + 4 by Lemma 3.3.

Lemma 5.7. For s ≡3 2, Qs \Hs is in one orbit of the action of G on Qs.
Moreover, one can choose g ∈ G so that x1g = x2 for any x1, x2 ∈ Qs \Hs

and g stabilizes 1.

Proof. We show that any x ∈ Qs \ Hs can be sent to y ∈ Qs \ Hs. Let
x = 4n − 2k − i and y = 4m − 2k′ − i′, where k, k′, i,′ i ∈ {0, 1}. Then for
ϕ = σk,iτ

m−nσk′, i′−1, xϕ = y:

(s + 4n− 2k − i)ϕ = (s + 4n− 2k − i)σk,iτ
m−nσk′,i′

= (s + 4n)τm−nσk′,i′

= (s + 4m)σk′,i′

= s + 4m− k′ − i′

Thus xϕ = y. Note that outside the hub R(0) stabilizes x. So α =
R1(3, 0)R1(2, 0)R(1) behaves like R(3) and stabilizes 1 while β = R1(2, 0)R(1)
behaves like R(2) and stabilizes 1. Now apply Lemma 5.7 with α in place
of R(3) and β in place of R(2)
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Theorem 5.8. For s ≡3 2, F acts transitively on Qs.
Proof. It remains to be shown that one can send a hub element to a non-
hub element as before. Let h ∈ Hs and x = s + 4n − 2k − i. First, let
ψ = R(0)h+1R(3)σ1,1τ

n−1σk,i. Then hψ = x by the above lemmas.

5.2. 2-transitivity
The goal of this section is to prove that Mlt(Qs) is 2-transitive.
Lemma 5.9. Let H = 〈R(0), R(2)〉. Then Hs is in one orbital of the action
of H on Qs for s ≡3 0, 1.
Proof. Given h1, h2, x1, x2 ∈ Hs, there is an n so that h1R(0)n = s (by
Lemma 5.1). So h1R(0)nR(2) = s + 1. Let h2R(0)nR(2) = k. Now choose
m so that kR(0)m = x2R(0)−(s−x1)R(2)−1. Thus h1σ = x1 and h2σ = x2

for σ = R(0)nR(2)R(0)mR(2)−1R(0)s−x1 .

Lemma 5.10. Let H = 〈R(0), R(3)〉. Then Hs is in one orbital of the
action of H on Qs for s ≡3 2.
Proof. Given h1, h2, x1, x2 ∈ Hs, there is an n so that h1R(0)n = s (by
Lemma 5.1). So h1R(0)nR(3) = s + 1. Let h2R(0)nR(3) = k. Now choose
m so that kR(0)m = x2R(0)−(s−x1)R(3). Thus h1σ = x1 and h2σ = x2 for
σ = R(0)nR(3)R(0)mR(3)−1R(0)s−x1 .

Remark 5.11. The above two lemmas, along with the fact that hR(1) =
h ∀h ∈ Hs show that the hub is in one orbital of the action of F .
Lemma 5.12. For x1 ∈ Qs\Hs and h1, h2, h3 there is a σ so that x1σ = h2

and h1σ = h3.
Proof. Use R(0)n for some n so send h1 to 1. By Lemmas 5.2 and 5.7, there
is a β so that 1β = 1 and x1β = s+1. Then for s ≡3 0, 1 γ = R(0)nβR(2)−1

is such that x1γ, h1γ ∈ Hs. For s ≡3 2 use γ = R(0)nβR(3)−1. Now since
Hs is in one orbital of the action of 〈R(0), R(2), R(3)〉 (Remark 5.11), the
proof is complete.

Lemma 5.13. For x1, x2 ∈ Qs \Hs and h1, h2 ∈ Hs, there is a σ so that
xiσ = hi.
Proof. Let α be so that x1α = 1. Then perhaps x2α = h ∈ Hs. Then
by Lemma 5.9, there is a β, so that 1β = h1, hβ = h2. Thus σ = αβ. If
x2α = x 6∈ Hs apply Lemma 5.12.
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Theorem 5.14. F acts 2-transitively on Qs.

Proof. We �nd a σ that sends (x1, x2) ∈ Q2
s to (y1, y2). First by the above

three lemmas, there is a map α so that (x1, x2)α = (0, 1), and a map β so
that (y1, y2)β = (0, 1). Then (x1, x2)αβ−1 = (y1, y2)

5.3. High transitivity
It has been shown how to construct permutations in F 6 Mlt(Qs) that are
2-transitive. The question is whether one can go farther.

First note that since F is 2-transitive it is primitive (Lemma 4.10 in
[3]). Therefore we can apply Lemma 10.8 in [3] with the hub as the Jordan
set. This theorem says that if a permutation group on Ω is primitive on an
in�nite set with a subgroup H that is transitive on a set, X, and �xes the
complement of X, the multiplication group is highly transitive. Moreover,
if X is �nite, Alt(Ω) 6 F . Thus Alt(N) 6 F 6 Mlt(Qs).

6. Subquasigroups
As noted in Remark 2.5, each greedy quasigroup has a unique singleton
subquasigroup: {0} in the elementary 2-group Q0, and {1} in Qs for s > 0.
We refer to the singleton subquasigroup and the empty subquasigroup as
the trivial subquasigroups of the greedy quasigroups. The group Q0 has
uncountably many subquasigroups, since for each of the uncountably many
subsets S of N, the vector

(0χS , 1χS , . . . , nχS , . . . ) (4)

of values of the characteristic function of S generates a distinct subgroup
of the isomorphic copy (Z/2Z)N of Q0.

Proposition 6.1. The greedy quasigroup Q1 has uncountably many sub-
quasigroups.

Proof. Outside the hub {0, 1}, the multiplication on Q1 is constructed ex-
actly as in Q0. Thus for each subgroup P of Q0 with {0, 1} 6 P , the subset
P of N forms a subquasigroup of Q1. But Q0 has uncountably many such
subgroups P .

The respective hubs H1 and H2 of Q1 and Q2 form cyclic groups, with
1 as the identity element (Remark 2.5). These cases are exceptional.
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Proposition 6.2. For s > 2, there are no non-trivial subquasigroups of Qs.

Proof. Note that F is transitive for all s > 3. Thus if a subquasigroup,
H, contains 0, 1, 2, 3 then H = Qs. Let H be a subquasigroup. If 0 ∈ H,
then Hs ⊂ H. In particular for s > 3, 0, 1, 2, 3 ∈ H and H = Qs. Suppose
x 6= 0, 1 ∈ H, then x · x = 0 ∈ H, so as above H = Qs. Thus the only
subquasigroup is the trivial subquasigroup {1}.

Proposition 6.3. For s > 2, Qs is simple.

Proof. This follows immediately since Mlt(Qs) is 2-transitive.

7. Homomorphisms
Theorem 7.1. For i 6= j, Qi 6∼= Qj.

Proof. In both Qi, Qj , 0 is the unique element that �xes in�nitely many
elements. So for any isomorphism ϕ, ϕ : 0 7→ 0. In Mlt(Qi), R(0) is an
i + 1-cycle, but in Qj R(0) is a j + 1-cycle. Thus Qi 6∼= Qj .

One can actually prove stronger results.

Lemma 7.2. Let ϕ : Qi → Qj.

(a) If ϕ is injective then there is a k ∈ Qi such that k, kϕ are both nilpo-
tent.

(b) If ϕ is surjective then there is a k ∈ Qi such that k, kϕ are both
nilpotent.

Proof. There are only two elements k ∈ Qi such that k · k 6= 0, namely 0, 1,
and similarly for Qj .

(a) Let ϕ be injective. Suppose that xϕ, yϕ are not nilpotent. Let z be
nilpotent, then zϕ is not xϕ, yϕ and these are the only non-nilpotent
elements in Qj . Thus both z, zϕ are nilpotent.

(b) Since ϕ is surjective, at most two of the nilpotent elements of Qj can
be the image of non-nilpotent elements of Qi. There must be nilpotent
elements on Qi that are mapped to nilpotent elements of Qj .
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In what follows, the notations qi, qj are used for an element q ∈ Qi to
distinguish it from q ∈ Qj .

Lemma 7.3. Let ϕ : Qi → Qj be a homomorphism and 0iϕ = 0j. If
x · x = 0, then xϕ · xϕ = 0.

Proof. 0j = 0iϕ = (x · x)ϕ = xϕ · xϕ.

Lemma 7.4. Let ϕ : Qi → Qj be a homomorphism. If there is an element
x ∈ Qi such that x · x = 0 and xϕ · xϕ = 0, then 0iϕ = 0j.

Proof. Let k be one such element. Then 0j = 0iϕ = (k · k)ϕ = kϕ · kϕ.

Remark 7.5. In particular, Lemma 7.3 and Lemma 7.4 are true for sur-
jective and injective homomorphisms.

Lemma 7.6. For any homomorphism ϕ : Qi → Qj and i, j 6= 0, 1, 1iϕ =
1j.

Proof. This follows from the fact that 1i is the only idempotent element of
Qi. (Everything else other than 0i is nilpotent).

Lemma 7.7. For any surjective (injective) homomorphism ϕ : Qi → Qj,
siϕ = sj.

Proof. siϕ = (0i ·i 0i)ϕ = 0iϕ ·j 0iϕ = 0j ·j 0j = sj .

Remark 7.8. In fact, this is true if 0iϕ = 0j .

Theorem 7.9 (Homomorphism Theorem). Suppose i, j > 1.

(a) There is no injective homomorphism ϕ : Qi → Qj.

(b) There is no surjective homomorphism ϕ : Qi → Qj.

Proof. Note that by looking at the multiplication table for Qj , that sjL(0j)sj

= sj and sjL(0i)i 6= sj for i < sj . Since siϕ = sj , then sj = siϕ =
siR(0i)i = siϕR(0iϕ)i = sjR(0j)i. Thus j + 1|i + 1. Perhaps one can
�loop� several times, but the loop must be completed. Thus there is no
injective or surjective homomorphism ϕ : Qi → Qj , if i < j. So, sup-
pose that j + 1|i + 1, but j 6= i. Note that siR(0)j−1 is nilpotent. Then
siR(0)j−1ϕ = siϕR(0ϕ)j−1 = sjR(0j)j−1 = 1j . This is contradicts Lemma
7.3, since a nilpotent must be mapped to a nilpotent and 1j is idempo-
tent.
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Remark 7.10. Theorem 7.1 can be seen as a corollary to the Homomor-
phism Theorem.

Not only are the Qi's are not isomorphic, there is no injective or sur-
jective homomorphism between them. It is natural to ask whether there is
any non-trivial homomorphism between them. Of course, there is the trivial
homomorphism xϕ = 1,∀x ∈ Qi for any Qi, Qj . It turns out that this is
the only homomorphism ϕ : Qi → Qj for i 6= j.

Theorem 7.11. The only homomorphism ϕ : Qi → Qj for i 6= j is the
trivial homomorphism.

Proof. Let ϕ : Qi → Qj . If there is a nilpotent element x such that xϕ is also
nilpotent, by Lemma 7.4 0iϕ = 0j , so then by Lemma 7.7 siϕ = sj . Then
the homomorphism fails as in Theorem 7.9. Thus for any nilpotent x, xϕ is
either 0 or 1. If x 6= 0 and xϕ = 0, then 0ϕ = (x ·x)ϕ = xϕxϕ = 0j ·0j = sj .
Then for any nilpotent y, sj = 0ϕ = (y · y)ϕ = yϕ · yϕ. So sj is the square
of yϕ. Thus yϕ = 0j for any nilpotent y. Now, siϕ = (0i · 0i)ϕ = 0iϕ0iϕ =
sj · sj = 0j . However, in any Qi there are nilpotent elements x, y such that
xy = si. Then siϕ = (xy)ϕ = xϕyϕ = 0j · 0j = sj . This is a contradiction,
so there is no x so that xϕ = 0j . Thus xϕ = 1j for all nilpotent x. In
particular siϕ = 1, so 0iϕ = (si · si)ϕ = siϕ · siϕ = 1j · 1j = 1. Thus ϕ is
trivial.

Theorem 7.12. For s > 2, there are only two endomorphisms of Qs, the
constant and the identity. In particular, Qs is rigid.

Proof. Suppose that f : Qs → Qs is an endomorphism. Since Qs is simple
by Theorem 6.3, the kernel congruence of f is either trivial (the equality
relation) or improper. If it is improper, then f is constant, its image being
the unique singleton subquasigroup {1} of Qs. Otherwise, f injects. Now 0
is the only element that is the square of more than one element, so 0f = 0.
The image sf = (0 · 0)f = 0f · 0f of the seed is a square, namely 1, 0 or
s. If sf = 1, then 0f · 0f = 1, yielding the contradiction 0f = 1. Again,
sf = 0 would contradict the injectivity of f . Thus sf = s. By Lemma 5.2,
s− r = sR(0)r for 0 6 r < s. Then (s− r)f = sR(0)rf = sR(0)r = s− r,
so the hub is �xed. Since the hub generates all of Qs, it follows that Qs is
�xed, and f is the identity.
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8. Game theory applications

Greedy quasigroups are motivated in part by combinatorial games, in par-
ticular by nim. Nim is a game played with several piles, or heaps of counters.
A player selects a pile and removes some, or possibly all the counters in the
pile. The player to make the last move wins. With only two piles, the strat-
egy is simple: equalize the piles, and then when your opponent removes
n counters from one pile, remove n from the other. In this way, a player
will never be at a loss for a move. With three or more non-empty piles,
the strategy is a little more elusive. One must compute the nim-sum. The
nim-sum is a way of reducing a collection of piles to a single value. This
value represents the size of a single pile that is equivalent to the original
position. If this pile were included in the original position, the resulting
game would be a win for the �rst player. For details, see [1]. An alternative
characterization of nim is that of a Rook on a quarter-in�nite chessboard.
Place a Rook on the board and make legal Rook moves up and left of the
board. A player wins by placing the Rook on the upper-left corner. Now,
greedy quasigroups have the following characterization as a game: place a
nim-heap of size n, n > 0 on a chessboard. Move the heap as a Rook. Once
the heap reaches the upper-left square, players may play in the nim heap.
Clearly, with a single non-empty nim-heap on the board, one can win by
forcing the other player to place the heap on the upper-left square and then
removing the entire nim-heap. These game are examples of the sequential
compounds in [9]. The di�culty arises when several heaps of di�erent sizes
are placed on the board. To play correctly, one must compute the value of
each heap, with is a function of its size and its location. In this way, one
can compute the nim-value of the position, and using combinatorial game
theory, make the correct move. Suppose heaps of sizes n1, n2, . . . , nk at
locations (x1, y1), . . . , (xn, yn). The value of each heap is xi ·i yi where ·i is
the multiplication in Qni . The total value of the game is then:

k⊕

i=1

xi · yi

where ⊕ is nim-addition. A natural generalization is to place an entire game
of nim on a square. This does not produce any new games, since each game
of nim is equivalent to a single nim heap; so one might as well simply put
the single nim-heap on the square.
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