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Generalized fuzzy subquasigroups

Muhammad Akram and Wiesªaw A. Dudek

Abstract
Di�erent types of (α, β)-fuzzy subquasigroups, for α, β ∈ {∈, q,∈∨q,∈∧q},
α 6=∈ ∧q, are investigated. Various characterizations of (∈,∈ ∨q)-fuzzy
subquasigroups are obtained. Fuzzy subquasigroups with thresholds are
studied also.

1. Introduction
During the last decade, there have been many applications of quasigroups
in di�erent areas, such as cryptography [13], modern physics [15], coding
theory, geometry [14]. In 1965, Zadeh introduced the notion of a fuzzy sub-
set as a method for representing uncertainty. Since than fuzzy set theory
has been developed in many directions by many scholars and has evoked
great interest among mathematicians working in di�erent �elds of mathe-
matics such as topological spaces, functional analysis, loops, groups, rings,
semirings, hemirings, nearrings, vector spaces, di�erential equations, au-
tomation. The notion of fuzzy subgroup was made by Rosenfeld [1] in 1971.
Das [5] characterized fuzzy subgroups by their level subgroups. The concept
of quasi-coincidence of a fuzzy point with a fuzzy subset was introduced by
Pu and Liu [17]. Using the idea of quasi-coincidence of a fuzzy point with
a fuzzy subset, Bhakat and Das de�ned in [4] di�erent types of fuzzy sub-
groups called, (α, β)-fuzzy subgroups. In particular, they introduced the
concept of (∈,∈ ∨q)-fuzzy subgroups which was an important and useful
generalization of Rosenfeld's fuzzy subgroups. Dudek [7] introduced the
notion of fuzzy subquasigroups and studied some their properties.

In this paper we introduce the notion of (α, β)- fuzzy subquasigroups
where α, β ∈ {∈, q,∈∨q,∈∧q} and α 6=∈∧q, and investigate some related
properties. We characterize (∈,∈∨q)- fuzzy subquasigroups by their levels
subquasigroups. Finally we study fuzzy subquasigroups with thresholds.
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2. Preliminaries
In this section we review some facts which are necessary for this paper.

A groupoid (G, ·) is called a quasigroup if for any a, b ∈ G each of the
equations a · x = b, x · a = b have a unique solution in G. A quasigroup
may be also de�ned as an equasigroup, i.e., an algebra (G, ·, \, /) with three
binary operations ·, \, / satisfying the following identities:

(x · y)/y = x, x \ (x · y) = y,

(x/y) · y = x, x · (x \ y) = y.

A nonempty subset S of a quasigroup G = (G, ·, \, /) is called a sub-
quasigroup if it is closed with respect to these three operations, that is, if
x ∗ y ∈ S for all x, y ∈ S and ∗ ∈ {·, \, /}.

A homomorphic image of an equasigroup is an equasigroup. Also every
subset of an equasigroup closed with respect to these three operations is
an equasigroup. In theory of quasigroups an important role play unipotent
quasigroups, i.e., quasigroups with the identity x · x = y · y. These quasi-
groups are connected with Latin squares which have one �xed element on
the diagonal [6]. Such quasigroups may be de�ned as quasigroups G with
the special �xed element θ satisfying the identity x · x = θ. Obviously, θ is
uniquely determined and it is an idempotent, but, in general, it is not the
(left, right) neutral element.

To avoid repetitions we use the following convection: a quasigroup G
always denotes an equasigroup (G, ·, \, /), G always denotes the nonempty
set.

A mapping µ : G → [0, 1] is called a fuzzy set on G. For any fuzzy set µ
on G and any t ∈ [0, 1], we de�ne the set

U(µ; t) = {x ∈ G | µ(x) > t},

which is called the upper t-level cut of µ. The set µ = {x ∈ G |µ(x) > 0} is
called the support of µ.

De�nition 2.1. (cf. [7]) A fuzzy set µ on G is called a fuzzy subquasigroup
of G if

µ(x ∗ y) > min{µ(x), µ(y)}
for all x, y ∈ G and ∗ ∈ {·, \, /}.

The following two results are proved in [7].
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Proposition 2.2. A fuzzy set µ on a quasigroup G is a fuzzy subquasigroup
if and only if every its nonempty upper level cut is a subquasigroup of G.2
Proposition 2.3. If µ is a fuzzy subquasigroup of a unipotent quasigroup
(G, ·, \, /, θ), then µ(θ) > µ(x) for all x ∈ G. 2

De�nition 2.4. A fuzzy set µ of the form

µ(y) =

{
t ∈ (0, 1] for y = x,

0 for y 6= x,

is called a fuzzy point with the support x and the value t and is denoted by
xt.

For any fuzzy set µ the symbol xt ∈ µ means that µ(x) > t. In the case
µ(x) + t > 1 we say that a fuzzy point xt is quasicoincident with a fuzzy
set µ and write xtqµ. The symbol xt ∈ ∨qµ means that xt ∈ µ or xtqµ.
Similarly, xt ∈∧qµ denotes that xt ∈ µ and xtqµ. xt∈µ, xtqµ and xt∈∨qµ
mean that xt ∈ µ, xtqµ and xt ∈∨qµ do not hold, respectively.

3. (α, β)-fuzzy subquasigroups
Let α and β denote one of the symbols ∈, q, ∈∨q or ∈∧q unless otherwise
speci�ed.

De�nition 3.1. A fuzzy set µ in G is called a (α, β)-fuzzy subquasigroup of
G, if it satis�es the following condition:

xt1αµ, yt2αµ =⇒ (x ∗ y)min{t1,t2}βµ

for all x, y ∈ G, t1, t2 ∈ (0, 1], α 6=∈∧q and ∗ ∈ {·, \, /}.
Remark 3.2. (1) It is easy to construct 12 di�erent types of fuzzy sub-
quasigroups by the replacement of α(6=∈∧q) and β in the De�nition 3.1 by
any two of {∈, q,∈∨q,∈∧q}.
(2) Why α 6=∈ ∧q? Since for a fuzzy set µ such that µ(x) 6 0.5 for all
x ∈ G and xt ∈∧qµ for some t ∈ (0, 1], we have µ(x) > t and µ(x) + t > 1.
Thus

1 < µ(x) + t 6 µ(x) + µ(x) = 2µ(x),

so, µ(x) > 0.5. Hence {xt |xt ∈∧qµ} = ∅. This explains why α =∈∧q can
be omitted in the above de�nition.
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(3) (∈,∈)-fuzzy subquasigroups are in fact fuzzy subquasigroups.
(4) (α, β)-fuzzy subquasigroups are a generalization of fuzzy subquasi-
groups described in [7].

It is not di�cult to see that the following proposition is true.

Proposition 3.3. Every (∈,∈)-fuzzy subquasigroup is an (∈,∈ ∨q)-fuzzy
subquasigroup. 2

Corollary 3.4. For any subset S of G, the characteristic function χS of S
is an (∈,∈∨q)-fuzzy subquasigroup of G if and only if S is a subquasigroup
of G .

Proof. Suppose that characteristic function χS is an (∈,∈ ∨q)-fuzzy sub-
quasigroup of G. Let x, y ∈ S. Then χS(x) = 1 = χS(y), and so x1 ∈ χS

and y1 ∈ χS . It follows that (x ∗ y)1 = (x ∗ y)min{1,1} ∈∨qχS , which implies
χS(x ∗ y) > 0. Thus x ∗ y ∈ S, and hence χS is a fuzzy subquasigroup of G.

Conversely, if S is a fuzzy subquasigroup of G, then χS is an (∈,∈)-
fuzzy subquasigroup of G and, by Proposition 3.3, it is an (∈,∈∨q)-fuzzy
subquasigroup of G.
Proposition 3.5. Every (∈∨q,∈∨q)-fuzzy subquasigroup is an (∈,∈∨q)-
fuzzy subquasigroup.

Proof. Let µ be an (∈ ∨q,∈ ∨q)-fuzzy subquasigroup of G. Let x, y ∈ G
and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ and yt2 ∈ µ. Then xt1 ∈ ∨qµ
and yt2 ∈ ∨qµ. Thus (x ∗ y)min{t1,t2} ∈ ∨qµ, which proves that µ is an
(∈,∈∨q)-fuzzy subquasigroup of G.

The converse statement of Proposition 3.5 is not true as we can see in
the following example.

Example 3.6. The set G = {0, a, b, c} with the multiplication:

· 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

is a commutative quasigroup (Klein's group) in which the operations \ and
/ coincide with the group inverse operation.
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Consider on this quasigroup the fuzzy set µ such that µ(0) = 0.5, µ(a) =
0.6 and µ(b) = µ(c) = 0.3. By routine computations, it is easy to verify
that:

(1) µ is an (∈,∈∨q)-fuzzy subquasigroup,

(2) µ is not an (∈,∈)-fuzzy subquasigroup because a0.65 ∈ µ and a0.67 ∈ µ,
but (a ∗ a)min{0.65,0.67} = 00.65∈µ,

(3) µ is not an (q,∈∨q)-fuzzy subquasigroup because a0.51qµ and b0.81qµ,
but (a ∗ b)min{0.51,0.81} = c0.51∈∨qµ,

(4) µ is not an (∈∨q,∈∨q)-fuzzy subquasigroup because a0.63 ∈ qµ and
c0.77 ∈ qµ, but (a ∗ c)min{0.63,0.77} = c0.63∈∨qµ. 2

Now we prove some basic properties of (α, β)-fuzzy quasigroups.

Lemma 3.7. If µ is a nonzero (∈,∈)-fuzzy subquasigroup of G, then µ is a
subquasigroup of G.
Proof. If µ is not a subquasigroup, then µ(x) > 0, µ(y) > 0 and µ(x∗y) = 0
for some x, y ∈ µ. But in this case xµ(x), yµ(y) ∈ µ and (x∗y)min{µ(x),µ(y)}∈µ,
which is a contradiction. Hence µ(x ∗ y) > 0, i.e., x ∗ y ∈ µ. So, µ is a
subquasigroup.

Lemma 3.8. If µ is a nonzero (∈, q)-fuzzy subquasigroup of G, then µ is a
subquasigroup of G.
Proof. Similarly as in the previous proof suppose that x, y ∈ µ and x∗y 6∈ µ.
Then µ(x) > 0, µ(y) > 0 and µ(x ∗ y) = 0. Consequently,

µ(x ∗ y) + min{µ(x), µ(y)} = min{µ(x), µ(y)} 6 1.

Hence (x ∗ y)min{µ(x),µ(y)}qµ, which is impossible. Thus µ(x ∗ y) > 0, so
x ∗ y ∈ µ.

Lemma 3.9. If µ is a nonzero (q,∈)-fuzzy subquasigroup of G, then µ is a
subquasigroup of G.
Proof. Let x, y ∈ µ. Then µ(x) > 0 and µ(y) > 0. Thus µ(x) + 1 > 1
and µ(y) + 1 > 1, which imply that x1qµ and y1qµ. If µ(x ∗ y) = 0,
then µ(x ∗ y) < 1 = min{1, 1}. Therefore, (x ∗ y)min{1,1}∈µ, which is a
contradiction. Therefore µ(x ∗ y) > 0, i.e., x ∗ y ∈ µ.
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Lemma 3.10. If µ is a nonzero (q, q)-fuzzy subquasigroup of G, then µ is
a subquasigroup of G.

Proof. Let x, y ∈ µ. Then µ(x) > 0 and µ(y) > 0. Thus µ(x) + 1 > 1
and µ(y) + 1 > 1. This implies that x1qµ and y1qµ. If µ(x ∗ y) = 0, then
µ(x∗y)+min{1, 1} = 0+1 = 1, and so (x∗y)min{1,1}qµ. This is impossible,
and hence µ(x ∗ y) > 0, i.e., x ∗ y ∈ µ.

By using a very similar argumentation as in the proof of the above four
lemmas we can prove the following theorem.

Theorem 3.11. If µ is a nonzero (α, β)-fuzzy subquasigroup of G, then µ
is a subquasigroup of G. 2

Theorem 3.12. Let S be a subquasigroup of G. Then any fuzzy set µ of G
such that µ(x) > 0.5 for all x ∈ S and µ(x) = 0 otherwise is a (α,∈∨q)-
fuzzy subquasigroup.

Proof. (i) Let x, y ∈ G and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ and yt2 ∈ µ.
Then µ(x) > t1 and µ(y) > t2. Thus x, y ∈ S, and so x ∗ y ∈ S, i.e.,
µ(x ∗ y) > 0.5. If min{t1, t2} 6 0.5, then µ(x ∗ y) > 0.5 > min{t1, t2}.
Hence (x∗y)min{t1,t2} ∈ µ. If min{t1, t2} > 0.5, then µ(x∗y)+min{t1, t2} >
0.5 + 0.5 = 1 and so (x ∗ y)min{t1,t2}qµ. Therefore (x ∗ y)min{t1,t2} ∈∨qµ.

(ii) Let x, y ∈ G and t1, t2 ∈ (0, 1] be such that xt1qµ and yt2qµ.
Then x, y ∈ S, µ(x) + t1 > 1 and µ(y) + t2 > 1. Since x ∗ y ∈ S, we
have µ(x ∗ y) > 0.5. If min{t1, t2} 6 0.5, then µ(x ∗ y) > 0.5 > min{t1, t2}.
Hence (x∗y)min{t1,t2} ∈ µ. If min{t1, t2} > 0.5, then µ(x∗y)+min{t1, t2} >
0.5 + 0.5 = 1 and so (x ∗ y)min{t1,t2}qµ. Therefore (x ∗ y)min{t1,t2} ∈∨qµ.

(iii) Let x, y ∈ G and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ and yt2qµ.
Then µ(x) > t1 and µ(y) + t2 > 1. Since x, y ∈ S, also x ∗ y ∈ S, i.e.,
µ(x ∗ y) > 0.5. Analogously as in (i) and (ii) we obtain (x ∗ y)min{t1,t2} ∈ µ
for min{t1, t2} 6 0.5 and (x ∗ y)min{t1,t2}qµ for min{t1, t2} > 0.5. Thus
(x ∗ y)min{t1,t2} ∈∨qµ.

(iv) The case xt1qµ and yt2 ∈ µ is analogous to (iii).

Theorem 3.13. A fuzzy set µ of G is an (∈,∈∨q)-fuzzy subquasigroup if
and only if it satis�es the inequality

µ(x ∗ y) > min{µ(x), µ(y), 0.5}. (1)
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Proof. Let µ be an (∈,∈ ∨q)-fuzzy subquasigroup of G. Suppose that for
x, y ∈ G we have min{µ(x), µ(y)} < 0.5. If µ(x ∗ y) < min{µ(x), µ(y)},
then xt ∈ µ and yt ∈ µ for any t such that µ(x ∗ y) < t < min{µ(x), µ(y)}.
but in this case (x ∗ y)min{t,t} = (x ∗ y)t∈∨qµ, a contradiction. This means
that in the case min{µ(x), µ(y)} < 0.5 must be µ(x ∗ y) > min{µ(x), µ(y)}.

If min{µ(x), µ(y)} > 0.5, then x0.5 ∈ µ and y0.5 ∈ µ, which imply

(x ∗ y)min{0.5,0.5} = (x ∗ y)0.5 ∈∨qµ.

Hence µ(x∗y) > 0.5. Otherwise, µ(x∗y)+0.5 < 0.5+0.5 = 1, a contradic-
tion. Consequently, µ(x ∗ y) > 0.5 = min{µ(x), µ(y), 0.5} for all x, y ∈ G.

Conversely, assume that the inequality mentioned in the above theorem
is valid. Let x, y ∈ G and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ and yt2 ∈ µ.
Then µ(x) > t1 and µ(y) > t2. In the case µ(x ∗ y) > min{t1, t2} we
obtain (x ∗ y)min{t1,t2} ∈ µ. In the case µ(x ∗ y) < min{t1, t2} we have
min{µ(x), µ(y)} > 0.5. If not, then

µ(x ∗ y) > min{µ(x), µ(y), 0.5} > min{µ(x), µ(y)} > min{t1, t2},
which is a contradiction. So, in this case

µ(x ∗ y) + min{t1, t2} > 2µ(x ∗ y) > 2min{µ(x), µ(y), 0.5} = 1,

i.e., (x∗y)min{t1,t2}qµ. Hence µ is an (∈,∈∨q)-fuzzy subquasigroup of G.
Corollary 3.14. Any (∈,∈ ∨q)-fuzzy subquasigroup µ of G satisfying the
inequality µ(x) < 0.5 is an ordinary fuzzy subquasigroup of G. 2

Theorem 3.15. A fuzzy set µ of G is its (∈,∈∨q)-fuzzy subquasigroup if
and only if for every t ∈ (0, 0.5] each nonempty level U(µ; t) is a subquasi-
group of G.
Proof. Assume that µ is an (∈,∈ ∨q)-fuzzy subquasigroup of G and let
t ∈ (0, 0.5] be such that U(µ; t) 6= ∅. If x, y ∈ U(µ; t), then µ(x) > t and
µ(y) > t. Thus

µ(x ∗ y) > min{µ(x), µ(y), 0.5} > min{t, 0.5} = t.

So, x ∗ y ∈ U(µ; t). Hence U(µ; t) is a subquasigroup of G.
Conversely, suppose that each nonempty level U(µ; t), t ∈ (0, 0.5], is a

subquasigroup of G. If there are x, y ∈ G such that

µ(x ∗ y) < min{µ(x), µ(y), 0.5},
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then also
µ(x ∗ y) < t1 < min{µ(x), µ(y), 0.5}

for some t1. This means that x, y ∈ U(µ; t1) and x ∗ y /∈ U(µ; t1), which
contradicts to the assumption that all U(µ; t) are subquasigroups. Therefore

µ(x ∗ y) < min{µ(x), µ(y), 0.5}.

So, µ is an (∈,∈∨q)-fuzzy subquasigroup of G.

Theorem 3.16. The nonempty intersection of any family of (∈,∈∨q)-fuzzy
subquasigroups of G is an (∈,∈∨q)-fuzzy subquasigroups of G.
Proof. Let {λi : i ∈ Λ} be a �xed family of (∈,∈∨q)-fuzzy subquasigroups
of G and let λ be the nonempty intersection of this family. If xt1 , yt2 ∈ λ
and (x ∗ y)min{t1,t2}∈∨qλ for some x, y ∈ G and t1, t2 ∈ (0, 1], then

λ(x ∗ y) < min{t1, t2} and λ(x ∗ y) + min{t1, t2} 6 1.

Thus λ(x ∗ y) < 0.5.
Since each λi is an (∈,∈∨q)-fuzzy subquasigroup, the family {λi : i ∈ Λ}

can be divided into two disjoint parts:

Λ′ = {λi |λi(x ∗ y) > min{t1, t2}}

and

Λ′′ = {λi |λi(x ∗ y) < min{t1, t2} and λi(x ∗ y) + min{t1, t2} > 1}.

If λi(x ∗ y) > min{t1, t2} for all λi, then also λ(x ∗ y) > min{t1, t2}, which
is a contradiction. So, for some λi we have λi(x ∗ y) < min{t1, t2} and
λi(x ∗ y) + min{t1, t2} > 1. Thus min{t1, t2} > 0.5, whence λi(x) > λ(x) >
t1 > min{t1, t2} > 0.5 for all λi ∈ Λ′′. Similarly λi(y) > 0.5 for all λi ∈ Λ′′.
Now suppose that t = λi(x ∗ y) < 0.5 for some λi. Let t′ ∈ (0, 0.5) be such
that t < t′, then λi(x) > 0.5 > t′ and λi(y) > 0.5 > t′, that is xt′ ∈ λi and
yt′ ∈ λi but λi(x ∗ y) = t < t′ and λi(x ∗ y) + t′ < 1. So, (x ∗ y)t′∈∨qλi.
This contradicts that λi is a (∈,∈∨q) fuzzy subquasigroup of G. Hence
λi(x∗y) > 0.5 for all λi, and thus λ(x∗y) > 0.5. This is impossible because
for all x, y ∈ G we have λ(x∗y) < 0.5. Therefore (x∗y)min{t1,t2} ∈∨qλ.

For any fuzzy subset µ of G and any t ∈ (0, 1] we consider two subsets:

Q(µ; t) = {x ∈ G |xtqµ} and [µ]t = {x ∈ G |xt ∈∨qµ}.
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It is clear that [µ]t = U(µ; t) ∪Q(µ; t).
In Theorem 3.15 we have shown that a fuzzy subset µ of a quasigroup

G is an (∈,∈∨q)-fuzzy subquasigroup of G if and only if U(µ; t) 6= ∅ is a
subquasigroup of G for all 0 < t 6 0.5. Now we show a similar result for
[µ]t.

Theorem 3.17. A fuzzy subset µ of G is an (∈,∈∨q)-fuzzy subquasigroup
of G if and only if [µ]t is a subquasigroup of G for all t ∈ (0, 0.5].

Proof. Let µ be an (∈,∈∨q)-fuzzy subquasigroup of G. Let x, y ∈ [µ]t
for some t ∈ (0, 0.5]. Then µ(x) > t or µ(x) + t > 1 and µ(y) > t or
µ(y)+t > 1. Since µ is an (∈,∈∨q)-fuzzy subquasigroup, we have µ(x∗y) >
min{µ(x), µ(y), 0.5} (Theorem 3.13). This implies µ(x ∗ y) > min{t, 0.5} =
t. So, x ∗ y ∈ [µ]t.

Conversely, let µ be a fuzzy subset of G and let [µ]t be a subquasigroup
of G for all t ∈ (0, 0.5]. If µ(x ∗ y) < t < min{µ(x), µ(y), 0.5} for some t ∈
(0, 0.5], then x, y ∈ [µ]t and x∗y ∈ [µ]t. Hence µ(x∗y) > t or µ(x∗y)+t > 1, a
contradiction. Therefore µ(x∗y) > min{µ(x), µ(y), 0.5} for all x, y ∈ G.

Lemma 3.18. Let µ be an arbitrary fuzzy set de�ned on G and let x ∈ G.
Then µ(x) = t if and only if x ∈ U(µ; t), x /∈ U(µ; s) for all s > t. 2

Theorem 3.19. Let {At}t∈Γ, where Γ ⊆ (0, 0.5] be a collection of subquasi-
groups of G such that G =

⋃
t∈Γ

At, and for s, t ∈ Γ, s < t if and only if
At ⊂ As. Then a fuzzy set µ de�ned by

µ(x) = sup{t ∈ Γ |x ∈ At},

is an (∈,∈∨q)-fuzzy subquasigroup of G.

Proof. According to Theorem 3.15, it is su�cient to show that for every
t ∈ (0, 0.5], each nonempty U(µ; t) is a subquasigroup of G. We consider
two cases:

(i) t = sup{s ∈ Γ | s < t}
(ii) t 6= sup{s ∈ Γ | s < t}.

In the �rst case

x ∈ U(µ; t) ←→ (x ∈ As ∀s < t) ←→ x ∈
⋂
s<t

As.
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So, U(µ; t) =
⋂
s<t

As, which is a subquasigroup of G. In the second case, we
have U(µ; t) =

⋃
s≥t

As. Indeed, if x ∈ ⋃
s>t

As, then x ∈ As for some s > t.

Thus µ(x) > s > t, i.e., x ∈ U(µ; t). This proves
⋃
s>t

As ⊂ U(µ; t). To prove

the converse inclusion consider x /∈ ⋃
s>t

As. Then x /∈ As for all s > t. Since

t 6= sup{s ∈ Γ | s < t}, there exists ε > 0 such that (t− ε, t)∩ Γ = ∅. Hence
x /∈ As for all s > t− ε, which means that if x ∈ As, then s 6 t− ε. Thus
µ(x) ≤ t − ε < t, and so x /∈ U(µ; t). Therefore U(µ; t) =

⋃
s>t

As. Since,

as it is not di�cult to verify,
⋃
s>t

As is a subquasigroup of G, we see that

U(µ; t) is a subquasigroup in any case.

Theorem 3.20. For any chain A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = G of sub-
quasigroups of G there exists an (∈,∈∨q)-fuzzy subquasigroup of G for which
level sets coincide with this chain.
Proof. Let t0, t1, . . . , tn be a �nite decreasing sequence in [0, 1]. Consider
the fuzzy set µ on G de�ned by µ(A0) = t0 and µ(Ak \ Ak−1) = tk for
0 < k 6 n. Let x, y ∈ G. If x, y ∈ Ak \Ak−1, then x ∗ y ∈ Ak and

µ(x ∗ y) > tk = min{µ(x), µ(y)}.
Now let x ∈ Ai \ Ai−1 and y ∈ Aj \ Aj−1, where i 6= j. If i > j, then
Aj ⊂ Ai, µ(x) = ti < tj = µ(y), x ∗ y ∈ Ai. Thus

µ(x ∗ y) > ti = min{µ(x), µ(y)}.
Analogously for i < j. So, µ is a fuzzy subquasigroup. It is not di�cult to
see that it is an (∈,∈∨q)-fuzzy subquasigroup.

Such de�ned µ has only the values t0, t1, . . . , tn. Their level subsets are
subquasigroups and form the chain

U(µ; t0) ⊂ U(µ; t1) ⊂ . . . ⊂ U(µ; tn) = G.

We now prove that U(µ; tk) = Ak for 0 6 k 6 n. Indeed,

U(µ; t0) = {x ∈ G |µ(x) > t0} = A0.

Moreover, Ak ⊆ U(µ; tk) for 0 < k > n. If x ∈ U(µ; tk), then µ(x) > tk
and so x /∈ Ai for i > k. Hence µ(x) ∈ {t0, t1, . . . , tk}, which implies x ∈ Ai

for some i 6 k. Since Ai ⊆ Ak, it follows that x ∈ Ak. Consequently,
U(µ; tk) = Ak for every 0 < k 6 n. This completes the proof.
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4. Fuzzy subquasigroups with thresholds
De�nition 4.1. Let 0 6 λ1 < λ2 6 1 be �xed. A fuzzy set µ of a quasigroup
G is called a fuzzy subquasigroup with thresholds (λ1, λ2), if

max{µ(x ∗ y), λ1} > min{µ(x), µ(y), λ2}
for all x, y ∈ G.
It is not di�cult to see that:

• for λ1 = 0 and λ2 = 1 we have an ordinary fuzzy subquasigroup,
• for λ1 = 0 and λ2 = 0.5 we have an (∈,∈∨q)-fuzzy subquasigroup,
• a fuzzy subquasigroup is a fuzzy subquasigroup with some thresholds,
• also any (∈,∈∨q)-fuzzy subquasigroup is a fuzzy subquasigroup with

some thresholds.
Example 4.2. Let G be a commutative quasigroup de�ned in Example 3.6
and let µ(0) = 0.5, µ(a) = 0.7, µ(b) = 0.4, µ(c) = 0.3. Then:

1. µ is a fuzzy subquasigroup with thresholds λ1 = 0.4 and λ2 = 0.65,
but it is not a fuzzy subquasigroup with thresholds λ1 = 0.6 and
λ2 = 0.8 since max{µ(a ∗ a), 0.6} = 0.6 < 0.7 = min{µ(a), µ(a), 0.8},

2. µ is a fuzzy subquasigroup with thresholds λ1 = 0.77 and λ2 = 0.88,
but it is not an ordinary fuzzy subquasigroup because µ(a ∗ b) =
µ(c) = 0.3 < 0.4 = min{µ(a), µ(b)}. 2

Theorem 4.3. A fuzzy set µ of a quasigroup G is a fuzzy subquasigroup
with thresholds (λ1, λ2) if and only if for all t ∈ (λ1, λ2] each nonempty
U(µ; t) is a subquasigroup of G.
Proof. The proof is similar to the proof of Theorem 3.15.

Note that in the above theorem the restriction t ∈ (λ1, λ2] is essential.
U(µ; t) for t ∈ (0, λ1] may not be a subquasigroup of G.
Example 4.4. The set Z of all integers with three operations ◦, \, / de�ned
as follows: x◦y = x−y, x\y = x−y, x/y = x+y, is a quasigroup. Consider
the following fuzzy set

µ(x) =





0 if x < 0 and x 6= 2k,
0.3 if x>0 and x 6= 2k,
0.5 if x = 2n and x 6= 4k,
0.8 if x = 4n and x 6= 8k,
0.9 if x = 8n and x < 0,
1 if x = 8n and x > 0,
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where k and n are arbitrary integers. Then

U(µ; t) =





Z for t = 0,
2Z ∪ Z+ for t ∈ (0, 0.3],

2Z for t ∈ (0.3, 0.5],
4Z for t ∈ (0.5, 0.8],
8Z for t ∈ (0.8, 0.9],
8Z+ for t ∈ (0.9, 1],

where pZ denotes the set of all integers divided by p, Z+ � the set of
all positive integers. It is clear that for t ∈ (0.3, 0.9] each U(µ; t) is a
subguasigroup of this quasigroup. For t ∈ (0, 0.3] and t ∈ (0.9, 1] U(µ; t) are
not subquasigroups. So, in view of Theorem 4.3, µ is a fuzzy subquasigroup
with thresholds λ1 = 0.3 and λ2 = 0.9. But µ is not a fuzzy subquasigroup
since

µ(3 ◦ 8) = µ(−5) = 0 � 0.3 = min{µ(3), µ(8)}.
It is not an (∈,∈∨q)-fuzzy subquasigroup too because 30.2 ∈ µ and 80.5 ∈ µ
but (3 ◦ 8)min{0.2,0.5}∈∨qµ. 2

Theorem 4.5. Let f : G1 → G2 be an epimorphism of quasigroups and let µ
and ν be fuzzy subquasigroups of G1 and G2, respectively. Then f(µ) de�ned
by

f(µ)(y) = sup{µ(x) | f(x) = y for all y ∈ G2}
and f−1(ν) de�ned by

f−1(ν)(x) = ν(f(x)) for all x ∈ G1

are fuzzy subquasigroups of G2 and G1, respectively. Moreover, if µ and ν
are with thresholds (λ1, λ2), then also f(µ) and f−1(ν) are with thresholds
(λ1, λ2).

Proof. Let y1, y2 ∈ G2. Then

max{f(µ)(y1 ∗ y2), λ1} = max{sup{µ(x1 ∗ x2), |f(x1 ∗ x2) = y1 ∗ y2}, λ1}
= sup{max{µ(x1 ∗ x2), λ1} | f(x1 ∗ x2) = y1 ∗ y2}
> sup{min{µ(x1), µ(x2), λ1}|f(x1) = y1, f(x2) = y2}
= min{sup{µ(x1) | f(x1) = y1},

sup{µ(x2) | f(x2) = y2}, λ2}
= min{f(µ)(y1), f(µ)(y2), λ2}.
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Similarly, for x, y ∈ G1 we obtain

max{f−1(ν)(x ∗ y), λ1} = max{ν(f(x ∗ y)), λ1} = max{µ(f(x) ∗ f(y)), λ1}
> min{ν(f(x)), ν(f(y)), λ2} = min{f−1(ν)(x), f−1(ν)(y), λ2},

which completes the proof.
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