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Secondary representation of semimodules

over a commutative semiring

Reza Ebrahimi Atani and Shahabaddin Ebrahimi Atani

Abstract

In this paper, we analyze some results on the theory secondary represen-
tation of semimodules over a commutative semiring with non-zero identity
analogues to the theory secondary representation of modules over a com-
mutative ring with non-zero identity.

1. Introduction

Semimodules constitute a fairly natural generalization of modules, with
broad applications in the mathematical foundations of computer science [4].
The main part of this paper is devoted to stating and proving analogues to
several well-known results in the theory of modules.

For the sake of completeness, we state some definitions and notations
used throughout. By a commutative semiring we mean an algebraic system
R = (R,+,-) such that (R,+) and (R,-) are commutative semigroups,
connected by a(b+ ¢) = ab + ac for all a,b,c € R, and there exists 0 € R
such that r 4+ 0 = r and 70 = 0r = 0 for all » € R. Throughout this paper
let R be a commutative semiring. A (left) semimodule M over a semiring
R is a commutative additive semigroup which has a zero element, together
a mapping from R x M into M (sending (r,m) to rm) such that (r+s)m =
rm + sm, r(m+p)=rm+rp, r(sm)= (rs)m and Om = r0y; = 0ps for
all m,pe M and r,s € R.

Let M be a semimodule over the semiring R, and let N be a subset of

M. We say that N is a subsemimodule of M, or an R-subsemimodule of M,
percisely when N is itself an R-semimodule with respect to the operations
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for M (so Opr € N). It is easy to see that if » € R, then

rM ={rm:m e M}

is a subsemimodule of M. The semiring R is considered to be also a semi-
module over itself. In this case, the subsemimodules of R are called ideals
of R. A subtractive subsemimodule (= k-subsemimodule) N is a subsemi-
module of M such that if z,2 + y € N, then y € N (so {On} is a k-
subsemimodule of M). If M is a semimodule over a semiring R, then M
is Artinian if any non-empty set of k-subsemimodules of M has minimal
member with respect to the set inclusion. This definition is equivalent to
the descending chain condition on k-subsemimodules of M. A prime ideal
of R is a proper ideal P of R in which x € P or y € P whenever xy € P.

A subsemimodule N of a semimodule M over a semiring R is called
a partitioning subsemimodule (=Qpr-subsemimodule) if there exists a non-
empty subset Qps of M such that

(1) RQwm C Qur;
(2) M=U{g+N:qe€Qum};
(3) If g1,92 € Qpr then (g1 + N) N (g2 + N) # 0 if and only if ¢1 = ¢o.

It is easy to see (cf. [5]) that if M = Qr, then {0} is a @ p/-subsemimo-
dule of M.

Remark 1.1. Let M be a semimodule over a semiring R, and let N be a
Qr-subsemimodule of M. We put M/N = {q¢+ N : ¢ € Qp}. Then M/N
forms a commutative additive semigroup which has zero element under the
binary operation @ defined as follows: (g1 + N)® (g2 + N) = g3 + N where
q3 € Qyr is the unique element such that ¢1 +¢g2+ N C g3+ N. Note that by
the definition of @ js-subsemimodule, there exists a unique qo € Qs such
that Opy + N C go + N. Then gy + N is a zero element of M/N.

Now let 7 € R and suppose that ¢ + N,q2 + N € M/N are such that
g1+ N =g2+ N in M/N. Then g1 = g2, we must have rqg; + N = rga + N.
Hence we can unambiguously define a mapping from R x M/N into M /N
(sending (r,¢q1 + N) to rq1 + N) and it is routine to check that this turns
the commutative semigroup M /N into an R-semimodule. We call this R-
semimodule the residue class semimodule or factor semimodule of M modulo

N [4].

We need the following theorem proved in [5, Lemma 2.4, Proposition
2.5, Theorem 2.6, Theorem 2.7 and Theorem 2.10].
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Theorem 1.2. Assume that N is a Qpr-subsemimodule of a seminodule M
over a semiring R and let T, L be k-subsemimodules of M containing N.

Then the following hold:
(1) If gqo+ N is a zero in M /N, then qo + N = N.
) N is a k-subsemimodule of M.
(iii) L/N ={q+ N :q € Qy N L} is a k-subsemimodule of M/N.
) If H is a k-subsemimodule of M/N, then H = K/N for some
k-subsemimodule K of M.
(v) T/N = L/N if and only if T = L. O

2. Secondary semimodules

We begin with the key lemma of this paper.

Lemma 2.1. Let M be a semimodule over a semiring R, N an Q-
subsemimodule of M and qo the unique element Qns such that qo + N s
the zero in M/N. Then the following hold:

(1) go € N and if g€ NNQyur, then g € N.
(i) If q1,q2 € Qur and a,b € N with 1 + a = g2 + b, then q1 = ¢o.

(i4i) If for each n € N, there exists ' € N such that n+n' =0, then
N=a+N={a+n:nec N} for everya € N.

Proof. (i) Since by Theorem 1.2, g9 + N = N is a k-subsemimodule of M,
we must have go € N. Moreover, since ¢+ qo € (¢+ N) N (g0 + N), we get
=qo € N.

(74) Since g1 +a € (g1 + N) N (g2 + N), we must have g1 = go.

(7i7) It is suffices to show that N C a + N. Let n € N. Since N is
a Q) subsemimodule, there is an element ¢ € Qs and n’ € N such that
n=q-+n',s0 q € N since every Qy/-submodule is a k-subsemimodule. By
assumption, a+a’ = 0 for some '’ € N. Hencen =a+a' +q+n' € a+ N,
and the proof is complete. ]

Assume that R is a semiring and let NV be an R-subsemimodule of a
semimodule M. Then N is a relatively divisible subsemimodule (or an RD-
subsemimodule) if rN = N NrM for all r € R. Since rN C NNrM, we
see that N is an RD-subsemimodule of M if and only if for all z € M
and » € R, rx € N implies ro = ry for some y € N. Hence, N is an
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RD-subsemimodule of M if and only if @ € N and the equation rz = a has
a solution in M, then it is solvable in N too.

Lemma 2.2. Let R be a semiring, and let P, N be subsemimodules of the
R-semimodule M such that P C N C M. Then:

(i) If P is an RD-subsemimodule of N and N is an RD-subsemimodule
of M, then P is an RD-subsemimodule of M.

(i) If P is an RD-subsemimodule of M, then P is an RD-subsemimodule
of N.

Proof. The proof is straightforward. O

Proposition 2.3. Let R be a semiring, M an R-semimodule, P a Qas-sub-
semimodule of M and N a k-subsemimodule of M such that P C N C M.
Then:

(¢) If N is an RD-subsemimodule of M, then N/P is an RD-subsemi-
module of M/P.

(#4) If P is an RD-subsemimodule of M and N/P is an RD-subsemimo-
dule of M /P, then N is an RD-subsemimodule of M.

Proof. (i) Let rz = q1 + P be an equation over N/P that admits a solution
in M/P, say, r(qg2 + P) = q1 + P where ¢2 € Qp and ¢1 € Qp NN, so
rqa = q1. By the purity of N in M the equation rz = ¢; has a solution
x=ain N. Then a = g3 + b for some g3 € Qyy NN and b € P (since N is
a k-subsemimodul), so rq3 + rb = ¢1. Hence rqs = ¢ by Lemma 2.1. Thus
r(qgs+ P) = q1 + P. Hence x = g3+ P is a solution of our original equation.

(ii) Let rx = a be an equation over N which has a solution z = ¢ in
M. There are elements g1 € N N Qu, ¢ € Qu and e, f € P such that
a=q +eand c= g+ f,s0rq2+7f = q +e Hence rqgz = q1. Therefore,
we must have r(qg2 + P) = ¢1 + P. By purity of N/P in M/P there exist
g3+ P € N/P such that r(gs+P) = ¢1+ P, where g3 € NNQs, 80 g3 = q1.
Since r(qg3 + f) =rqe+7rf = q1 + e, we get x = g3 + f is a solution of our
original equation. O

Proposition 2.4. Let M be a semimodule over o semiring R, N an Q-
subsemimodule of M and r € R. Let qy be the unique element of Qpr such
that qo + N is the zero in M/N. Then:

(1) M + N is an (rQ)nr-subsemimodule of M. In particular,

(rMf + N)/N ={rq+ N :rqerQyunN(rM+ N)}
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is a k-subsemimodule of M /N.
(i) r(M/N)= (rM + N)/N. In particular, N/N = {qo + N}.

Proof. (i) Clearly, R(rQ) C rQ and J{r¢+ N : ¢ € Qn} C rM + N.
For the reverse inclusion, assume that rm +n € rM 4+ N where m € M
and n € N. There are elements ¢ € Q and nq € N such that m = g + ny
since N is a @ ps-subsimimodule of M, so rm+n =rq+rn;+n € rq+ N.
Hence rM + N = U{rqg+ N : ¢ € Q}. It is easy to see that if rq1,rq € rQ,
then (rq1 + N) N (rga + N) # 0 if and only if rq1 = rge. It follows from
Theorem 1.2 that rM + N is a k-subsemimodule of M containing N. Then
(rM + N)/N is a k-subsemimodule of M/N by Theorem 1.2.

(#4) Since the inclusion (rM + N)/N C r(M/N) is trivial, we will
prove the reverse inclusion. Let r(¢ + N) = r¢ + N € r(M/N). Since
rq € (rM 4+ N) N rQ, we must have r(¢ + N) € (rM + N)/N by (i), and
we have equality. Finally, N/N = {q+ N :q€ NNQun} = {q + N} by
Lemma 2.1. O

Let R be a semiring with identity. An R-semimodule M is said to be
secondary if M # 0 and if, for each r € R, the endomorphism ¢, ps (i.e.,
multiplication by 7 in M) is either surjective or nilpotent. Equivalently, M
is secondary if and only if either rM = M or r"M = 0 for some n for every
r € R. It is easy to see that the nilradical of M is a prime ideal P, and M
is said to be P-secondary [7].

Proposition 2.5. Let N be a proper Qr-subsemimodule of a P-secondary
semimodule M over a semiring R. Then M/N is a P-secondary R-semi-
module.

Proof. Assume that qg is the unique element (s such that go + N is the
zero in M/N and let r € R. If r € P, then r(M/N) = (rM + N)/N =
(M + N)/N = M/N by Proposition 2.4. If r ¢ P, then there is a positive
integer s such that r*(M/N) = (r*M + N)/N = N/N = {qo + N}, as
required. ]

Theorem 2.6. Assume that R is a semiring and let N be a non-zero proper
RD-subsemimodule (resp. pure subsemimodule) of an R-semimodule M. If
N is a Qpr-subsemimodule of M, then M is P-secondary if and only if N
and M/N are secondary.

Proof. 1f M is secondary, then M /N is secondary by Proposition 2.7. To see
that N is secondary, assume that a € R. If a € P, then a"N C a"M = 0 for
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some n. So suppose that a ¢ P. Then aN = NNaM = NN M = N since
N is an RD-submodule. Conversely, assume that both N and M/N are
secondary and let gp be the unique element QQps such that gg+ N is the zero
in M/N. Let r € R. If r € P, then v (M/N) = (r™M + N)/N = N/N =
{qo + N} by Proposition 2.6 and r™N = 0 for some m. Hence 7™M C N
by Proposition 2.4 and Theorem 1.2, and 0 = r"N =r"M NN = r"™M.
Ifr¢ P, thenrM+ N =M,rN =N and N =rN = NNrM, so we must
have rM = M. Thus M is secondary. O

Let R be a semiring. An element a € R is said to be regular if there
exists b € R such that a = a?b, and R is said to be regular if each of its
elements is regular.

Theorem 2.7. Assume that R is a regular semiring and let N be a non-zero
proper Qpr-subsemimodule of an R-semimodule M. Then M is secondary
if and only if N and M/N are secondary.

Proof. By Theorem 2.6, it suffices to show that every subsemimodule of
M is a RD-subsemimodule of M. Let N be a subsemimodule of M. It
is enough to show that if n € N and the equation rx = n (where r € R)
has a solution in M, say m, then it is solvable in N. By assumption, there
is an element s € R such that r = r?s. Hence 7(sn) = r’sm = rm = n.

Therefore, the equation rx =n has a solution x = sn in N. O

Lemma 2.8. Let R be a semiring. Then finite sum of P-secondary semi-
modules 1s P-secondary.

Proof. Let M = M; + ...+ My, where for each i, M; is P-secondary. Let
a € R. If a € P, then there is a positive integer n such that a"M; = 0 for
every i. Hence a"M = 0. Similarly, if a ¢ P, then aM = M. Thus M is
P-secondary. O

Let M be a semimodule over a semiring R. A secondary representation
of M is an expression of M as a sum of secondary submodules, say M =
Ni+...4+Ng. The representation is said to be minimalif (1) the prime ideals
nilrad(NV;) = P; are distinct and (2) none of the summand N; is redundant.
By Lemma 2.8, any secondary representation of M can be refined to a
minimal one. If M has a secondary representation, we shall say that M is
representable |7].
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Definition 2.9. Let R be a semiring. An R-semimodule M is sum-irre-
ducible if M # 0 and the sum of any two proper subsemimodules of M
is always a proper subsemimodule. An R-semimodule M is strongly sub-
tractive if every subsemimodule of M is a k-subsemimodule and for each
m € M there exists m’ € M such that m +m’ =0 [2].

Theorem 2.10 Every strongly subtractive Artinian semimodule M over a
semiring R has a secondary representation.

Proof. First, we show that if M is sum-irreducible, then M is secondary.
Suppose M is not secondary. Then there is an element r € R such that
rM # M and r"M # 0 for all positive integers n. By assumption, there
exists a positive integer k such that rEM = M = . Set My =
Kergp,r py and My = r*M. Then M; and My are proper subsemimodules
of M. Let x € M. Then r*z = r?*y for some y € M. We can write
y+y = 0 for some y € M. Hence rFy + r*y’ = 0, r?ky + r¥y/ = 0
and = = (z + r*y) + ¥y, where x + r¥y/ € M; and r*y € M,. Hence
M = Mj 4+ Ms, and therefore M is not sum-irreducible.

Next, suppose that M is not representable. Then the set of non-zero
subsemimodules of M which are not representable has a minimal element N.
Certainly N is not secondary and N # 0. Hence N is the sum of two strictly
smaller subsemimodules N1 and Na. By the minimality of N, each Ny, Na
is representable, and therefore so also is N, which is a contradiction. O
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