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On prolongations of quasigroups

Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract
We prove that any quasigroup admissing complete or quasicomplete map-
ping has a prolongation to a quasigroup having one element more.

1. Introduction
By a prolongation of a quasigroup we mean a process which shows how,
starting from a quasigroup Q(·) of order n, we can obtain a quasigroup
Q′(◦) of order n + 1 such that the set Q′ is obtained from the set Q by
the adjunction of one additional element. In other words, it is a process
which shows how a given Latin square extends to a new Latin square by
the adjunction of one additional row and one column. The first construc-
tion of prolongation was proposed by R. H. Bruck [7] who considered only
the case of idempotent quasigroups. More general construction was given
by J. D�enes and K. P�asztor [9]. Further generalizations, for special types
of quasigroups, have been discussed in [2] and [3] by V. D. Belousov. In
fact, the construction proposed by V. D. Belousov is more elegant form of
the construction proposed by J. D�enes and K. P�asztor. G. B. Belyavskaya
studied this problem together with the inverse problem, i.e., with the prob-
lem how from a given Latin square of order n one can obtain a Latin square
of order n − 1 (cf. [4, 5, 6]). Quasigroups obtained by the construction
proposed by G. B. Belyavskaya are not isotopic to quasigroups obtained by
the constructions proposed by R. H. Bruck and V.D. Belousov. This means
that we have two different methods of construction of prolongations.

Below we present a third method. Our method can be applied to any
quasigroup of order n with the property that its multiplication table pos-
sesses a partial transversal of length n− 1, i.e., a sequence of n− 1 distinct
elements contained in distinct rows and distinct columns. All these three
constructions are presented in short elegant form.
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2. Definitions and basic facts
In this paper Q(·) always denotes a quasigroup. The set Q′ is identified
with the set Q ∪ {q}, where q /∈ Q.

Any mapping σ of a quasigroup Q(·) defines on Q a new mapping σ,
called conjugated to σ, such that

σ(x) = x · σ(x) (1)
for all x ∈ Q. If σ is the identity mapping ε, then σ(x) = x2. The set

def(σ) = Q \ σ(Q),

where σ(Q) = {σ(x) |x ∈ Q}, is called the defect of σ.
A mapping σ is quasicomplete on a quasigroup Q(·) if σ(Q) contains

all elements of Q except one. In this case there exists an element a ∈ Q,
called special, such that a = σ(x1) = σ(x2) for some x1, x2 ∈ Q. If σ(Q)
contains all elements of Q, then we say that σ is complete. A quasigroup
having at least one complete mapping is called admissible. V. D. Belousov
proved in [3] (see also [2]) that any admissible quasigroup is isotopic to some
idempotent quasigroup and has a prolongation. Since for a given admissi-
ble quasigroup the method of constructions of a prolongation proposed by
V.D. Belousov gives, in fact, a quasigroup which is isotopic to a quasigroup
obtained from the corresponding idempotent quasigroup (by the method
proposed by R. H. Bruck) we will identify these two methods and will call
it the classical construction.

3. Prolongations of admissible quasigroups
1. Classical constructions. The idea of the construction proposed by
R. H. Bruck is presented by the following tables, where the corresponding
empty cells of these tables are identical.

· 1 2 3 4 . . . n

1 1
2 2
3 3
4 4
... . . .
n n

−→

◦ 1 2 3 4 . . . n q

1 q 1
2 q 2
3 q 3
4 q 4
... . . . ...
n q n

q 1 2 3 4 . . . n q
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The quasigroup Q′(◦) obtained from the quasigroup Q(·) is a loop with
the identity q. The operation on Q′ is defined according to the formula:

x ◦ y =





x · y for x, y ∈ Q, x 6= y,
x for x ∈ Q, y = q,
y for x = q, y ∈ Q,
q for x = y ∈ Q′.

(2)

In the construction for a prolongation of an admissible quasigroup Q(·)
proposed by V. D. Belousov [3] the complete mapping σ of Q(·) and its
conjugated mapping σ are used. The operation on Q′ is defined by the
formula:

x ◦ y =





x · y for x, y ∈ Q, y 6= σ(x),
σ(x) for x ∈ Q, y = q,

σσ−1(y) for x = q, y ∈ Q,

q for x ∈ Q, y = σ(x),
q for x = y = q.

(3)

Geometrically this means that the multiplication table (Latin square)
L′ = [a′ij ] of a quasigroup Q′(◦) is obtained from the multiplication table
L = [aij ] of a quasigroup Q(·) by the adjunction of one row and one column
in this way that all elements from the cells aiσ(i) are moved to the last
place of the i-th row and σ(i)-th column of L′. Elements of the cells aiσ(i)

are replaced by q = n + 1. Additionally we put aqq = q. In other words:
a′ij = aij for i 6= σ(i), a′iq = aiσ(i) = σ(i), a′qj = aσ−1(j)j = σσ−1(j) and
a′iσ(i) = a′qq = q.

Example 1. Consider the quasigroup Q(·) with the multiplication table

· 1 2 3 4 5
1 1 2 3 4 5
2 4 3 1 5 2
3 2 5 4 1 3
4 5 4 2 3 1
5 3 1 5 2 4

and its two complete mappings σ =
(

1 2 3 4 5
4 2 1 5 3

)
and τ =

(
1 2 3 4 5
3 1 2 5 4

)
.

Then, as it is not difficult to see, σ =
(

1 2 3 4 5
4 3 2 1 5

)
and τ =

(
1 2 3 4 5
3 4 5 1 2

)
.
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Using these two mappings we can construct two different prolongations:

◦1 1 2 3 4 5 6
1 1 2 3 6 5 4
2 4 6 1 5 2 3
3 6 5 4 1 3 2
4 5 4 2 3 6 1
5 3 1 6 2 4 5
6 2 3 5 4 1 6

◦2 1 2 3 4 5 6
1 1 2 6 4 5 3
2 6 3 1 5 2 4
3 2 6 4 1 3 5
4 5 4 2 3 6 1
5 3 1 5 6 4 2
6 4 5 3 2 1 6

The first prolongation is obtained by σ, the second by τ .
By transpositions of rows and columns, we can transform these two

tables into multiplication tables of loops Q′(?1) and Q′(?2):

?1 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 5 6 1 4
3 3 1 6 5 4 2
4 4 6 1 3 2 5
5 5 4 2 1 6 3
6 6 5 4 2 5 1

?2 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 6 5 1 3 4
3 3 1 2 6 4 5
4 4 5 6 2 1 3
5 5 4 1 3 6 2
6 6 3 4 5 2 1

Since γ(x ?1 y) = α(x) ?2 β(y), where

α =
(

1 2 3 4 5 6
2 4 1 6 5 3

)
, β =

(
1 2 3 4 5 6
4 1 6 3 5 2

)
, γ =

(
1 2 3 4 5 6
1 2 4 5 3 6

)
,

loops Q′(?1) and Q′(?2) are isotopic. This means that also prolongations
Q′(◦1) and Q′(◦2) are isotopic. ¤

If the diagonal of the multiplication table of a quasigroup Q(·) contains
all elements of Q, then as σ we can select the identity mapping. In this
case the formula (3) has the form:

x ◦ y =





x · y for x, y ∈ Q, x 6= y,
x2 for x ∈ Q, y = q,
y2 for x = q, y ∈ Q,
q for x = y ∈ Q′.

(4)

If (Q(·) is an idempotent quasigroup, then (4) coincides with (2) and
Q′(◦) is a loop with the identity q.



On prolongations of quasigroups 191

Example 2. The diagonal of the multiplication table of the additive group
Z3 contains all elements of Z3. So, according to (4), the prolongation Z′3(◦)
has the following multiplication table:

◦ 0 1 2 3
0 3 1 2 0
1 1 3 0 2
2 2 0 3 1
3 0 2 1 3

Putting α =
(

0 1 2 3
3 1 2 0

)
and x ¯ y = α(x ◦ y) we can see that Z′3(◦) is

isotopic to the Klein's group K4(¯).

Using σ =
(

0 1 2
2 0 1

)
and τ =

(
0 1 2
1 2 0

)
we obtain two non-commutative

prolongations:

◦ 0 1 2 3
0 0 1 3 2
1 3 2 0 1
2 2 3 1 0
3 1 0 2 3

◦ 0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 3 0 1 2
3 2 1 0 3

These prolongations also are isotopic to the Klein's group. For the first
we have x ¯ y = α(x) ◦ β(y), for the second x ¯ y = β(x) ◦ α(y), where
α =

(
0 1 2 3
0 3 2 1

)
and β =

(
0 1 2 3
0 1 3 2

)
. ¤

2. The construction proposed by G. B. Belyavskaya. This construc-
tion is valid for admissible quasigroups. At first we consider the case when
Q(·) is an idempotent quasigroup. To find the prolongation Q′(¦) of Q(·)
we select an arbitrary element a ∈ Q. Next, in the multiplication table of
Q(·) we replace all elements of the diagonal, except a, by q and adjunct one
column and one row:
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· 1 2 . . . a . . . n

1 1
2 2
... . . .
a a
... . . .
n n

−→

¦ 1 2 . . . a . . . n q

1 q 1
2 q 2
... . . . ...
a a q
... . . . ...
n q n

q 1 2 . . . q . . . n a

The operation in Q(¦) is defined in the following way:

x ¦ y =





x · y for x, y ∈ Q, x 6= y,
q for x = y ∈ Q− {a},
a for x = y = a,
x for x ∈ Q− {a}, y = q,
y for x = q, y ∈ Q− {a},
q for x = q, y = a,
q for x = a, y = q,
a for x = y = q.

(5)

In a general case, when Q(·) is �only" an admissible quasigroup, we can
select a complete mapping σ of Q and fix an arbitrary element a ∈ Q. Then,
obviously, there exists an uniquely determined element xa ∈ Q such that
a = xa · σ(xa). The prolongation Q′(¦) of Q(·) can be defined by

x ¦ y =





x · y for x, y ∈ Q, y 6= σ(x),
q for x ∈ Q− {xa}, y = σ(x),
a for x = xa, y = σ(xa),

σ(x) for x ∈ Q− {xa}, y = q,
σσ−1(y) for x = q, y 6= σ(xa),

q for x = q, y = σ(xa),
q for x = xa, y = q,
a for x = y = q.

(6)

Selecting different σ and different a we obtain different prolongations.
From a formal point of view, the above construction is a generalization

on the classical construction. Indeed, putting σ(q) = q we extend σ to a
complete mapping of Q′. Next, putting a = xa = q in (6) we obtain (3).
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If the diagonal of the multiplication table of Q(·) contains all elements
of Q, then as σ can be selected the identity mapping and the formula (6)
can be written in the form:

x ¦ y =





x · y for x, y ∈ Q, x 6= y,
q for x = y ∈ Q− {xa},
a for x = y = xa,
x2 for x ∈ Q− {xa}, y = q,
y2 for x = q, y ∈ Q− {xa},
q for x = q, y = xa,
q for x = xa, y = q,
a for x = y = q.

(7)

For idempotent quasigroups it coincides with (5) but, generally, pro-
longations obtained by the method proposed by G. B. Belyavskaya are not
isotopic to prolongations obtained by the method proposed by V. D. Be-
lousov. Below we present the corresponding example.

Example 3. The prolongation Z′3(¦) of the additive group Z3 constructed
according to (7), where a = 1, xa = 2, q = 3, has the following multiplica-
tion table:

¦ 0 1 2 3
0 3 1 2 0
1 1 3 0 2
2 2 0 1 3
3 0 2 3 1

This prolongation is isotopic to the group Z4(+). The connection between
Z4(+) and Z′3(¦) is given by the formula γ(x + y) = α(x) ¦ α(y), where
α =

(
0 1 2 3
3 1 2 0

)
, γ =

(
0 1 2 3
1 2 3 0

)
. So, the prolongation of Z3 constructed by

(7) and the prolongation of Z3 constructed by (4) (in Example 2) are not
isotopic. ¤

Example 4. Let Q(·) and σ be as in Example 1. Then, for example,
for a = 2 we have xa = 3. Whence, according to (6), we obtain the
prolongation:
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¦ 1 2 3 4 5 6
1 1 2 3 6 5 4
2 4 6 1 5 2 3
3 2 5 4 1 3 6
4 5 4 2 3 6 1
5 3 1 6 2 4 5
6 6 3 5 4 1 2

Similarly, for a = 3 we have xa = 2 and consequently

¦ 1 2 3 4 5 6
1 1 2 3 6 5 4
2 4 3 1 5 2 6
3 6 5 4 1 3 2
4 5 4 2 3 6 1
5 3 1 6 2 4 5
6 2 6 5 4 1 3

Applying Theorem 2.5 from [10] we can verify that these prolongations are
not isotopic to the prolongation obtained in Example 1. ¤

4. Our construction
In the previous section methods of construction of a prolongation of quasi-
groups that have a complete mapping were given. But, as it is proved in
[12] (see also [8], p. 36) there are quasigroups which do not possess such
mappings. For example, a group of order 4k + 2 has no complete mapping.

Below, we give a new method of a construction of prolongations for
quasigroups that have a quasicomplete mapping. Our method can also be
applied to quasigroups that have a complete mapping.

Let Q(·) be an arbitrary quasigroup with a quasicomplete mapping σ.
Then |σ(Q)| = n − 1 and def(σ) = d for some d ∈ Q. In this case we also
have σ(x1) = σ(x2) = a, i.e., x1 · σ(x1) = x2 · σ(x2) = a in Q(·), for some
x1, x2, a ∈ Q, x1 6= x2.

The idea of our construction is presented by the following tables, where
for simplicity it is assumed that σ is the identity mapping and all elements
of Q, except x1 and x2, are idempotents.
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· 1 2 . . . x1 . . . x2 . . . n

1 1
2 2
... . . .

x1 a
... . . .

x2 a
... . . .
n n

−→

∗ 1 2 . . . x1 . . . x2 . . . n q

1 q 1
2 q 2
... . . . ...

x1 a q
... . . . ...

x2 q a
... . . . ...
n q n

q 1 2 . . . q . . . a . . . n d

This new table is obtained from the old one by replacing all elements of
the diagonal, except a = x1 · x1, by q and adding one new row and column
such that x ∗ q = q ∗ x = x for x ∈ Q − {x1, x2}, x1 ∗ q = q ∗ x1 = q,
x2 ∗ q = q ∗ x2 = a, q ∗ q = d.

The operation of this new quasigroup is determined by the formula:

x ∗ y =





x · y for x, y ∈ Q, x 6= y,
q for x = y ∈ Q− {x1},
a for x = y = x1,
x for x ∈ Q− {x1, x2}, y = q,
y for x = q, y ∈ Q− {x1, x2},
q for x = x1, y = q or x = q, y = x1,
a for x = x2, y = q or x = q, y = x2,
d for x = y = q.

(8)

In the general case, when σ is an arbitrary quasicomplete mapping of
Q, def(σ) = d, a = σ(x1) = σ(x2), x1 6= x2 and x1 is fixed, the operation of
Q′(∗) has the form:

x ∗ y =





x · y for x, y ∈ Q, y 6= σ(x),
q for x ∈ Q− {x1}, y = σ(x),
a for x = x1, y = σ(x),

σ(x) for x ∈ Q− {x1, x2}, y = q,
σσ−1(y) for x = q, y 6= σ(x1), y 6= σ(x2),

q for x = x1, y = q or x = q, y = σ(x1),
a for x = x2, y = q or x = q, y = σ(x2),
d for x = y = q.

(9)
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If in the above formula we delete x2 and assume that σ is a complete
mapping, then for x1 = xa and d = a this formula will be identical with
(7). This means that our construction is a generalization of the construction
proposed by G. B. Belyavskaya. Consequently, it is also a generalization of
the classical construction.

Example 5. Let Q(·) be a quasigroup defined in Example 1. The mapping
σ =

(
1 2 3 4 5
4 5 2 3 1

)
is quasicomplete on Q, σ =

(
1 2 3 4 5
4 2 5 2 3

)
is its conjugated

mapping, def(σ) = 1, σ(2) = σ(4) = 2. Hence d = 1, a = 2, x1 = 2,
x2 = 4. Putting q = 6 and using our construction we obtain the following
prolongation of Q(·):

∗ 1 2 3 4 5 6
1 1 2 3 6 5 4
2 4 3 1 5 2 6
3 2 6 4 1 3 5
4 5 4 6 3 1 2
5 6 1 5 2 4 3
6 3 5 2 4 6 1

For x1 = 4, x2 = 2 our construction gives the quasigroup:

∗ 1 2 3 4 5 6
1 1 2 3 6 5 4
2 4 3 1 5 6 2
3 2 6 4 1 3 5
4 5 4 2 3 1 6
5 6 1 5 2 4 3
6 3 5 6 4 2 1

From Theorem 2.5 in [10] it follows that these two prolongations are iso-
topic, but they are not isotopic to the prolongation constructed in Example 1
and in Example 4. ¤

6. Conclusion
The Brualdi conjecture (cf. [8], p.103) says that each Latin square n × n
possesses a sequence of k > n − 1 distinct elements selected from different
rows and different columns. In other words, each finite quasigroup has
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at least one complete or quasicomplete mapping. It is known that if a
quasigroup Q(·) has a complete mapping, then each quasigroup isotopic to
Q(·) has one also. Any group of odd order has a complete mapping, but,
for example, groups of order 4k + 2 do not contain such mappings. More
interesting facts on the Brualdi conjecture one can find in [1, 2, 8, 11] and
[13].

If this conjecture is true, then from our results it follows that each finite
quasigroup has a prolongation.
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