On fuzzy relations and fuzzy quotient Γ -groups

Kostaq Hila

Abstract

The problem of the structure of fuzzy quotient Γ -groups is discussed. We introduce and define the fuzzy quotient Γ -group by using some special fuzzy relation defined in this paper, and also we prove some basic properties.

1. Introduction and preliminaries

The concept of fuzzy sets was first introduced by Zadeh in [10] and since then there has been a tremendous interest in the subject due to its various applications ranging from engineering and computer since to social behavior studies. The concept of fuzzy relations on a set was defined by Zadeh [10, 11]. The study of fuzzy algebraic structures was started with the introduction of the concept of fuzzy subgroups by Rosenfeld [5]. The notion of Γ -groups was introduced in [7] as a generalization of the notion of classical groups. In this paper we introduce and define some new special fuzzy equivalence relations. Then using these relations we define suitable fuzzy quotient Γ -subgroup of G_{α}/H_{α} and prove some basic properties.

In 1986 Sen and Saha [7] defined a Γ -semigroup as follows:

Definition 1.1. Let $M = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. If there exists a mapping $M \times \Gamma \times M \to M$ denoted by $(a, \gamma, b) \longmapsto a\gamma b$ and satisfying the identity

$$(a\alpha b)\beta c = a\alpha(b\beta c),$$

where $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ -semigroup.

For a Γ -semigroup M and a fixed element $\gamma \in \Gamma$ we define on M a binary operation \circ by putting $a \circ b = a\gamma b$ for all $a, b \in M$. Such defined

²⁰⁰⁰ Mathematics Subject Classification: 20N25, 04A72, 03E72

Keywords: Γ -semigroup, Γ -group, fuzzy set, fuzzy relation, fuzzy congruence, fuzzy quotient Γ -group.

groupoid (M, \circ) is denoted by M_{γ} . It is a semigroup [7]. Moreover, if it is a group for some $\gamma \in \Gamma$, then it is a group for every $\gamma \in \Gamma$ [7]. In this case we says that M is a Γ -group. Examples can be found in [7] and [8].

For subsets A and B of a Γ -semigroup M we define the set

$$A\Gamma B = \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}$$

The interval [0, 1] we denoted by I, $max\{x, y\}$ by $x \lor y$, $min\{x, y\}$ by $x \land y$. By a fuzzy set on X we mean any mapping $\mu : X \longmapsto I$. For any fuzzy sets μ and ν on X we define

$$\mu = \nu \Leftrightarrow \mu(x) = \nu(x), \ \forall x \in X, \mu \subseteq \nu \Leftrightarrow \mu(x) \leqslant \nu(x) \ \forall x \in X, (\mu \cup \nu)(x) = \mu(x) \lor \nu(x), (\mu \cap \nu)(x) = \mu(x) \land \nu(x).$$

For a family of fuzzy sets $\{\mu_i \mid i \in I\}$ defined on X we put

$$(\cup \mu_i)(x) = \bigvee_{i \in I} \{\mu_i(x)\}$$
 and $(\cap \mu_i)(x) = \bigwedge_{i \in I} \{\mu_i(x)\}.$

Definition 1.2. A fuzzy set μ of a group G is called a *fuzzy subgroup* if

(i) $\mu(xy) \ge \mu(x) \land \mu(y),$

(ii)
$$\mu(x^{-1}) \ge \mu(x)$$

holds for all $x, y \in G$.

Obviously $\mu(e) \ge \mu(x)$ for every $x \in G$, where e is the identity of G.

Theorem 1.3. A fuzzy set μ of a group G is a fuzzy subgroup G if and only if

$$\mu(xy^{-1}) \geqslant \mu(x) \wedge \mu(y) \quad and \quad \mu(e) \geqslant \mu(x)$$

for all $x, y \in G$.

Definition 1.4. A fuzzy subgroup μ of a group G is called a *fuzzy normal* subgroup of G if

$$\mu(xyx^{-1}) \geqslant \mu(y)$$

for all $x, y \in G$, or equivalently, if and only if

$$\mu(xy) = \mu(yx)$$

for all $x, y \in G$.

By a fuzzy relation on X we mean a fuzzy set $\mu : X \times X \to I$. If θ and φ are two fuzzy relations on a set X, then $\theta \leq \varphi$ means that $\theta(x, y) \leq \varphi(x, y)$ for all $x, y \in X$. Their composition $\theta \circ \varphi$ is defined by

$$(\theta \circ \varphi)(x,y) = \bigvee_{z \in X} \{\theta(x,z) \land \varphi(z,y)\}.$$

Definition 1.5. A fuzzy relation θ on X is a *fuzzy equivalence relation* if

(i) $\theta(x, x) = 1 \quad \forall x \in X,$

(ii)
$$\theta(x,y) = \theta(y,x) \quad \forall x,y \in X,$$

(iii)
$$\theta \circ \theta \leqslant \theta$$
.

Definition 1.6. A fuzzy equivalence relation θ on a semigroup S is a *fuzzy* congruence if it is *fuzzy* compatible, that is,

$$\theta(x,y) \land \theta(z,t) \leqslant \theta(xz,yt)$$

for all $x, y, z, t \in S$, or equivalently, if and only if it is *fuzzy left* and *fuzzy right compatible*, i.e.,

$$\theta(x,y) \leqslant \theta(zx,zy)$$
 and $\theta(x,y) \leqslant \theta(xz,yz)$

for all $x, y, z, t \in S$.

2. Fuzzy relations and fuzzy congruences

We need to define a special relation β_{α} as follows:

Definition 2.1. Let M be a Γ -group, $\mu_{H_{\alpha}}$ be a fuzzy subgroup of M_{α} , $\alpha \in \Gamma$ and e_{α} be the identity of M_{α} . A fuzzy relation β_{α} on M is defined by

$$\beta_{\alpha}(a,b) = \begin{cases} \mu_{H_{\alpha}}(a) \wedge \mu_{H_{\alpha}}(b), & \text{if } a \neq b, \\ \mu_{H_{\alpha}}(e_{\alpha}), & \text{if } a = b. \end{cases}$$

Proposition 2.2. β_{α} is a fuzzy equivalence relation on M.

K. Hila

Proof. β_{α} is reflexive and symmetric. It is also transitive. Indeed, for all $a, c \in M$ we have

$$\begin{aligned} (\beta_{\alpha} \circ \beta_{\alpha})(a,c) &= \bigvee_{b \in M} \{\beta_{\alpha}(a,b) \land \beta_{\alpha}(b,c)\} \\ &= \bigvee_{b \in M} \{(\mu_{H_{\alpha}}(a) \land \mu_{H_{\alpha}}(b)) \land (\mu_{H_{\alpha}}(b) \land \mu_{H_{\alpha}}(c))\} \\ &\leqslant \bigvee_{b \in M} \{\mu_{H_{\alpha}}(a) \land \mu_{H_{\alpha}}(b)\} \land \bigvee_{b \in M} \{\mu_{H_{\alpha}}(b) \land \mu_{H_{\alpha}}(c)\} \\ &\leqslant \bigvee_{b \in M} \{\mu_{H_{\alpha}}(a)\} \land \bigvee_{b \in M} \{\mu_{H_{\alpha}}(c)\} = \mu_{H_{\alpha}}(a) \land \mu_{H_{\alpha}}(c) = \beta_{\alpha}(a,c). \end{aligned}$$

Therefore β_{α} is a fuzzy equivalence relation.

Corollary 2.3. $\beta_{\alpha}(x_{\alpha}^{-1}, y_{\alpha}^{-1}) = \beta_{\alpha}(x, y)$ for all $x, y \in M$, where $x_{\alpha}^{-1}, y_{\alpha}^{-1}$ are inverses of x and y in M_{α} .

Proof. $\mu_{H_{\alpha}}$ is a fuzzy subgroup of M_{α} . Thus

$$\beta_{\alpha}(x_{\alpha}^{-1}, y_{\alpha}^{-1}) = \mu_{H_{\alpha}}(x_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(y_{\alpha}^{-1}) = \mu_{H_{\alpha}}(x) \wedge \mu_{H_{\alpha}}(y) = \beta_{\alpha},$$

which completes the proof.

Proposition 2.4. β_{α} is a fuzzy congruence on M.

Proof. Indeed,

$$\beta_{\alpha}(a\alpha c, b\alpha d) = \mu_{H_{\alpha}}(a\alpha c) \wedge \mu_{H_{\alpha}}(b\alpha d)$$

$$\geq (\mu_{H_{\alpha}}(a) \wedge \mu_{H_{\alpha}}(c)) \wedge (\mu_{H_{\alpha}}(b) \wedge \mu_{H_{\alpha}}(d))$$

$$= (\mu_{H_{\alpha}}(a) \wedge \mu_{H_{\alpha}}(b)) \wedge (\mu_{H_{\alpha}}(c) \wedge \mu_{H_{\alpha}}(d))$$

$$= \beta_{\alpha}(a, b) \wedge \beta_{\alpha}(c, d).$$

This completes the proof.

Definition 2.5. If a fuzzy set is a (normal) fuzzy subgroup of M_{α}/H_{α} , then it is called a (normal) fuzzy quotient Γ -subgroup. For any normal subgroup H_{α} of M_{α} we define a fuzzy set $R: M_{\alpha}/H_{\alpha} \to [0, 1]$ by putting $R(x\alpha H_{\alpha}) = \beta_{\alpha}(x, h)$ for all $h \in H_{\alpha}$.

Proposition 2.6. R is a normal fuzzy quotient subgroup of M_{α}/H_{α} .

202

Proof. Since $\mu_{H_{\alpha}}$ is a fuzzy subgroup of M_{α} , for all $x \alpha H, y \alpha H \in M_{\alpha}/H_{\alpha}$ we have

$$\begin{aligned} R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) &= \beta_{\alpha}(x\alpha y, h) = \mu_{H_{\alpha}}(x\alpha y) \wedge \mu_{H_{\alpha}}(h) \\ &\geqslant (\mu_{H_{\alpha}}(x) \wedge \mu_{H_{\alpha}}(y)) \wedge \mu_{H_{\alpha}}(h) \\ &= (\mu_{H_{\alpha}}(x) \wedge \mu_{H_{\alpha}}(h)) \wedge (\mu_{H_{\alpha}}(y) \wedge \mu_{H_{\alpha}}(h)) \\ &= \beta_{\alpha}(x, h) \wedge \beta_{\alpha}(y, h) = R(x\alpha H) \wedge R(y\alpha H) \end{aligned}$$

and

$$R(x_{\alpha}^{-1}\alpha H_{\alpha}) = \beta_{\alpha}(x_{\alpha}^{-1}, h) = \mu_{H_{\alpha}}(x_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(h)$$

$$\geqslant \mu_{H_{\alpha}}(x) \wedge \mu_{H_{\alpha}}(h) = \beta_{\alpha}(x, h) = R(x\alpha H_{\alpha}).$$

Thus R is a quotient fuzzy subgroup of M_{α}/H_{α} . Since $\mu_{H_{\alpha}}$ is normal

$$\begin{split} R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) &= \beta_{\alpha}(x\alpha y, h) = \mu_{H_{\alpha}}(x\alpha y) \wedge \mu_{H_{\alpha}}(h) \\ &= \mu_{H_{\alpha}}(y\alpha x) \wedge \mu_{H_{\alpha}}(h) = \beta_{\alpha}(y\alpha x, h) = R(y\alpha H_{\alpha}\alpha x\alpha H_{\alpha}). \end{split}$$

Hence R is a normal quotient fuzzy subgroup of M_{α}/H_{α} .

Proposition 2.7. If M_{α}/H_{α} is finite and R is its fuzzy quotient subgroup, then R is a fuzzy subgroup.

Proof. Since M_{α}/H_{α} is finite, every $x\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}$ has finite order, say n. Then $(x\alpha H_{\alpha})^n = (x\alpha)^{n-1}x\alpha H_{\alpha} = H_{\alpha}$, where H_{α} is the identity of M_{α}/H_{α} . Thus $(x\alpha H_{\alpha})^{-1} = x_{\alpha}^{-1}\alpha H_{\alpha} = (x\alpha)^{n-2}x\alpha H_{\alpha}$ and

$$\begin{aligned} R(x_{\alpha}^{-1}\alpha H_{\alpha}) &= R((x\alpha)^{n-2}x\alpha H_{\alpha}) = \beta_{\alpha}((x\alpha)^{n-2}x,h) \\ &= \mu_{H_{\alpha}}((x\alpha)^{n-3}x\alpha x) \wedge \mu_{H_{\alpha}}(h) = \mu_{H_{\alpha}}((x\alpha)^{n-3}x\alpha x) \\ &\geqslant \mu_{H_{\alpha}}((x\alpha)^{n-3}x) \wedge \mu_{H_{\alpha}}(x) \geqslant \mu_{H_{\alpha}}(x) \\ &= \mu_{H_{\alpha}}(x) \wedge \mu_{H_{\alpha}}(h) = \beta_{\alpha}(x,h) = R(x\alpha H_{\alpha}). \end{aligned}$$

Hence R is a fuzzy quotient subgroup.

Proposition 2.8. Let R be a fuzzy quotient subgroup of a group M_{α}/H_{α} and let $x \alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}$. Then

$$R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) = R(y\alpha H_{\alpha}) \Longleftrightarrow R(x\alpha H_{\alpha}) = R(H_{\alpha}).$$

Proof. If $R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) = R(y\alpha H_{\alpha})$ holds for all $y\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}$, then putting $y\alpha H_{\alpha} = H_{\alpha}$, we obtain $R(x\alpha H_{\alpha}) = R(H_{\alpha})$.

Conversely, suppose that $R(x\alpha H_{\alpha}) = R(H_{\alpha})$. Since R is a fuzzy subgroup of M_{α}/H_{α} and $\mu_{H_{\alpha}}$ is a fuzzy subgroup of M_{α} , we have

$$\begin{split} R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) \geqslant R(x\alpha H_{\alpha}) \wedge R(y\alpha H_{\alpha}) &= R(H_{\alpha}) \wedge R(y\alpha H_{\alpha}) \\ &= \beta_{\alpha}(e,h) \wedge \beta(y\alpha H_{\alpha}) = \mu_{H_{\alpha}}(h) \wedge \mu_{H_{\alpha}}(y) \\ &= \beta_{\alpha}(y,h) = R(y\alpha H_{\alpha}). \end{split}$$

Interchanging $x \alpha H_{\alpha} \alpha y \alpha H_{\alpha}$ with $y \alpha H_{\alpha}$, we get

$$R(y\alpha H_{\alpha}) \geqslant R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}).$$

Hence the proof is completed.

Proposition 2.9. The intersection of two normal fuzzy quotient subgroups of M_{α}/H_{α} also is a normal fuzzy quotient subgroups of M_{α}/H_{α} .

Proof. Let R and Q be two normal fuzzy quotient subgroups of M_{α}/H_{α} . Then for ally $x \alpha H_{\alpha}, y \alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}$ we have

$$\begin{aligned} (R \cap Q)(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) &= R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) \wedge Q(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) \\ &\geqslant (R(x\alpha H_{\alpha}) \wedge R(y\alpha H_{\alpha})) \wedge (Q(x\alpha H_{\alpha}) \wedge Q(y\alpha H_{\alpha})) \\ &= (R(x\alpha H_{\alpha}) \wedge Q(x\alpha H_{\alpha})) \wedge (R(y\alpha H_{\alpha}) \wedge Q(y\alpha H_{\alpha})) \\ &= (R \cap Q)(x\alpha H_{\alpha}) \wedge (R \cap Q)(y\alpha H_{\alpha}) \end{aligned}$$

and

$$(R \cap Q)(x_{\alpha}^{-1}\alpha H_{\alpha}) = R(x_{\alpha}^{-1}\alpha H_{\alpha}) \wedge Q(x_{\alpha}^{-1}\alpha H_{\alpha}) = R(x\alpha H_{\alpha}) \wedge Q(x\alpha H_{\alpha})$$
$$\leqslant (R \cap Q)(x\alpha H_{\alpha}).$$

Interchanging $x \alpha H_{\alpha}$ with $x_{\alpha}^{-1} \alpha H_{\alpha}$, we obtain $(R \cap Q)(x \alpha H_{\alpha}) \leq (R \cap Q)(x_{\alpha}^{-1} \alpha H_{\alpha})$. Hence $R \cap Q$ is a fuzzy subgroup of M_{α}/H_{α} . It is normal because

$$\begin{aligned} (R \cap Q)(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) &= R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) \wedge Q(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) \\ &= R(y\alpha H_{\alpha}\alpha x\alpha H_{\alpha}) \wedge Q(y\alpha H_{\alpha}\alpha x\alpha H_{\alpha}) \\ &\leqslant (R \cap Q)(y\alpha H_{\alpha}\alpha x\alpha H_{\alpha}). \end{aligned}$$

This completes the proof.

Definition 2.10. On M_{α}/H_{α} we define a fuzzy relation $\mu_{\alpha,R}$ putting

$$\mu_{\alpha,R}(x\alpha H_{\alpha}, y\alpha H_{\alpha}) = R(x\alpha H_{\alpha}\alpha y_{\alpha}^{-1}\alpha H_{\alpha})$$

for all $x \alpha H_{\alpha}, y \alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}$.

Proposition 2.11. $\mu_{\alpha,R}$ is a fuzzy congruence on M_{α}/H_{α} .

Proof. It is clear that this relation is transitive. Since

$$\mu_{\alpha,R}(x\alpha H_{\alpha}, y\alpha H_{\alpha}) = R(x\alpha H_{\alpha}\alpha y\alpha H_{\alpha}) = R((y\alpha x_{\alpha}^{-1})_{\alpha}^{-1}\alpha H_{\alpha})$$
$$= R(y\alpha x_{\alpha}^{-1}\alpha H_{\alpha}) = R(y\alpha H_{\alpha}\alpha x_{\alpha}^{-1}\alpha H_{\alpha})$$
$$= \mu_{\alpha,R}(y\alpha H_{\alpha}, x\alpha H_{\alpha})$$

it is also symmetric. Moreover, for all $x \alpha H_{\alpha}, y \alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}$ we have

$$\begin{aligned} (\mu_{\alpha,R} \circ \mu_{\alpha,R})(x\alpha H_{\alpha}, y\alpha H_{\alpha}) \\ &= \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{\mu_{\alpha,R}(x\alpha H_{\alpha}, z\alpha H_{\alpha}) \wedge \mu_{\alpha,R}(z\alpha H_{\alpha}, y\alpha H_{\alpha})\} \\ &= \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{R(x\alpha H_{\alpha}\alpha z_{\alpha}^{-1}\alpha H_{\alpha}) \wedge R(z\alpha H_{\alpha}\alpha y_{\alpha}^{-1}\alpha H_{\alpha})\} \\ &= \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{R(x\alpha z_{\alpha}^{-1}\alpha H_{\alpha}) \wedge R(z\alpha y_{\alpha}^{-1}\alpha H_{\alpha})\} \\ &= \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{\beta_{\alpha}(x\alpha z_{\alpha}^{-1}, h) \wedge \beta_{\alpha}(z\alpha y_{\alpha}^{-1}, h)\} \\ &= \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{(\mu_{H_{\alpha}}(x\alpha z_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(h)) \wedge (\mu_{H_{\alpha}}(z\alpha y_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(h))\} \\ &\leqslant \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{(\mu_{H_{\alpha}}(x\alpha y_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(n)) + \mu_{H_{\alpha}}(n)\} \\ &\leqslant \bigvee_{\substack{z\alpha H_{\alpha} \in M_{\alpha}/H_{\alpha}}} \{\mu_{H_{\alpha}}(x\alpha y_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(h)\} \\ &= \beta_{\alpha}(x\alpha y_{\alpha}^{-1}, h) = R(x\alpha H_{\alpha} \alpha y_{\alpha}^{-1} \alpha H_{\alpha}) = \mu_{\alpha,R}(x\alpha H_{\alpha}, y\alpha H_{\alpha}). \end{aligned}$$

So, $\mu_{\alpha,R}$ is an equivalence relation.

To prove that it is a congruence observe that

$$\begin{split} \mu_{\alpha,R}(x\alpha H_{\alpha}, y\alpha H_{\alpha}) &\wedge \mu_{\alpha,R}(z\alpha H_{\alpha}, w\alpha H_{\alpha}) \\ &= R(x\alpha H_{\alpha}\alpha y_{\alpha}^{-1}\alpha H_{\alpha}) \wedge R(z\alpha H_{\alpha}\alpha w_{\alpha}^{-1}\alpha H_{\alpha}) \\ &= R(x\alpha y_{\alpha}^{-1}\alpha H_{\alpha}) \wedge R(z\alpha w_{\alpha}^{-1}\alpha H_{\alpha}) \\ &= \beta_{\alpha}(x\alpha y_{\alpha}^{-1}, h) \wedge \beta_{\alpha}(z\alpha w_{\alpha}^{-1}, h) \\ &= \{\left(\mu_{H_{\alpha}}(x\alpha y_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(h)\right) \wedge \left(\mu_{H_{\alpha}}(z\alpha w_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(h)\right)\} \\ &= \mu_{H_{\alpha}}(x\alpha y_{\alpha}^{-1}) \wedge \mu_{H_{\alpha}}(z\alpha w_{\alpha}^{-1}) \\ &= \mu_{H_{\alpha}}(y_{\alpha}^{-1}\alpha x) \wedge \mu_{H_{\alpha}}(z\alpha w_{\alpha}^{-1}). \end{split}$$

Since $\mu_{H_{\alpha}}$ is a fuzzy normal subgroup of M_{α}

$$\begin{split} \mu_{H_{\alpha}}(y_{\alpha}^{-1}\alpha x) \wedge \mu_{H_{\alpha}}(z\alpha w_{\alpha}^{-1}) &\leq \mu_{H_{\alpha}}(y_{\alpha}^{-1}x\alpha z\alpha w_{\alpha}^{-1}) = \mu_{H_{\alpha}}(x\alpha z\alpha w_{\alpha}^{-1}\alpha y_{\alpha}^{-1}) \\ &= \mu_{\alpha,H_{\alpha}}(x\alpha z\alpha (y\alpha w)_{\alpha}^{-1}) \wedge \mu_{\alpha,H_{\alpha}}(h) \\ &= \beta_{\alpha}(x\alpha z\alpha (y\alpha w)_{\alpha}^{-1},h) \\ &= R(x\alpha z\alpha H_{\alpha}\alpha (y\alpha w)_{\alpha}^{-1}\alpha H_{\alpha}) \\ &= \mu_{\alpha,R}(x\alpha z\alpha H_{\alpha},y\alpha w\alpha H_{\alpha}), \end{split}$$

which completes the proof.

References

- I. J. Kumar, P. K. Saxena and P. Yadava: Fuzzy normal subgroups and fuzzy quotients, Fuzzy Sets and Systems, 46 (1992), 121 – 132.
- [2] N. Kuroki: Fuzzy congruences and fuzzy normal subgroups, Information Sci., 60 (1992), 247 - 259.
- [3] D. S. Malik and J. N. Mordeson: A note on fuzzy relations and fuzzy groups, Information Sci., 56 (1991), 193-198.
- [4] V. Murali: Fuzzy equivalence relations, Fuzzy Sets and Systems, 30, (1989), 155 - 163.
- [5] A. Rosenfeld: Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512 517.
- [6] E. Roventa and T. Spireu: Groups operating on fuzzy sets, Fuzzy Sets and Systems, 120 (2001), 543 – 548.
- [7] M. K. Sen and N. K. Saha: On Γ-semigroup, I, Bull. Cal. Math. Soc., 78 (1986), 180 - 186.
- [8] A. Seth: Congruences on a Γ-group, Soochow J. Math., 17 (1991), 233-237.
- [9] X. Xie: Fuzzy congruences on Γ-groups, Mohu Xitong yu Shuxue, 13 (1999), no. 2, 57-63.
- [10] L. Zadeh: Fuzzy sets, Inform. Control, 8 (1965), 338 353.
- [11] L. Zadeh: Similar relations and fuzzy ordering, Information Sci., 3 (1971), 117-200.

Department of Mathematics & Computer Sciences Received May 2, 2008 Faculty of Natural Sciences University of Gjirokastra Albania E-mail: kostaq_hila@yahoo.com