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On fuzzy relations and fuzzy quotient I'-groups

Kostaq Hila

Abstract

The problem of the structure of fuzzy quotient I'-groups is discussed. We
introduce and define the fuzzy quotient I'-group by using some special fuzzy
relation defined in this paper, and also we prove some basic properties.

1. Introduction and preliminaries

The concept of fuzzy sets was first introduced by Zadeh in [10] and since
then there has been a tremendous interest in the subject due to its various
applications ranging from engineering and computer since to social behav-
ior studies. The concept of fuzzy relations on a set was defined by Zadeh
[10, 11]. The study of fuzzy algebraic structures was started with the in-
troduction of the concept of fuzzy subgroups by Rosenfeld [5]. The notion
of I'-groups was introduced in [7] as a generalization of the notion of clas-
sical groups. In this paper we introduce and define some new special fuzzy
equivalence relations. Then using these relations we define suitable fuzzy
quotient I'-subgroup of G,/H, and prove some basic properties.
In 1986 Sen and Saha [7] defined a I'-semigroup as follows:

Definition 1.1. Let M = {a,b,c,...} and I" = {«, 3,7,...} be two non-
empty sets. If there exists a mapping M x I' x M — M denoted by
(a,v,b) — avb and satisfying the identity

(aad)Be = aa(bfc),
where a,b,c € M and o, € I, then M is called a I'-semigroup.

For a I'-semigroup M and a fixed element v € I' we define on M a
binary operation o by putting a o b = avb for all a,b € M. Such defined
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groupoid (M, o) is denoted by M,. It is a semigroup [7]. Moreover, if it is
a group for some v € I', then it is a group for every v € I' [7]. In this case
we says that M is a I-group. Examples can be found in [7] and [8].

For subsets A and B of a I'-semigroup M we define the set

AT'B = {avyb|a € A,be B and vy € T'}.

The interval [0, 1] we denoted by I, maz{z,y} by = Vy, min{z,y} by z Ay.
By a fuzzy set on X we mean any mapping p : X —— I. For any fuzzy sets
wand v on X we define

pw=vep(r)=rvx), Vo e X,

wCrvep(r) <vix) Ve € X,
(1UV) (@) = u(z) v (),
(nOv)(z) = p(z) Av(z).

For a family of fuzzy sets {u; |i € I} defined on X we put

(Upi)(x) = VA{pi(2)} and  (Nps)(x) = A {pi(z)}.

i€l iel
Definition 1.2. A fuzzy set p of a group G is called a fuzzy subgroup if
(1) p(xy) = plx) A py),
(i) p(z=") = p(z)
holds for all z,y € G.

Obviously u(e) = u(x) for every x € G, where e is the identity of G.

Theorem 1.3. A fuzzy set p of a group G is a fuzzy subgroup G if and
only if

pley™) = p(@) Ap(y)  and  ple) > p(x)
forallz,y € G.

Definition 1.4. A fuzzy subgroup p of a group G is called a fuzzy normal
subgroup of G if

pleyz=t) = u(y)
for all x,y € G, or equivalently, if and only if

w(zy) = p(yz)
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for all z,y € G.

By a fuzzy relation on X we mean a fuzzy set u: X x X — I. If 6 and ¢
are two fuzzy relations on a set X, then 6 < ¢ means that 6(z,y) < ¢(z,y)
for all x,y € X. Their composition 0 o ¢ is defined by

(Oop)(z,y) = é/X{G(w, z) Np(z,y)}

Definition 1.5. A fuzzy relation 6 on X is a fuzzy equivalence relation if
(i) O(x,z)=1 Vxe X,
(i) O(z,y) =0(y,z) Vo,y € X,
(i) 6o <H0.
Definition 1.6. A fuzzy equivalence relation 6 on a semigroup S is a fuzzy
congruence if it is fuzzy compatible, that is,
O(z,y) NO(z,t) < O(xz,yt)

for all z,y, z,t € S, or equivalently, if and only if it is fuzzy left and fuzzy
right compatible, i.e.,

O(z,y) < 0(zx,zy) and 6O(z,y) < b(zz,yz)

for all x,y,z,t € S.

2. Fuzzy relations and fuzzy congruences

We need to define a special relation 3, as follows:

Definition 2.1. Let M be a I-group, p,, be a fuzzy subgroup of M,,
«a € T and e, be the identity of M,. A fuzzy relation 5, on M is defined
by
_ K, (a) A K, (b)v if a #0,
/804(017 b) - { [y, (ea)7 ifa=0b.

Proposition 2.2. 3, is a fuzzy equivalence relation on M.
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Proof. B, is reflexive and symmetric. It is also transitive. Indeed, for all
a,c € M we have

(ﬁa © ﬁa)(aa C) = \/ {ﬁa(% b) N ﬁa(ba C)}

beM

= bé/M{(uHa (@) A gy, (0)) A (prgg, (D) A gy, (€))}
<V {ug, (@) A py, ()} A bVM{uHQ (b) A gy, ()}

beM €
< VApg, (@ AV {pg, (0} = py, (@) A pg, () = Bala, c).
beM beM
Therefore (3, is a fuzzy equivalence relation. O

Corollary 2.3. Bo(z;,y5t) = Balz,y) for all z,y € M, where x', y;*
are inverses of x and y in M,.

Proof. py,  is a fuzzy subgroup of M,. Thus

Balwgt ya ") =t (@) A g, (Yo ") =ty (@) A iy, (y) = Bas

which completes the proof. [
Proposition 2.4. 3, is a fuzzy congruence on M.

Proof. Indeed,

Balaac, bad) = p, (acc) A piy, (bad)
2 (g, (@) N pgg, (€)) A (pgg, (B) A iy, (d)
= (MHQ ) A :U'Ha( )) ( (C) A K, (d))
= Bala,b) A Ba(c, d).

This completes the proof. ]

Definition 2.5. If a fuzzy set is a (normal) fuzzy subgroup of M,/H,,
then it is called a (normal) fuzzy quotient I'-subgroup. For any normal
subgroup H, of M, we define a fuzzy set R : M,/H, — [0,1] by putting
R(zaH,) = Ba(z,h) for all h € H,.

Proposition 2.6. R is a normal fuzzy quotient subgroup of My /H,.
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Proof. Since p,, is a fuzzy subgroup of M,, for all zaH,yaH € M,/H,
we have

R(rzaHaayaHy) = Bu(zoy, h) = 1, (zoy) Ay, (1)
> (i, (@) A 1y, (9)) A uHaU
(h) A (
h) =

= (:U’H ( /\ Mg, MHQ /\ Hpr, (h))
= Balz,h) A Ba(y, (maH) A R(yaH)

and
R(z 'aHy) = Byt h) = py, (23" A iy, (R)

> iy, (@) A iy, () = Bale,h) = RzaHa).

Thus R ia a quotient fuzzy subgroup of M, /H,. Since p,, ~is normal

RzaH oyaHa) = fal(ray, h) = iy, (z0y) A i, (1)
=y, (yax) A py (h) = Ba(yax, h) = R(yaHyaraH,).

Hence R is a normal quotient fuzzy subgroup of M, /H,. O

Proposition 2.7. If M,/H, is finite and R is its fuzzy quotient subgroup,
then R is a fuzzy subgroup.

Proof. Since M, /H,, is finite, every zaH, € M, /H, has finite order, say n.
Then (zaH,)" = (za)" lzaH, = H,, where H, is the identity of M, /H,.
Thus (zaH,) ! = 2 'aH, = (za)"2zaH, and

R(zj'aH,) = R((za)"2zaH,) = Bu((za)" 2z, h)
MHQ((SU Q)" Prax) Ay, (h) = py, ((za)"Pza)
((

(

20)"2) A g, () 2 iy, (@)
toar, () A pg, (R) = Ba(2, h) = R(zaH,).

He

Hence R is a fuzzy quotient subgroup. O

Proposition 2.8. Let R be a fuzzy quotient subgroup of a group My /H,
and let xaH, € M, /H,. Then

R(zaHyayaH,) = R(yaH,) <= R(zxaH,) = R(H,).
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Proof. If R(xaH,ayaH,) = R(yaH,) holds for all yoH, € M,/H,, then
putting yaH, = H,, we obtain R(zaH,) = R(H,).

Conversely, suppose that R(zaH,) = R(H,). Since R is a fuzzy sub-
group of M, /H, and p,,  is a fuzzy subgroup of M,, we have

R(zxaHyayaHy) > R(zaH,) A R(yaHy) = R(H,) A R(yaH,)
= Bale, h) A BlyaHa) = i, (h) Ay, (y)
= Ba(y, h) = R(yaHa).
Interchanging raH,ayaH, with yaH,, we get
R(yaH,) > R(xaH,ayaH,).

Hence the proof is completed. O

Proposition 2.9. The intersection of two normal fuzzy quotient subgroups
of My/H, also is a normal fuzzy quotient subgroups of My /H,.

Proof. Let R and @ be two normal fuzzy quotient subgroups of M, /H,.
Then for ally xaH,,yaH, € M,/H, we have

(RN Q)(raHyayaHy) = R(zxaHyoyaHy) A Q(raHyayaHy,)
> (R(zaH,) A R(yaH,) A (Q(raHy) A QyaHa))
= (R(zata) A Q(zaHa)) A (R(yaHa) A Q(yaHa))
= (RN Q)(zaHa) N (RN Q) (yaHa)

and

(RNQ)(z;'aH,) = Rz taH,) A Q(z; aH,) = R(zaHy) A Q(xaH,)
< (RNQ)(zaHy,).

Interchanging zaH, with z,'aH,, we obtain (RN Q)(zaH,) < (RN
Q)(z;'aH,). Hence RN Q is a fuzzy subgroup of M,/H,. It is normal
because

(RN Q)(raHyayaHy) = R(zraHyoyaH,) A Q(raHyayaH,,)
= R(yaHyaxaH,) N Q(yaHyaxaH,,)
< (RN Q) (yaHqaxaH,).

This completes the proof. O
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Definition 2.10. On M, /H, we define a fuzzy relation . r putting
o r(TaHy, yaHy) = R(zaHyoyy 'aH,)

for all xaH,,yaH, € M,/H,.

Proposition 2.11. p, g is a fuzzy congruence on My /H,.

Proof. 1t is clear that this relation is transitive. Since

/‘a,R(wO‘Haa yaHa) = R(J:O‘HozayaHa) = R((yoé%_l)ElOéHa)
= R(yaz;'aH,) = R(yaH,ox'aH,)
= Na,R(yaHomxaHa)

it is also symmetric. Moreover, for all zaH,,yaH, € My /H, we have

(,U'oz,R © Ma,R)(xaHom yO‘Hoc)
= \/ {Ma,R(xaHay ZaHa) A Ma,R(ZaHav thHa)}

zaHoEMqo/He

= V {R(zaH,az;'aH,) A R(zaHaoy,'aHy) b
zaHoEMqo/Hq

= V {R(zazylaHy) A R(zaygtaH,)}
zaHoEMa/He

= V {ﬁa(wazojl, h) A Ba(zay, ,h)}
zaHyEMo/He

= \V { (b, (wazZ V) Aoy (B)) A (pag, (zayy ') A g, (B)) }
zaHyEMy/He

< V { (b, (azg") A g, (zayt) Ay, (R)}
zaHoEMqo/He

< V {1y, @y ") A iy, (h)} = oy, (zayy ) Ay, (h)
zaHoEMo/Ha

= ﬂa(l‘aygl, h) = R(xaHaayglaHa) = o, r(xaHy, yaH,).

S0, [q,Rr 18 an equivalence relation.
To prove that it is a congruence observe that

po,R(xaHy, yaHy) N pio,r(zaHq, woH,)
= R(raH.ay,'aH,) A R(zaHyow, 'aH,)
= R(zay;'aH,) A R(zaw, *aH,)
= Ba(zayyt, h) A Ba(zaw, !, h)
= { (b, (@ya) Aty () A (g, (20w ) A gy, (R))}
=ty (@Y 1) A iy, (zaawg?!
=y, (Vo 0T) A gy, (z0wg

)
H.
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Since i, is a fuzzy normal subgroup of M,

fg, (Yo tax) Ay (zawg?) < py (yotzazawy') = py, (zazawy ayyt)
= po, i, (zaza(yow) ;) A pa,m, (h)
= Ba(zaza(yaw);t, h)

= R(zazaH,a(yaw); aH,)
= o, r(xazaH,, yawaH,),

which completes the proof. O
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