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Simple hyper K-algebras

Tahereh Roodbari, Lida Torkzadeh and Mohammad M. Zahedi

Abstract

In this note we de�ne the notion of simple hyper K-algebras and give some
examples of simple hyper K-algebras. Then we investigate (weak) hyper
K-ideals, normal hyper K-algebras and commutative hyper K-ideals.

1. Introduction

The study of BCK-algebra was initiated by K. Iséki [3] in 1966 as a general-
ization of concept of the set-theoretic di�erence and propositional calculus.
Since the many researches worked in this area. Hyper structures (called also
multialgebras) were introduced in 1934 by F. Marty [5] at the 8th congress of
Scandinavian Mathematicians. Around the 40 years several authors worked
on hyper groups, specially in France and United States, but also in Italy,
Russia, Japan and Iran.

Hyper structures have many applications to several sectors of both pure
and applied sciences. Recently Y. B. Jun et al. [4] introduced and stud-
ied hyper BCK-algebras which are generalization of BCK-algebras. R.
A. Borzooei and M. M. Zahedi [1, 10] constructed the hyper K-algebras ,
(weak) hyper K-ideals and de�ned simple hyper K-algebras of order 3. T.
Roodbari and M. M. Zahedi [8] de�ned 9 di�erent types of commutative hy-
per K-ideals. In this paper we de�ne the notion of simple hyper K-algebras
and give some examples of simple hyper K-algebras. Then we investigate
(weak) hyper K-ideals, normal hyper K-algebras and commutative hyper
K-ideals.
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2. Preliminaries
De�nition 2.1. Let H be a nonempty set and ” ◦ ” be a hyperoperation
on H, that is ” ◦ ” is a function from H × H to the family P∗(H) of all
nonempty subsets of H. Then H is called a hyper K-algebra if it contains
a constant ”0” and satis�es the following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x,
(HK4) x < y, y < x −→ x = y,
(HK5) 0 < x,

where x < y is de�ned by 0 ∈ x ◦ y and for every A,B ⊆ H, A < B means
that there are a ∈ A and b ∈ B such that a < b. By A ◦ B we denote the
union of all a ◦ b such that a ∈ A, b ∈ B.

Theorem 2.2. Let (H, ◦, 0) be a hyper K-algebra. Then for all x, y, z ∈ H
and for all nonempty subsets A, B and C of H the following hold:

(i) x ◦ y < z ←→ x ◦ z < y, (ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z,
(iii) x ◦ (x ◦ y) < y, (iv) x ◦ y < x,
(v) A ⊆ B −→ A < B, (vi) x ∈ x ◦ 0,

(vii) (A ◦ C) ◦ (A ◦B) < B ◦ C, (viii) (A ◦ C) ◦ (B ◦ C) < A ◦B,
(ix) A ◦B < C ⇔ A ◦ C < B, (x) A ◦B < A.

De�nition 2.3. Let I be a nonempty subset of a hyper K-algebra (H, ◦, 0)
and 0 ∈ I. Then I is called

(i) a weak hyper K-ideal of H if x ◦ y ⊆ I and y ∈ I imply x ∈ I,
(ii) a hyper K-ideal of H if x ◦ y < I and y ∈ I imply that x ∈ I.

De�nition 2.4. A nonempty subset I of H such that 0 ∈ I is called a
commutative hyper K-ideal of

• type 1, if ((x ◦ y) ◦ z)
⋂

I 6= ∅ and z ∈ I imply (x ◦ (y ◦ (y ◦ x))) ⊆ I,
• type 2, if ((x◦y)◦z)

⋂
I 6= ∅ and z ∈ I imply (x◦(y◦(y◦x)))

⋂
I 6= ∅,

• type 3, if ((x ◦ y) ◦ z)
⋂

I 6= ∅ and z ∈ I imply (x ◦ (y ◦ (y ◦ x))) < I,
• type 4, if ((x ◦ y) ◦ z) ⊆ I, z ∈ I imply (x ◦ (y ◦ (y ◦ x))) ⊆ I,
• type 5, if ((x ◦ y) ◦ z) ⊆ I and z ∈ I imply (x ◦ (y ◦ (y ◦ x)))

⋂
I 6= ∅,

• type 6, if ((x ◦ y) ◦ z) ⊆ I and z ∈ I imply (x ◦ (y ◦ (y ◦ x))) < I,
• type 7, if ((x ◦ y) ◦ z) < I, z ∈ I imply (x ◦ (y ◦ (y ◦ x))) ⊆ I,
• type 8, if ((x ◦ y) ◦ z) < I and z ∈ I imply (x ◦ (y ◦ (y ◦ x)))

⋂
I 6= ∅,

• type 9, if ((x ◦ y) ◦ z) < I and z ∈ I imply (x ◦ (y ◦ (y ◦ x))) < I.
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De�nition 2.5. An element a of a hyper K-algebra (H, ◦, 0) is called a
hyper atom if x < a implies x = 0 or x = a. By A(H) we denote the set of
all hyper atoms of H. If in H there exists an element e such that x < e for
all x ∈ H, then H is called a bounded hyper K-algebra.

De�nition 2.6. A hyper K-algebra (H, ◦, 0) in which for all x, y ∈ H,
x < y implies x ∈ y ◦ (y ◦ x) is called quasi-commutative. A hyper K-
algebra satisfying the identity x ◦ (x ◦ y) = y ◦ (y ◦ x) for all x, y ∈ H is
called commutative.

Theorem 2.7. If (H, ◦, 0) is a quasi-commutative hyper K-algebra, then
the hyper K-ideal {0} is a commutative hyper K-ideal of type 9 and 6.

De�nition 2.8. Let (H, ◦, 0) be a hyper K-algebra and S be a nonempty
subset of H. Then the sets

l1S = {x ∈ H | a < (a◦x),∀a ∈ S}, l2S = {x ∈ H | a ∈ (a◦x), ∀a ∈ S},
Sr1 = {x ∈ H |x < (x◦a), ∀a ∈ S}, Sr2 = {x ∈ H |x ∈ (x◦a), ∀a ∈ S}

are called left hyper stabilizers of type 1 (type 2, respectively) and right
hyper stabilizer of type 1 (type 2, respectively).

In the case S = {s}, for simplicity, we will write lis and sri instead of
li{s} and ri{s} .

De�nition 2.9. A hyper K-algebra (H, ◦, 0) is called a left (right) hyper
normal of type i if lia (respectively ari) is a hyper K-ideal of H for any
a ∈ H and i = 1, 2. If H is both left and right hyper normal K-algebra of
type i, then H is called a hyper normal K-algebra of type i.

3. Simple hyper K-algebra
De�nition 3.1. A hyper K-algebra (H, ◦, 0) is called simple if for all
distinct elements a, b ∈ H − {0} we have a 6< b and b 6< a.

Theorem 3.2. Let H be a nonempty set and 0 ∈ H. De�ne a hyper
operation ” ◦ ” on H by putting

x ◦ y =




{x} if x 6= y, y = 0,
{x, y} if x 6= y, y 6= 0,
{0, x} if x = y,

for all x, y ∈ H. Then (H, ◦, 0) is a simple hyper K-algebra.
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Proof. Since axioms (HK3), (HK4) and (HK5) are obvious, we verify only
(HK1) and (HK2). For this we consider the following cases:

Case (i). x 6= y, x 6= z and y = z = 0. Then
(x ◦ z) ◦ (y ◦ z) = {x} < {x} = x ◦ y and (x ◦ y) ◦ z = (x ◦ z) ◦ y = {x}.

Case (ii). x 6= y, x 6= z, z 6= 0 and y = 0. Then
(x ◦ z) ◦ (y ◦ z) = {x, z} < {x} = x ◦ y and (x ◦ y) ◦ z = (x ◦ z) ◦ y = {x, z}.

Case (iii). x 6= y, x 6= z, y 6= z, y 6= 0 and z 6= 0. Then
(x ◦ z) ◦ (y ◦ z) = {0, x, y, z} < {x, y} = x ◦ y and (x ◦ y) ◦ z = {x, y, z} =
(x ◦ z) ◦ y.

Case (iv). x 6= y, y 6= z, x = z, y = 0 and z 6= 0. Then
(x ◦ z) ◦ (y ◦ z) = {0, x} < {x} = x ◦ y and (x ◦ y) ◦ z = (x ◦ z) ◦ y = {0, x}.

Case (v). x 6= y, x 6= z, y 6= z, z = 0 and y 6= 0. Then
(x◦z)◦ (y ◦z) = {x, y} < {x, y} = x◦y and (x◦y)◦z = (x◦z)◦y = {x, y}.

Case (vi). x 6= y, x 6= z, y = z, y 6= 0 and z 6= 0. Then
(x◦z)◦(y◦z) = {0, x, y} < {x, y} = x◦y and (x◦y)◦z = (x◦z)◦y = {0, x, y}.

Case (vii). x 6= y, y 6= z, y 6= 0 and x = z = 0. Then
(x◦ z)◦ (y ◦ z) = {0, y} < {0, y} = x◦ y and (x◦ y)◦ z = (x◦ z)◦ y = {0, y}.

Case (viii). x 6= y, y 6= z, x = z, y 6= 0 and z 6= 0. Then
(x◦z)◦(y◦z) = {0, x, y} < {x, y} = x◦y and (x◦y)◦z = (x◦z)◦y = {0, x, y}.

Case (ix). x 6= z, y 6= z, x = y and z = 0. Then
(x ◦ z) ◦ (y ◦ z) = {x} < {0, x} = x ◦ y and (x ◦ y) ◦ z = (x ◦ z) ◦ y = {0, x}.

Case (x). x 6= z, y 6= z, x = y and z 6= 0. Then
(x◦z)◦(y◦z) = {0, x, z} < {0, x} = x◦y and (x◦y)◦z = (x◦z)◦y = {0, x, z}.

Case (xi). x = z = y. Then
(x◦ z)◦ (y ◦ z) = {0, x} < {0, x} = x◦y and (x◦y)◦ z = (x◦ z)◦y = {0, x}.
Therefore (H, ◦, 0) is a simple hyper K-algebra.

Corollary 3.3. A hyper K-algebra de�ned in Theorem 3.2 is commutative
and normal of types 1 and 2.

Proof. The commutativity is obvious. Also ari =li a = H for all a ∈ H and
i = 1, 2.

Example 3.4. Consider the following two hyper K-algebras de�ned on
H = {0, 1, 2, 3}:
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◦ 0 1 2 3

0 {0} {0} {0} {0, 2, 3}
1 {1} {0, 1} {1, 2, 3} {1, 2, 3}
2 {2} {2} {0, 2, 3} {2}
3 {3} {3} {3} {0, 3}

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {2} {0} {2}
3 {3} {1, 2} {0, 1} {0, 2}

The �rst hyper K-algebra is simple, the second is not simple, because 3 < 2.

It is not di�cult to see that the following theorem is true.

Theorem 3.5. A hyper K-algebra is simple if and only if it contains only
hyper atoms. ¤

Theorem 3.6. For a simple hyper K-algebra the following statements hold.
(i) a ◦ 0 = {a} for all a ∈ H − {0},

(ii) a ∈ a ◦ b for all distinct elements a, b ∈ H,
(iii) H − {a} ⊆ H ◦ a for all a ∈ H,
(iv) a ∈ b◦c ←→ c ∈ b◦a for distinct elements a, c ∈ H and b ∈ H−{0},
(v) x < x ◦ a ←→ x ∈ x ◦ a for all a, x ∈ H,

(vi) A < A ◦ b ←→ A ∩ (A ◦ b) 6= ∅ for all b ∈ H and ∅ 6= A ⊆ H,
(vii) (x ◦ y) ◦ z < x ◦ (y ◦ z) for all x, y, z ∈ H,

(viii) If 0 ∈ I ⊆ H, then A ◦B < I ←→ (A ◦B) ∩ I 6= ∅ for all nonempty
subsets A and B of H.

Proof. (i) We have a ∈ a◦0. Now let b ∈ a◦0. Then 0 ∈ (a◦0)◦b = (a◦b)◦0.
Thus there is t ∈ a ◦ b such that 0 ∈ t ◦ 0 i.e., t < 0. Hence t = 0 and so
a < b. Since H is simple and a ∈ H−{0}, then a = b. Therefore a◦0 = {a}.

(ii) If a = 0, then it is clear that 0 ∈ 0 ◦ b, for all b ∈ H. Now let
a, b ∈ H, a 6= 0 and a 6= b. Since by Theorem 2.2(iv) a ◦ b < a, then there
is t ∈ a ◦ b such that t < a. Thus t = 0 or t = a. Hence a 6= b and a 6= 0
imply that t 6= 0. Therefore t = a and so a ∈ a ◦ b.

(iii) Let x ∈ H − {a}. Then x 6= a and so by (ii) we have x ∈ x ◦ a.
Therefore x ∈ H ◦ a.

(iv) Let a ∈ b ◦ c. Then 0 ∈ (b ◦ c) ◦ a = (b ◦ a) ◦ c. Thus there exists
t ∈ b ◦ a such that 0 ∈ t ◦ c and so t < c. Hence t = 0 or t = c. Since b 6= a
and b 6= 0, then t 6= 0. So t = c. Therefore c ∈ b ◦ a. The proof of the
converse statement is similar.

(v) Let x < x ◦ a. Then there exists t ∈ x ◦ a such that x < t. Thus
x = 0 or x = t. If x = 0, then by (HK5), 0 ∈ 0 ◦ a. If x = t, then x ∈ x ◦ a.
Conversely, let x ∈ x ◦ a. Then by Theorem 2.2(v), x < x ◦ a.
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(vi) Let A 6= ∅ and A < A ◦ b. Then there exists a ∈ A and t ∈ A ◦ b
such that a < t. Thus a = 0 or a = t. If a = 0, then 0 ∈ A∩A ◦ b. If a = t,
then a ∈ A ∩ A ◦ b. Therefore A ∩ A ◦ b 6= ∅. The proof of the converse
statement is obvious.

(vii) If x = y or x = z, then 0 ∈ (x ◦ y) ◦ z. So (x ◦ y) ◦ z < x ◦ (y ◦ z).
Now let x 6= y and x 6= z. Then by (ii), x ∈ (x ◦ y) ∩ (x ◦ z). Thus
x ∈ x ◦ z ⊆ (x ◦ y) ◦ z. If y = z, then 0 ∈ y ◦ z and so x ∈ x ◦ (y ◦ z). Hence
(x◦y)◦z < x◦(y◦z). If y 6= z, then by (ii), y ∈ y◦z, so x ∈ x◦y ⊆ x◦(y◦z).
Therefore (x ◦ y) ◦ z < x ◦ (y ◦ z).

(viii) Let 0 ∈ I and A ◦ B < I. Then there exists t ∈ A ◦ B and i ∈ I
such that t < i. So t = 0 or t = i. If t = 0, then 0 ∈ (A ◦ B) ∩ I. If t = i,
then i ∈ (A ◦B) ∩ I. Therefore (A ◦B) ∩ I 6= ∅. The converse statement is
clear.

Corollary 3.7. A simple hyper K-algebra is normal of type 1 if and only
if it is normal of type 2. ¤

Theorem 3.8. In simple hyper K algebras every subset containing 0 is a
weak hyper K-ideal.

Proof. Let 0 ∈ A ⊆ H, x ◦ y ⊆ A and y ∈ A. If x = y, then x ∈ A. If
x 6= y, then by Theorem 3.6(ii), x ∈ x ◦ y ⊆ A and so x ∈ A.

Corollary 3.9. Every hyper K-subalgebra of a simple hyper K-algebra is
a weak hyper K-ideal. ¤

Since by Theorem 3.6(v), we have l1A =l2 A and Ar1 = Ar2, for all
nonempty subset A ⊆ H, in the sequel we will write lA instead of l1A and
Ar instead of Ar1.

Corollary 3.10. In simple hyper K-algebras Ar and lA are weak hyper
K-ideals for any nonempty subset A of H. ¤

De�nition 3.11. A hyper K-algebra H is called left (right) weak normal
of type i if ila (respectively ari) is a weak hyper K-ideal of H for any a ∈ H.

Theorem 3.12. Every simple hyper K-algebra is a left (right) weak normal
K-algebra of type i = 1, 2. ¤

Theorem 3.13. Let H be a simple hyper K-algebra and let a 6= 0. Then
H−{a} is a hyper K-ideal of H if and only if |a◦x| = 1 for all x ∈ H−{a}.
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Proof. Let H−{a} be a hyper K-ideal and on the contrary, let there exists
x ∈ H−{a} such that |a◦x| > 1. Since a ∈ a◦x, then there is z ∈ H−{a}
such that z ∈ a ◦ x. Thus a ◦ x < H − {a} . Since H − {a} is a hyper
K-ideal, then a ∈ H − {a}, which is a contradiction. Therefore |a ◦ x| = 1,
for all x ∈ H − {a}.

Conversely, let |a◦x| = 1, for all x ∈ H−{a}. Since by Theorem 3.6(ii),
a ∈ a ◦ x, for all x ∈ H − {a}, then a ◦ x = {a}. Thus a ◦ x 6< H − {a}, for
all x ∈ H − {a}. Therefore H − {a} is a hyper K-ideal.

Theorem 3.14. Let ∅ 6= A ⊆ H and T = {a ∈ A | a 6∈ a ◦ a}.
(1) If T = ∅, then Ar and lA are hyper K-ideals of H.

(2) If T 6= ∅ and |a ◦ x| = 1 for all a ∈ T and x ∈ H − {a}, then Ar

and lA are hyper K-ideals of H.

Proof. (1) By Theorem 3.6(ii) Ar = {x ∈ H |x ∈ x ◦ a ∀a ∈ A} = H.
Thus Ar is a hyper K-ideal.

(2) Ar = H −T =
⋂

a∈T (H −{a}). So, by Theorem 3.13, Ar is a hyper
K-ideal.

The following example shows that the converse of Theorem 3.14(2) is
not true in general. The condition "|a ◦ x| = 1 for all x ∈ H − {a}" in
Theorem 3.14(ii) is necessary.
Example 3.15. Consider the hyper K-algebra

◦ 0 1 2 3

0 {0} {0} {0, 2} {0}
1 {1} {0} {1, 2} {1}
2 {2} {2} {0} {2}
3 {3} {3} {2, 3} {0}

and A = {1, 2}. Then T = {1, 2} and Ar = {0, 3} is a hyper K-ideal,
but 2 ∈ H − {1}, |1 ◦ 2| = 2. For A = {1}, we see that T = {1} and
Ar = {0, 2, 3}> But Ar is not a hyper K-ideal, because |1 ◦ 2| = 2 6= 1.

As a consequence of Theorems 3.13 and 3.14. we obtain
Corollary 3.16. Let a 6= 0 be an element of a simple hyper K-algebra H.

(a) If a ∈ a ◦ a, then ar and la are a hyper K-ideals of H.

(b) If a 6∈ a ◦ a, then ar and la are hyper K-ideals of H if and only if
|a ◦ x| = 1 for all x ∈ H − {a}.
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As a consequence of the above results we obtain
Corollary 3.17. A simple hyper K-algebra H such that a ∈ a ◦ a for every
a ∈ H is right (left) normal of type i = 1, 2. ¤
Corollary 3.18. In a simple hyper K-algebra all sets of the form {0, a}
are hyper K-ideals. ¤
Corollary 3.19. A bounded simple hyper K-algebra has at most two ele-
ments.

4. Commutative hyper K-ideals
Directly from the de�nition of commutative hyper K-ideals and Theorem
3.6 it follows that in simple hyper K-algebras commutative hyper K-ideals
of types 1 and 7 coincides. Similarly, commutative hyper K-ideals of types
2, 3, 8 and 9. Also 5 and 6.
Theorem 4.1. A simple hyper K-algebra is quasi-commutative.

Proof. Let x < y. Then x = 0 or x = y. If x = 0, then 0 ∈ y◦y ⊆ y◦(y◦0).
If x = y, then y ∈ y ◦ 0 ⊆ y ◦ (y ◦ y). Therefore x ∈ y ◦ (y ◦ x).

Corollary 4.2. In any simple hyper K-algebra, I = {0} is a commutative
hyper K-ideal of type i = 2, 3, 5, 6, 8, 9.

Proof. The proof follows from Theorems 4.1 and 2.7.

Theorem 4.3. If a ◦ a = {0} holds for all elements of a simple hyper
K-algebra, then I = {0} is its commutative hyper K-ideal of type 4.

Proof. Let (x ◦ y) ◦ z ⊆ I and z ∈ I. Then x ◦ y ⊆ (x ◦ y) ◦ 0 ⊆ I and so
x < y. Thus x = 0 or x = y. If x = 0, then x◦(y◦(y◦x)) = 0◦(y◦(y◦0)) =
0 ◦ (y ◦ y) = 0 ◦ 0 = I. If x = y, then y ◦ (y ◦ (y ◦ y)) = y ◦ y = I. Therefore
I is a commutative hyper K-ideal of type 4.

Remark 4.4. The hyper K-algebra de�ned by the table

◦ 0 1 2

0 {0} {0} {0, 2}
1 {1} {0, 2} {1, 2}
2 {2} {2} {0}
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proves that the condition "a ◦ a = {0} for all a ∈ H" in the above theorem
is necessary. Indeed, 1 ◦ 1 6= {0} and I = {0} is not a commutative hyper
K-ideal of type 4, because (0 ◦ 1) ◦ 0 = I, while 0 ◦ (1 ◦ (1 ◦ 0)) = {0, 2} 6⊆ I.
Theorem 4.5. In a simple hyper K-algebra I = {0} is a commutative
hyper K-ideal of type 7 (and 1) if and only if a ◦ a = {0} for all a ∈ H.

Proof. Let I = {0} be a commutative hyper K-ideal of type 7. Then
(y ◦ y) ◦ 0 < I and 0 ∈ I imply that y ◦ y ⊆ y ◦ (y ◦ 0) ⊆ y ◦ (y ◦ (y ◦ y)) ⊆ I.
Thus y ◦ y = {0}, for all y ∈ H. The proof of the converse statement is
similar to the proof of Theorem 4.4.

Theorem 4.6. In a simple hyper K-algebra H the set I = H − {a} is a
commutative hyper K-ideal of type 6 (and 5) for any a 6= 0.

Proof. Let (x ◦ y) ◦ z ⊆ I and z ∈ I. If x = y, then 0 ∈ x ◦ (y ◦ (y ◦ x)) and
so x◦ (y ◦ (y ◦x)) < I. If x 6= y, then x ∈ x◦0 ⊆ x◦ (y ◦y) ⊆ x◦ (y ◦ (y ◦x)).
Now we show that x 6= a. On the contrary let x = a. Then x 6= z and so
by Theorem 3.6(ii), x ∈ x ◦ z ⊆ (x ◦ y) ◦ z ⊆ I, which is a contradiction.
Hence x 6= a implies that x ◦ (y ◦ (y ◦ x)) < I.

Theorem 4.7. Let a be a non-zero element of a simple hyper K-algebra
H such that |a ◦ x| = 1 for all x ∈ H − {a}. Then I = H − {a} is a
commutative hyper K-ideal of type 9 (and 2, 3, 8).

Proof. Let (x ◦ y) ◦ z < I and z ∈ I. If x = y, then x ◦ (y ◦ (y ◦x)) < I. For
x 6= y we consider two cases: (i) x 6= a, (ii) x = a. In the �rst case we
have x ∈ x ◦ (y ◦ (y ◦ x)) and so x ◦ (y ◦ (y ◦ x)) < I. in the second, from
|a ◦ y| = |a ◦ z| = 1 it follows {a} = a ◦ z = (a ◦ y) ◦ z < I. Thus there exists
t ∈ I such that a < t. So a = 0 or a = t, which is impossible. Therefore I
is a commutative hyper K-ideal of type 9.
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