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On middle translations of finite quasigroups

Ivan I. Deriyenko

Abstract

We prove that a finite quasigroup is isotopic to a group if and only if some
set of bijections induced by middle transformations of this quasigroup is a
group.

1. Introduction

Let @ = {1,2,3,...,n} be afinite set, ¢ and 1) permutations of @. The mul-
tiplication (composition) of permutations is defined as () = (¢ (x)).
Let Q(+) be a quasigroup. Permutations L, : x — a-x, Ry :x — x-a
are called left and right translations of Q(-). Permutations \;, ¢; (i € Q) of
@ such that
Ai(x) -z =1, (1)

T pi(x) =1 (2)

for all z € @, are called left (respectively: right) middle translations of an
element i in a quasigroup Q(:). Such translation were firstly studied by
V. D. Belousov (cf. [1]) in connection with some groups associated with
quasigroups. Next, the investigations of such translations were continued
by many authors, see for example [3] or [5].

The above two conditions say that in a Latin square n X n connected
with a quasigroup Q(-) of order n we select n cells, one in each row, one
in each column, containing the same fixed element i. \;(z) means that to
find in the column x the cell containing an element ¢ we must select the
row A;(x). Analogously, ¢;(x) means that to find in the row z the cell
containing i we must select the column @;(x). Thus, \; is a selection of
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rows, ; — a selection of columns, containing an element ¢. In connection
with this fact A; will be called a left track (I-track), ¢; - a right track (r-track)
of an element i. It is clear that for a quasigroup Q(-) of order n the set
{A1, A2, ..., A\n} uniquely determines its Latin square, and conversely, any
Latin square n x n uniquely determines the set {1, A2, ..., Ap}. A similar
situation holds for {¢1,v2,...,@n}.

More interesting facts on connections of translations with Latin squares
one can find in [2].

As a simple consequence of the above definitions we obtain

Proposition 1.1. In any quasigroup Q(-) the following identities hold:

D Xi=g,

2) ¢;'(2) ==,

3) Li(z) = (\i(z) - 2) - =,

4) Li(x) = (z - @i(x)) -,

5) Ri(x)=z-(N(z)- ),

6) Ri(z) =z (z-pi(r)) O
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where 1 is the identity element of the group G(-). O

2. Isotopy invariants in quasigroups

Two quasigroups Q(+) and Q(o) are isotopic if there exists an ordered triple
T = (o, 8,7) of bijections «, 3,7 : @ — @ such that

Y(zoy)=a(z) - By)
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for all z,y € Q.
For y = v;(x), where 1); is a r-track of a quasigroup Q(o), this identity
has the form

V(o i(x)) = a(x) - Bibi(z),
whence, according to (2), we obtain
V(i) = o) - febi().
This for z = a(z) and j = (i) gives
j =z Bbia”!(2).

Since
J=2-9i(2) =2 0yu)(2)
for r-tracks ¢; and ¢, (;) of a quasigroup Q(:), the above implies
Py = B (3)

Remark 2.1. For [-tracks A; and p; of isotopic quasigroups Q(-) and Q(o)
we have

Ay = i1 (4)
Definition 2.2. By a spin of a quasigroup Q(-) we mean the permutation
Pij = 0ip; ' = Pikj,
where ¢; and \; are tracks of Q(-). The spin ;; is called trivial.
The set of all spins of a quasigroup Q(-) is denoted by ®g(-).
Proposition 2.3. Spins have the following properties
ij(x) #x for allz € Q and i # j,
wpi(x) # pj(x) for allz € Q and i # j,

1)
)
) v =95
)
)

[\

w

W

PkiPil = Pki;

5) Omk = Ot Qik-
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Proof. (1) If ¢;j(x) =  holds for some i # j and x € @, then, according
to the definition of ¢;;, we have <pig0j_1(x) = x. Whence, for = ¢;(y), we

obtain ¢;(y) = ¢;(y). Consequently v - ¢i(y) =y - ¢;(y), i.e., ¢ = j. This
contradicts our assumption. So, ¢;;(z) # x for all x € Q and i # j.
(2) Analogously as (1).
(3) wij = pip; ' = (w7 )71 = 95
4) eriva = (prey Npier D) = orlpi e = wu.
(5) @mk = omey = ome; 0ig | = (piom') @iy ) = Pimeik. O

As it is well-known any permutation ¢ of the set @) of order n can be
decomposed into 7 < n cycles of the length ki,... k. and k1 +...+k, = n.
We denote this fact by

Z((p) = [kl,kg,.. .,k,,«] .

Since conjugate permutations are decomposable into cycles of the same
length (see for example [4]), for any two conjugate permutations ¢ and
we have Z(¢) = Z(¢). Obviously Z(¢) = Z(¢~!) for any permutation ¢.
So, Z(ij) = Z(pj;) for all spins.

Definition 2.4. Let ® = {1, 2,...,¢n} be a collection of permutations
of the set . The set

Sp((I)) = [Z(Qpl)v Z(902)7 AR Z(@n)]

is called the spectrum of ®.

Two collections ® = {¢1,p2,...,¢0n} and X = {01,092,...,0,} of per-
mutations of () have the same spectrum if and only if there exists a permu-
tation v of @ such that Z(¢;) = Z(0,(;)) foralli =1,2,...,n.

The spectrum of all spins of a quasigroup Q(-), i.e., the set

[Z(p11), Z(12)s - - -, Z ()]
is called the spin-spectrum of Q(-) and is denoted by Ssp(Q,-).
Theorem 2.5. Finite isotopic quasigroups have the same spin-spectrum.
Proof. Let Q(-) and Q(o) be isotopic quasigroups. Then
Vzoy) = alz)-H(y)

for some permutations «, 3,7 of Q.
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In this case tracks of Q(-) and Q(o) are connected by the formula (3).
Spins of Q(+) and Q(o) are pairwise conjugate. Namely
-1
Pyiy() = BYiB
Indeed,
Pr(in() = Pl Pay = (Biia™ ) (Bdza) 7!
= (Bgia ) (ap; 1871 = By 571 = BB
Since spins ¢4(j),(;) and tj; are conjugate, we have Z(go,y(i)v(j)) =
Z(1i5). This means that Q(-) and Q(o) have the same spin-spectrum. [

Corollary 2.6. If the isotopy of quasigroups Q(-) and Q(o) has the form
(o, ,7y), then also sets of all r-tracks (I-tracks) of these quasigroups have
the same spectrum.

Proof. Indeed, from (3) and (4), it follows that in this case [-tracks (respec-
tively, r-tracks) of these quasigroups are pairwise conjugate. O

3. Spin-basis of quasigroups

Definition 3.1. Let ® be a collection of all nontrivial spins of a quasigroup
Q(). A minimal subset B of ® is called a basis of ® if each spin from @
can be written as a multiplication of spins (and their inverses) from B.

For example, the set

Bo = {12,023, - - -, Pi(i+1)s - - » Pln—1)n}

containing (n — 1) spins is a basis since each spin ¢,,, where p < ¢, can be
written in the form

Opq = P9 = Pp(Ppi1PpH1PpiaPpt2 - Pq1Pa-1)Pg "
= (@p%ﬁgh)(SOpH@;iQ) e (Spq—l%;l) = Ppp+1)P(p+1)(p+2) - - Plg—1)q-
Also
B ={pi1, iz, s Piks - -+, Pint, 1 F K,
is a basis for every i = 1,2,...,n. Indeed, according to Proposition 2.3 (5),

each spin ¢p, can be written in the form

-1
Ppq = Pip Pig-
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Definition 3.2. Let Q(-) be a quasigroup of order n. The set

Xi(Q,-) = {wi1, iz, - -, Qiis -, Pin} = Bi U{pii}
is called the ith spin-basis of Q(-).

It coincides with the ith row of the matrix [p;;]. In general, it is not
closed under multiplication of spins, but in some cases it is a group. Since
VkiPij = Pkj, by Proposition 2.3, for all i,k = 1,2,...,n holds

ka’i(Xi(Q> )) = Xk(Q) )

Proposition 3.3. If one of the spin-basis of a quasigroup Q(-) is a group,
then each of its spin-basis is a group and

X1(@, ) = x2(@,) = ... = xn(@Q, )

Proof. Let x;(Q,-) be a group. Then x;(Q,-) together with ¢;; contains
also goi_kl = k. This means that {©1i, 2i,. .., ¢ni} € xi(Q,-). Therefore
each spin ¢; belongs to x;(G,-) because pr; = @rivi; € xi(G,-) for all

]ak 807 Xk(Qv ) - Xl(Qv ) and SDkZ(XZ(Qa )) = Xk(Q> ) which Completes
the proof. O

Proposition 3.4. Let quasigroups Q(-) and Q(o) be isotopic. If one spin-
basis of Q(+) is a group, then each spin-basis of Q(o) is a group and for all
i=1,...,n we have XZ(Qv ) = Xl(Qv O)'

Proof. Let v(x oy) = a(x) - B(y). Then, as in the proof of Theorem 2.5,
-1
PryiinG) = PPl

Whence
Yij = B 07 () - (5)
To prove that
Xi(G,0) = {vi1, Yiz, ..., Yin}
is a group observe that for all 1y, Vg € xi(Q, o) we have
VipWiq = B O (i)y(m) Pr(iyy(@) B = B P (iyeB = Vi,

where (t) = k, since, by Proposition 3.3, each spin-basis of Q(-) is a group.
Moreover, for every ¥ € xi(@,0), by (5) and Proposition 2.3, we obtain

Vit = ki = B 0y () B = 5_190;(11)7(@5 = B 0y ) B = Vis,
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where y(s) = r. This means that x;(Q, o) together with 1;; also contains
wi_kl. So, it is a group. Clearly x;(Q,0) = xx(Q,0) forall k =1,... n.

In view of (5) the isomorphism h : x;(Q, ) — Xi(@;°) = X4 (@;°)
has the form (01 (i) = 67 @3(()0- =

Theorem 3.5. A finite quasigroup which is a group is isomorphic to ils
spin-basis.

Proof. Let G(-) be a group and x1(G, ) = {¢11, Y12, - - -, 1n } its spin-basis.
Then, according to the definition of spins, Proposition 1.1 and Corollary 1.2,

o1i(z) = pr(Ni(@) =i(i-a™ ) =(i-a ) =z it = R (),

which means that the spin-basis x1(G,-) can be identified with the set of
all right translations of G(-). So, x1(G, ) and G(-) are isomorphic.
Proposition 3.3 completes the proof. ]

Theorem 3.6. A quasigroup for which the spin-basis is a group is isotopic
to this group.

Proof. Let Q(o) be a quasigroup. Since it is isotopic to some loop Q(-) with
the identity 1, in view of Propositions 3.3 and 3.4, it is sufficient to prove

that Q(+) is isotopic to the group x1(Q, ) = {@11,¥12, P13, - -, Pin}-
For this we consider the mapping

h:x1(Q,:) — Q(-) such that h(py;) = 1.

It is one-to-one and onto. We prove that it is an isomorphism, i.e.,

h(p1kpr) = h(eik) - h(pu)

for all p1x, w1 from x;(Q,-).
As x1(@Q,-) is a group, the product of ¢ and ¢y; also belongs to

Xl(Qa ) Let
P1EP1 = Plp-

By the definition of spins, the last equality is equivalent to

p105, 10, = o190,

i.e., to
o o107 = 05
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which can be written as
0p = 0107 .
This means that
_ -1
op(®) = o7 ()
holds for every z € Q. Since Q(-) is a loop, the last identity is equivalent to

T pp(z) =z o7 on(a),

whence, by (2), for x = k we obtain

p=k-op(k) =k o7 or(k) =k o7 (1) =k - (1) = k-1

because in any loop ¢k (k) = 1 and pi(1) = k.
So, h(p1ke1) = p = k-l = h(p1x)-h(p11), which completes the proof. [

As a consequence of the above results we obtain

Theorem 3.7. A finite quasigroup is isotopic to a group if and only if its
spin-basis is a group.
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