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Algebraic properties of some varieties
of central loops

Tèmító. pé. Gbó. láhàn Jaiyéo. là and John Olúso. lá Adéníran

Abstract

Isotopes of C-loops with a unique non-identity squares are studied. It is
proved that such loops are C-loops and A-loops. The relationship between
C-loops and Steiner loops is further studied. Central loops with the weak
and cross inverse properties are also investigated.

1. Introduction
C-loops are one of the least studied loops. Few publications that have
considered C-loops include Fenyves [14], [15], Beg [7], [8], Phillips et. al.
[24], [26], [21], [20], Chein [10] and Solarin et. al. [2], [30], [28], [27]. The
di�culty in studying them is as a result of the nature of their identities
when compared with other Bol-Moufang identities (the element occurring
twice on both sides has no other element separating it from itself). Latest
publications on the study of C-loops which has attracted fresh interest on
the structure include [24], [26], and [21].

LC-loops, RC-loops and C-loops are loops that satis�es the identities

(xx)(yz) = (x(xy))z, (zy)(xx) = z((yx)x), x(y(yz)) = ((xy)y)z,

respectively. Fenyves' work in [15] was completed in [24]. Fenyves proved
that LC-loops and RC-loops are de�ned by three equivalent identities. In
[24] and [25], it was shown that LC-loops and RC-loops are de�ned by four
equivalent identities. Solarin [28] named the fourth identities the left middle
(LM) and right middle (RM) identities and loops that obey them are called
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LM -loops and RM -loops, respectively. These terminologies were also used
in [29]. Their basic properties are found in [26], [15] and [13].

The right and left translation on a loop (L, ·) are bijections Rx : L → L
and Lx : L → L de�ned as yRx = yx.

De�nition 1.1. Let (L, ·) be a loop. The left nucleus of L is the set

Nλ(L, ·) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.
The right nucleus of L is the set

Nρ(L, ·) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.
The middle nucleus of L is the set

Nµ(L, ·) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.
The nucleus of L is the set

N(L, ·) = Nλ(L, ·) ∩Nρ(L, ·) ∩Nµ(L, ·).
The centrum of L is the set

C(L, ·) = {a ∈ L : ax = xa ∀ x ∈ L}.
The center of L is the set

Z(L, ·) = N(L, ·) ∩ C(L, ·).
L is said to be a centrum square loop if x2 ∈ C(L, ·) for all x ∈ L.

L is said to be a central square loop if x2 ∈ Z(L, ·) for all x ∈ L. L is
said to be left alternative if for all x, y ∈ L, x · xy = x2y and is said to
right alternative if for all x, y ∈ L, yx · x = yx2. Thus, L is said to be
alternative if it is both left and right alternative. The triple (U, V, W ) such
that U, V, W ∈ SY M(L, ·) is called an autotopism of L if and only if

xU · yV = (x · y)W ∀ x, y ∈ L.

SY M(L, ·) is called the permutation group of the loop (L, ·). The group
of autotopisms of L is denoted by AUT (L, ·). Let (L, ·) and (G, ◦) be two
distinct loops. The triple (U, V, W ) : (L, ·) → (G, ◦) such that U, V, W :
L → G are bijections is called a loop isotopism if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ L.
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We investigate central loops with the unique non-identity commutators,
associators and squares. The relationship between C-loops and Steiner loops
is studied. Central loops with the weak and cross inverse properties are also
investigated.

For de�nition of concepts in theory of loops readers may consult [9], [29]
and [23].

2. Preliminaries
De�nition 2.1. (cf. [16]) Let a, b and c be three elements of a loop L.
The loop commutator of a and b is the unique element (a, b) of L such that
ab = (ba)(a, b). The loop associator of a, b and c is the unique element
(a, b, c) of L such that (ab)c = {a(bc)}(a, b, c).

If X,Y, and Z are subsets of a loop L, we denote by (X, Y ) and (X, Y, Z),
respectively, the set of all commutators of the form (x, y) and all the asso-
ciators of the form (x, y, z), where x ∈ X, y ∈ Y, z ∈ Z.

De�nition 2.2. (cf. [16]) A unique non-identity commutator is an element
s 6= e (e is the identity element) in a loop L with the property that every
commutator in L is e or s. A unique non-identity commutator associator is
an element s 6= e in a loop L with the property that every commutator in
L is e or s and every associator is e or s. A unique non-identity square or
non-trivial square is an element s 6= e in a loop L with the property that
every square in L is e or s.

De�nition 2.3. A loop (L, ·) is called a weak inverse property loop (W.I.P.L.)
if and only if it satis�es the weak inverse property (W.I.P.): y(xy)ρ = xρ for
all x, y ∈ L. L is called a cross inverse property loop (C.I.P.L.) if and only
if it satis�es the cross inverse property (C.I.P.): xy · xρ = y. (L, ·) is a left
(right) inverse property loop (L.I.P.L.) (resp. (R.I.P.L.)) if and only if it has
the left (resp. right) inverse property (L.I.P) (resp. (R.I.P)): xλ(xy) = y
(resp(yx)xρ = y. It is an inverse property loop (I.P.L.) if and only if it has
the inverse property (I.P.) i.e., it has L.I.P. and R.I.P. property.

Most of our results and proofs, are written in dual form relative to RC-
loops and LC-loops. That is, a statement like 'LC(RC)-loop... A(B)' where
'A' and 'B' are some equations or expressions means that 'A' is for LC-loops
and 'B' is for RC-loops.
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3. Inner mappings
Lemma 3.1. Let L be a C-loop. Then for each (A,B, C) ∈ AUT (L),
there exists a unique pair (S1, T1, R1), (S2, T2, R2) ∈ AUT (L, ·) such that
L2

x = S−1
2 S1, R2

x = T−1
1 T2, R−2

x L2
x = R−1

2 R1, R−1
1 R2T

−1
2 T1S

−1
2 S1 = I for

all x ∈ L.

Proof. If L is a C-loop, then (L2
x, I, L2

x), (I,R2
x, R2

x) ∈ AUT (L) for all x ∈ L.
So, there exist (S1, T1, R1), (S2, T2, R2) ∈ AUT (L) such that

(S1, T1, R1) = (A,B,C)(L2
x, I, L2

x) ∈ AUT (L)

(S2, T2, R2) = (A,B,C)(I, R2
x, R2

x) ∈ AUT (L).

Hence, the conditions hold although the identities do not depend on (A,B,C),
but the uniqueness does.

Theorem 3.1. Let L be a C-loop and let there exist a unique pair of au-
totopisms (S1, T1, R1), (S2, T2, R2) such that the conditions L2

x = S−1
2 S1,

R2
x = T−1

1 T2 and R−2
x L2

x = R−1
2 R1 hold for each x ∈ L. If α1 = S−1

1 ,
α2 = S−1

2 , β1 = T−1
1 , β2 = T−1

2 , γ1 = R−1
1 and γ2 = R−1

2 , then

(x2y)α1 = yα2, (yx2)β2 = yβ1, (x2yx−2)γ1 = yγ2 ∀ x, y ∈ L.

Proof. From Lemma 3.1 we have L2
x = S−1

2 S1, R2
x = T−1

1 T2, R−2
x L2

x =
R−1

2 R1. Keeping in mind that a C-loop is power associative and nuclear
square, we have the following:
1. L2

x = S−1
2 S1 ←→ yL2

x = yS−1
2 S1 for all y ∈ L ←→ yLx2 = yS−1

2 S1 ←→
x2y = yS−1

2 S1 ←→ (x2y)S−1
1 = yS−1

2 ←→ x2yα1 = yα2.
2. R2

x = T−1
1 T2 ←→ yR2

x = yT−1
1 T2 for all y ∈ L ←→ yx2 = yT−1

1 T2

←→ yx2T−1
2 = yT−1

1 ←→ yx2β = yβ1.
3. R−2

x L2
x = R−1

2 R1 ←→ yR−2
x L2

x = yR−1
2 R1 for all y ∈ L ←→ x2yx−2 =

yR−1
2 R1 ←→ (x2yx−2)R−1

1 = yR−1
2 ←→ (x2yx−2)γ1 = yγ2.

Corollary 3.1. Let L be a C-loop. An autotopism of L can be constructed
if there exists at least one x ∈ L such that x2 6= e. In this case also the
inverse can be constructed.

Proof. We need Lemma 3.1 and Theorem 3.1. If x2 = e, then the auto-
topism is trivial. Since L is a C-loop, using Lemma 3.1 and Theorem 3.1, it
will be noticed that (α1S2, β1T2, γ1R2) ∈ AUT (L) and (α2S1, β2T1, γ2R1) =
(α1S2, β1T2, γ1R2)−1. Hence the proof.
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Lemma 3.2. For a C-loop L the mapping γ2R1 : L → L used in
the autotopism (α2S1, β2T1, γ2R1) ∈ AUT (L) and de�ned by the identity
yγ2R1 = x2yx−2 for all x ∈ L is:

1. an automorphism,
2. a semi-automorphism,
3. a middle inner mapping,
4. a pseudo-automorphism with companion x2.

Proof. 1. The map γ2R1 is a bijection by the construction of the autotopism
(α2S1, β2T1, γ2R1) ∈ AUT (L). So we need only to show that it is an ho-
momorphism. Let y1, y2 ∈ L, then: (y1y2)γ2R1 = (x2y1x

−2)(x2y2x
−2) =

y1γ2R1 · y2γ2R1. Whence, γ2R1 is an automorphism.
2. We have eγ1 = eγ2, hence eγ2R1 = e. Thus (zy·z)γ2R1 = x2(zy·z)x−2 =
x2((zy · z)x−2) = (x2zx−2)(x2yx−2) · zγ2R1 = (zγ2R1 · yγ2R1) · zγ2R1. So,
γ2R1 is a semi-automorphism.
3. Since eγ2R1 = e, we hawe yγ2R1 = yRx−2L(x−2)−1 = yT (x−2) for all
y ∈ L, which implies γ2R1 = T (x−2) ∈ Inn(L). Hence γ2R1 is a middle
inner mapping.
4. It is a consequence of the �rst property and the fact that any automor-
phism in a C-loop L is a pseudo-automorphism with companion x2 for all
x ∈ L.

Lemma 3.3. Let (L, ·) be a C-loop. Then:
1. T (x−1) = RxT (x−2)L−1

x , T (x)2 = RxT (x−1)−1L−1
x ,

2. T (xn) = Rn−1
x T (x)L1−n

x , T (x−n) = R1−n
x T (x−1)Ln−1

x for n ∈ ZZ+,

3. R(x, x) = I, L(x, x) = I.

Proof. 1. For γ2R1 from Lemma 3.2 we have yγ2R1 = x2yx−2 = yRx−2Lx2 =
yR−1

x R−1
x LxLx = yR−1

x T (x−1)Lx. Thus, γ2R1 = R−1
x T (x−1)Lx. But

γ2R1 = T (x−2) is the middle inner mapping, so, T (x−2) = R−1
x T (x−1)Lx

implies T (x−1) = RxT (x−2)L−1
x . Therefore T (x)2 = RxL−1

x RxL−1
x =

Rx(Rx−1L−1
x−1)−1L−1

x = RxT (x−1)−1L−1
x .

2. By induction.
n = 1, T (x) = R1−1

x T (x)L1−1
x = Rx0T (x)Lx0 = T (x) for x ∈ L,

n = 2, T (x2) = T (xx) = Rx2L−1
x2 = RxRxL−1

x L−1
x = RxT (x)L−1

x for x ∈ L,
n = 3, T (x3) = T (x2x) = Rx2xL(x2x)−1 = Rx2RxLx−1x−2 = Rx2RxLx−1Lx−2

= R2
xT (x)L−2

x for all x ∈ L.
Let n = k, T (xk) = Rk−1

x T (x)L1−k
x . Then for n = k + 1 we have
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T (xk+1) = T (xk−1x2) = Rxk−1x2L−1
(xk−1x2)

= Rxk−1x2Lx−2x1−k =

Rxk−1Rx2Lx−2Lx1−k = Rxk−1T (x2)Lx1−k = Rk−1
x RxT (x)L−1

x L1−k
x

= Rk
xT (x)L−k

x .
Therefore T (xn) = Rn−1

x T (x)L1−n
x for all n ∈ ZZ+. Replacing x by x−1

we obtain T (x−n) = T ((x−1)n) = Rn−1
x−1 T (x−1)L1−n

x−1 = R1−n
x T (x−1)Ln−1

x .
Thus, T (x−n) = R1−n

x T (x−1)Ln−1
x for all n ∈ ZZ+.

3. R(x, x) = R2
xR−2

x = I, L(x, x) = L2
xL−2

x = I.

Remark 3.1. Lemma 3.2 gives an example of a bijective mapping which is
an automorphism, pseudo-automorphism, semi-automorphism and an inner
mapping.

4. Relationship between C-loops and Steiner loops
For a loop (L, ·), the bijection J : L → L is de�ned by xJ = x−1. A
Steiner loop is a loop satisfying the identities

x2 = e, yx · x = y, xy = yx.

Theorem 4.1. A C-loop (L, ·) in which (I, L2
z, JL2

zJ or (R2
z, I, JR2

zJ) lies
in AUT (L) is a loop of exponent 4.

Proof. 1. If (I, L2
z, JL2

zJ) ∈ AUT (L) for all z ∈ L, then x ·yL2
z = (xy)JL2

zJ
for all x, y, z ∈ L implies x · z2y = xy · z−2. Whence z2y · z2 = y. Then
y4 = e for every y ∈ L.
2. If (R2

z, I, JR2
zJ) ∈ AUT (L) for all z ∈ L, then xR2

z · y = (xy)JR2
zJ for

all x, y, z ∈ L implies (xz2) · y = [(xy)−1z2]−1. Whence (xz2) · y = z−2(xy),
consequently (xz2) · y = z−2x · y. Thus xz2 = z−2x which implies z4 = e
for every z ∈ L.

Theorem 4.2. A C-loop (L, ·) in which (I, L2
z, JL2

zJ) and (R2
z, I, JR2

zJ)
lies in AUT (L) is a central square C-loop of exponent 4.

Proof. 1. If (I, L2
z, JL2

zJ) ∈ AUT (L) for all z ∈ L, then x ·yL2
z = (xy)JL2

zJ
for all x, y, z ∈ L implies x · z2y = xy · z−2.
2. If (R2

z, I, JR2
zJ) ∈ AUT (L) for all z ∈ L, then xR2

z · y = (xy)JR2
zJ for

all x, y, z ∈ L implies xz2 · y = z−2(xy).
Therefore x · z2y = xz2 · y if and only if xy · z−2 = z−2 · xy. Putting

t = xy we have tz−2 = z−2t, i.e., z2t−1 = t−1z2. Whence we conclude that
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z2 ∈ C(L, ·) for all z ∈ L. Since C-loops are nuclear square (see [26]), we
have z2 ∈ Z(L, ·). Hence L is a central square C-loop. By Theorem 4.1,
x4 = e.

Corollary 4.1. If (I, L2
z, JL2

zJ) ∈ AUT (L) and (R2
z, I, JR2

zJ) ∈ AUT (L)
for a C-loop (L, ·), then L is �exible, (xy)2 = (yx)2 for all x, y ∈ L and
x 7→ x3 is an anti-automorphism

Proof. By Theorem 4.2, Lemma 5.1 and Corollary 5.2 of [21].

Theorem 4.3. A central square C-loop of exponent 4 is a group.

Proof. To prove this, it shall be shown that R(x, y) = I for all x, y ∈ L. By
Corollary 4.1, for w ∈ L we get wR(x, y) = wRxRyR

−1
xy = (wx)y · (xy)−1 =

(wx)(x2yx2) · (xy)−1 = (wx3)(yx2) · (xy)−1 = (w2(w3x3))(yx2) · (xy)−1 =
(w2(xw)3)(yx2)·(xy)−1 = w2(xw)3 ·(yx2)(xy)−1 = w2(xw)3 ·[y·x2(xy)−1] =
w2(xw)3·[y·x2(y−1x−1)] = w2(xw)3·[y(y−1x−1·x2)] = w2(xw)3·[y(y−1x)] =
w2(xw)3 · x = w2(w3x3) · x = w2 · (w3x3)x = w2 · (w3x−1)x = w2w3 =
w5 = w. So, R(x, y) = I, i.e., RxRyR

−1
xy = I. Thus RxRy = Rxy and

zRxRy = zRxy. So, zx · y = z · xy. Therefore L is a group.

Corollary 4.2. A C-loop (L, ·) in which for all z ∈ L (I, L2
z, JL2

zJ) and
(R2

z, I, JR2
zJ) are in AUT (L) is a group.

Proof. This follows from Theorem 4.2 and Theorem 4.3.

Remark 4.1. Central square C-loops of exponent 4 are A-loops.

Theorem 4.4. A C-loop is a central square loop if and only if γ2R1 = I.

Proof. γ2R1 = I ←→ T (x−2) = I for all x ∈ L ←→ Rx−2Lx2 = I ←→
yx2 = x2y ←→ L is central square.

Theorem 4.5. Let L be a C-loop such that the mapping x 7→ T (x) is a
bijection, then L is of exponent 2 if and only if γ2R1 = I.

Proof. Indeed, γ2R1 = I ←→ T (x−2) = I for all x ∈ L ←→ T (x−2) =
I = R−1

x T (x−1)Lx ←→ T (x−1) = T (x) ←→ x−1 = x. Since x 7→ T (x) is a
bijection L is a loop of exponent 2.

Corollary 4.3. A C-loop in which x 7→ T (x) is a bijection is a loop of
exponent 2 if and only if it is central square.
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Proof. By Theorem 4.4 and Theorem 4.5.

Corollary 4.4. A central square C-loop in which the map x 7→ T (x) is a
bijection is a Steiner loop.

Proof. By the converse of Corollary 4.3, a C-loop in which x 7→ T (x) is
a bijection, is of exponent 2 if it is central square. By the result of [26],
an inverse property loop of exponent 2 is a Steiner loop. By the fact that
C-loops are inverse property loops [26], it is a Steiner loop.

Corollary 4.5. A C-loop (L, ·) in which x 7→ T (x) is a bijection and
(I, L2

z, JL2
zJ), (R2

z, I, JR2
zJ) are in AUT (L) for every z ∈ L, is a Steiner

loop of exponent 4.

Proof. According to Theorem 4.2, L is a central square loop. Since x 7→
T (x) is a bijection, by Corollary 4.4, L is a Steiner loop. By Theorem 4.1,
it has a an exponent of 4.

Corollary 4.6. A C-loop L in which the mapping x 7→ T (x) is a bijection
is a Steiner loop if and only if L is a central square C-loop.

Proof. A Steiner loop L is a C-loop [26]. Steiner loops are loops of exponent
two, hence by Corollary 4.3, L is central square since in L, the mapping
x 7→ T (x) is a bijection. Conversely, by Corollary 4.3, a central square
C-loop L in which the mapping x 7→ T (x) is a bijection is a loop of of
exponent two. The fact that an inverse property loop of exponent two is a
Steiner loop [26], completes the proof.

4.1. Flexibility in C-loops
Lemma 4.1. A C-loop is �exible if the mapping x 7→ x2 is onto.

Proof. Let L be a C-loop . Then yx2 · y = y · x2y for all x, y ∈ L. Thus, L
is square �exible, hence by [12], it is �exible since the mapping x 7→ x2 is
onto.

Theorem 4.6. A C-loop L is �exible if (I, L2
z, JL2

zJ) and (R2
z, I, JR2

zJ)
are in AUT (L) for all z ∈ L and the middle inner mappings are of order 2.

Proof. By Lemma 3.3, for every x ∈ L we have T (x)2 = RxT (x−1)−1L−1
x =

Rx(RxT (x−2)L−1
x )−1L−1

x = Rx(Lx(RxT (x−2))−1)L−1
x = Rx(LxT (x−2)−1

R−1
x )L−1

x = RxLxT (x−2)−1R−1
x L−1

x = RxLxT (x−2)−1(LxRx)−1. Therefore



Algebraic properties of some varieties of central loops 45

T (x)2 = RxLxT (x−2)−1(LxRx)−1 ←→ T (x)2LxRx = RxLxT (x−2)−1 =
RxLx(γ2R1)−1 = RxLxγ1R2 ←→ T (x)2LxRx = RxLxγ1R2. If |T (x)| = 2,
T (x)2 = I and if γ1R2 = I ←→ L is central square, then LxRx = RxLx ←→
xy · x = x · yx is a �exible loop.

Philips and Vojt¥chovský [26] studied the close relationship between C-
loops and Steiner loops. In [23], it is shown that Steiner loops are exactly
commutative inverse property loops of exponent 2. But in [26], this fact was
improved, so that commutativity is not a su�cient condition for an inverse
property loop of exponent 2 to be a Steiner loop. So they said `Steiner loops
are exactly inverse property loops of exponent 2'. This result is general for
inverse property loops among which are C-loops. They also proved that
Steiner loops are C-loops.

The �exibility is possible in a C-loop if the loop is commutative or
diassociative [23]. But C-loops naturally do not even satisfy the latter.
Apart from the condition stated in Lemma 4.1, Theorem 4.6 when compared
with Corollary 5.2 of [21] shows that some middle inner-mappings do not
need to be of exponent of 2 for a C-loop to be �exible.

5. Unique non-identity commutator and associator
Lemma 5.1. If s is a unique non-identity commutator in a C-loop L, then
|s| = 2, s ∈ C(L) and s ∈ Z(L2).

Proof. xy = (yx)(x, y) ←→ (x, y) = (yx)−1(xy) = (x−1y−1)(xy). There-
fore (x, y)−1 = [(x−1y−1)(xy)]−1 = (xy)−1(x−1y−1)−1 = (y−1x−1)(yx) =
(y, x). Thus, s−1 = s or s−1 = e implies s2 = e or s = e. So, s2 = e.

If xs 6= sx, then xs = (sx)s implies x = sx, whence s = e. So, xs = sx,
i.e., s ∈ C(L). Hence, s ∈ Z(L2).

Lemma 5.2. If s is a unique non-identity associator in a C-loop L, then
s ∈ N(L).

Proof. If (xy)s 6= x(ys), then (xy)s = x(ys) · s implies xy = x · ys. Whence
y = ys, i.e., s = e. So, (xy)s = x(ys), that is, s ∈ N(L).

Lemma 5.3. If a C-loop (L, ·) has a unique non-identity commutator as-
sociator s, then s is a central element of order 2.
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Proof. We shall keep in mind that L as a C-loop has the inverse property.
s ∈ (L,L) implies s−1 ∈ (L,L), whence s−1 = s. Since s−1 6= e if and only
if s 6= e, we have s2 = e. Let xs 6= sx for some x, y ∈ L. Then xs = (sx)s
implies x = sx, i.e., s = e, which is a contradiction. Thus, s ∈ C(L). If
(xy)s 6= x(ys) for some x, y ∈ L, then (xy)s = (x · ys)s implies xy = x · ys.
Thus y = ys, i.e, s = e, which is a contradiction. So, s ∈ N(L). Therefore
s ∈ C(L) , s ∈ N(L) implies s ∈ Z(L).

Remark 5.1. The result of Lemma 5.3 is similar to the result proved in
[16] for Moufang loops.

Lemma 5.4. In LC(RC)-loops with a unique non-identity square s is |s| =
2, |x| = 4 or |x| = 2, s ∈ Nλ or s ∈ Nρ and s ∈ Nµ.

Proof. For all x ∈ L we have x2 = s. Since s2 = s implies s−1s2 = s−1s or
s2s−1 = ss−1, so s = e. This is a contradiction, thus s2 = e if and only if
|s| = 2. Moreover, x2 = s implies x4 = x2x2 = s2 = e. Therefore x4 = e
or x2 = e. In any LC-loop, x2 ∈ Nλ, Nµ, thus s ∈ Nλ, Nµ. In an RC-loop,
x2 ∈ Nρ, Nµ, thus s ∈ Nρ, Nµ.

Lemma 5.5. An LC(RC)-loop L has a unique non-identity square s if and
only if J = R−1

s = R−1
s−1 or J = I (resp. J = L−1

s = L−1
s−1 or J = I).

Proof. Let L be a RC-loop. Then x2 = s ←→ x2x−1 = sx−1 ←→ x =
sx−1 ←→ x = xJLs ←→ I = JLs ←→ J = L−1

s = L−1
s−1 . Similarly,

x2 = e ←→ x = x−1 ←→ x = xJ ←→ J = I.
For LC-loops the proof is analogous.

Theorem 5.1. For any L.I.P. (R.I.P.) RC(LC)-loop (L, ·) with a unique
non-identity square s,

1. s ∈ Z(L, ·), i.e., L is centrum square,
2. J = Ls (resp. J = Rs),
3. x2y2 6= (xy)2 6= y2x2, i.e., x 7→ x2 is neither an automorphism nor

an anti-automorphism,
4. (a, b, c) = (bc · a)(ab · c),

(a) ab = a−1b−1 if and only if (J, J, I) ∈ AUT (L),
(b) (a, b, a) = (bs)(ab · a) or (a, b, a) = b(ab · a),

5. L is a group or Steiner loop,
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6. If L is a non-commutative C-loop, then s is its unique non-identity
commutator.

Proof. 1. x2 = s implies x = sx−1, whence x−1 = s−1x. This, by
Lemma 2.1 from [1], gives x−1 = (sx−1)−1 = (x−1)−1s−1 = xs−1. Thus,
x−1 = s−1x = xs−1, i.e., sx = xs. So, s ∈ Z(L, ·).
2. This follows from Lemma 5.5.
3. If (xy)2 = x2y2 or (xy)2 = y2x2, then s = s2 implies s = e which is a
contradiction.
4. (a, b, c) = [a(bc)]−1 · (ab)c = (bc)−1a−1 · (ab)c = (c−1b−1)a−1 · (ab · c) =
[s−1(bc)](s−1a) · (ab · c) = (bc · s−1)(s−1a) · (ab · c) = (bcs−2 · a)(ab · c) =
(bc · a)(ab · c). So, (a, b, c) = (bc · a)(ab · c).
4a. The above for c = e gives (a, b, e) = (ba)(ab) = e, whence ab = (ba)−1 =
a−1b−1. So, (J, J, I) ∈ AUT (L).
4b. For c = a we have (a, b, a) = (ba ·a)(ab ·a) = (ba2)(ab ·a) = (bs)(ab ·a).
Thus (a, b, a) = (bs)(ab · a) or (a, b, a) = b(ab · a).
5. This follows from Lemma 5.4.
6. (x, y) = x−1y−1 · xy = (x−1y−1)(xy−1 · y2) = ((x−1y−1)(xy−1) · y2 =
[x−2(xy−1) · (xy−1)]y2 = x−2[(xy−1)(xy−1)]y2 = e or (x, y) = s. Thus, L is
either commutative or s is its unique non-identity commutator.

For (x, s) = x−1s−1 ·xs = s we have x−1Rs ·xRs = s, whence xJ2 ·x−1 =
s. Thus xx−1 = s, i.e., s = e, which is a contradiction. So. (x, s) = e implies
s ∈ C(L, ·).

Corollary 5.1. A C-loop with a unique non-trivial square is a group.

Proof. By Lemma 5.4 and Theorem 5.1, it is central square of exponent 4.
By Theorem 4.3, it is a group.

Remark 5.2. A C-loop with a unique non-trivial square is an A-loop.

Theorem 5.2. Let (G, ·) and (H, ◦) be two distinct loop such that the triple
α = (A, B,C) is an isotopism of G onto H.

1. If G is a central square C-loop of exponent 4, then H is a C-loop and
an A-loop.

2. If G is a C-loop with a unique non-identity square, then H is a C-loop
and an A-loop.
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Proof. 1. By Theorem 4.3, G is a group and since groups are G-loops, H
is a group, i.e., it is a C-loop and an A-loop.
2. By Corollary 5.1.

Remark 5.3. Some results for isotopes of central loops of the type (A,B,B)
and (A,B,A) are obtained in [18].

Corollary 5.2. Let (G, ·) and (H, ◦) be distinct loops. If the triple (A,B, C)
is an isotopism of G onto H such that for every z ∈ G (I, L2

z, JL2
zJ) and

(R2
z, I, JR2

zJ) are in AUT (G, ·), then H is a C-loop and an A-loop.

Proof. It follows from Theorem 4.2 and Theorem 5.2.

Theorem 5.3. An isotopism (A,A, C) saves the property "unique non-
identity square".

Proof. Let (A,A, C) : (G, ·) → (H, ◦), where G and H are two distinct
loops, be an isotopism. Then xA ◦ yA = (x · y)C. For y = x we have
xA ◦ xA = (xA)2 = (x · x)C = x2C. If s is the unique non-identity square
in G, i.e x2 = s or x2 = e for all x ∈ G then s′ = sC = (xA)2 = y′2 or
y′2 = (xA)2 = x2C = eC = e′ for all y′ ∈ H with e′ as the identity element
in H. So, s′ is the unique non-identity square element in H.

Corollary 5.3. Central loops with unique non-identity square are isotopic
invariant.

6. Cross inverse property in central loops
According to [5], the W.I.P. is a generalization of the C.I.P. The latter was
introduced and studied by R. Artzy [3] and [4], but from the formal point
of view this property was introduced by J. M. Osborn [22]. Huthnance Jr.
[17], proved that the holomorph of a W.I.P.L. is a W.I.P.L. A loop property
is called universal (or universal relative to a given property) if every loop
isotope of this loop is a loop with this property. A universal W.I.P.L. is
called an Osborn loop. Huthnance Jr. [17] investigated the structure of
some holomorph of Osborn loops. Basarab [6] studied Osborn loops which
are G-loops.

Theorem 6.1. An LC(RC)-loop of exponent 3 is centrum square if and
only if it is a C.I.P.L.
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Proof. Let L be a LC-loop. Then x2y = yx2 ←→ x−1y = yx−1 ←→
x(x−1y) = x(yx−1) ←→ y = x(yx−1), which holds if and only if the C.I.P.
holds in L.

For RC-loops the proof is analogous.

Corollary 6.1. If L is a centrum square LC(RC)-loop of exponent 3, then
1. L has the A.I.P. and A.A.I.P.,
2. L has the W.I.P.,
3. N = Nλ = Nρ = Nµ,
4. n ∈ N implies n ∈ Z(L),
5. L is a commutative group.

Proof. 1. By Theorem 6.1, L is a C.I.P.L. According to [4] and [5], a C.I.P.L.
has the A.I.P. Thus, the �rst part is true. The second part follows from the
fact that x2 = x−1.
2. This follows from the the fact that W.I.P. is a generalization of C.I.P.
[23].
3. and 4. follows from [5] and [4]. The last statement is obvious.

Lemma 6.1. Any LC(RC, C)-loop of exponent 3 is a group.

Corollary 6.2. A central square C-loop of exponent 3 has the W.I.P. and
C.I.P. and it a commutative group.

The fact that central loops of exponent 3 are groups it will be interesting
to study non-commutative central loops of exponent 3 with the C.I.P. since
there exist groups that do not have the C.I.P. From Theorem 6.1, it follows
that the study of LC(RC)-loops of exponent 3 with C.I.P. is equivalent to
the study of centrum square LC(RC)-loops of exponent 3.

The existence of central loops of exponent 3 can be deduced from [15],
[26] and [27]. According to [26] and [27], the order of every element in a
�nite LC(RC)-loop divides the order of the loop. Since |x| = 3 for all x ∈ L,
then

|L| = 2m, m > 3 if L is a non-left (right) Bol LC(RC)-loop, or
|L| = 4k, k > 2 if L is a non-Moufang but both left (right)-Bol and

LC(RC)-loop.
The possible orders of �nite RC-loops were calculated in [27].
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6.1. Osborn central-loops
Theorem 6.2. An LC(RC)-loop has the R.I.P. (L.I.P.) if and only if has
the W.I.P.

Proof. Let (L, ·) be a LC-loop with the W.I.P. Then for all x, y ∈ L,
y(xy)ρ = xρ. Let xy = z, then xλ(xy) = xλz implies y = xλz, thus
(xλz)zρ = xρ implies (x−1z)zρ = x−1. Replacing x−1 by x, we obtain
(xz)zρ = x. So, L has the R.I.P.

Conversely, if L has the I.P., then y(xy)ρ = y(xy)−1 = y(y−1x−1) =
x−1 = xρ hence it has the W. I. P. Let L be a RC-loop with the W.I.P.
Then for all x, y ∈ L, y(xy)ρ = xρ if and only if (xy)λ · x = yλ. Let
xy = z, then (xy)yρ = zyρ implies x = zyρ. Thus, zλ(zyρ) = yλ implies
zλ(zy−1) = y−1. Replacing y−1 by y, we get zλ(zy) = y. Thus, L has the
L.I.P.

Corollary 6.3. Let (L, ·) be an LC(RC)-loop with R.I.P. (L.I.P.). Then
1. N(L) = Nλ(L) = Nρ(L) = Nµ(L),
2. (I, Rx2 , Rx2) ∈ AUT (L) (resp. (Lx2 , I, Lx2) ∈ AUT (L),
3. (L2

x, Rx2 , Rx2L2
x) ∈ AUT (L) (resp. (Lx2 , R2

x, Lx2R2
x) ∈ AUT (L).

Proof. By Theorem 6.2, L has the W.I.P. According to [22], in a W.I.P.L.,
the three nuclei coincide, so the �rs statement is true. Thus for an LC-
loop, x2 ∈ Nρ and for an RC-loop, x2 ∈ Nλ. Hence for an LC-loop
L, (L2

x, I, L2
x), (I, Rx2 , Rx2) ∈ AUT (L) implies that (L2

x, Rx2 , L2
xRx2) =

(L2
x, Rx2 , Rx2L2

x) ∈ AUT (L). For an RC-loop L, (I,R2
x, R2

x), (Lx2 , I, Lx2) ∈
AUT (L) implies (Lx2 , R2

x, R2
xLx2) = (Lx2 , R2

x, Lx2R2
x) ∈ AUT (L). So, the

last two statement are true, too.

Remark 6.1. Corollary 6.3 is true for left (right) Bol loops (i.e., LB(RB)-
loops). It follows from the fact that a RB(LB)-loop has the L.I.P. (R.I.P.)
if and only if it is a Moufang loop [23], which is obviously a W.I.P.L. [19].

Theorem 6.3. An LC(RC)-loop L is a C-loop if and only if one of the
following equivalent statements holds:

1. L has the R.I.P. (L.I.P.),
2. L has the R.A.P. (L.A.P.),
3. L is a RC(LC)-loop,
4. L has the A.A.I.P. (i.e., (xy)−1 = y−1x−1),
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5. L has the W.I.P.

Proof. A C-loop satis�es 1 and 2. Conversely, if L is an LC-loop, then
(x·xy)z = x(x·yz), whence [(x·xy)z]−1 = [x(x·yz)]−1. Thus z−1(x·xy)−1 =
(x · yz)−1x−1 and consequently z−1((xy)−1 · x−1) = ((yz)−1 · x−1)x−1, i.e.,
z−1(y−1x−1·x−1) = (z−1y−1·x−1)x−1, which means that z(yx·x) = (zy·x)x
for all x, y, z ∈ L. So, a RC-loop. Hence, L is a C-loop.

If L is an LC-loop, then according to [26], x · (y · yz) = (x · yy)z for all
x, y, z ∈ L, while L is an RC-loop if and only if (zy · y)x = z(yy · x) for all
x, y, z ∈ L. Thus x · (y · yz) = (x · yy)z, or equivalently x · zL2

y = xRy2 · z.
So, (Ry2 , L−2

y , I) ∈ AUT (L) for all y ∈ L. For (zy · y)x = z(yy · x) we have
zR2 · x = z · xLy2 , i.e., (R2

y, L
−1
y2 , I) ∈ AUT (L) for all y ∈ L.

If L has the right (left) alternative property, (R2
y, L

−2
y , I) ∈ AUT (L) for

all y ∈ L if and only if L is a C-loop.
3. This is shown in [15].
4. This is equivalent to 1. Indeed, if L has the L.I.P. (R.I.P.), then L has
the R.I.P. (L.I.P.). so, L has the A.A.I.P. Conversely, if L.I.P. holds, then
for z = xy, we have y = x−1z which gives z−1 = (x−1z)−1x−1, whence
z−1 = (z−1x)x−1. So, z = (zx)x−1.

Similarly, if L has the R.I.P. (L.I.P.) then L has the L.I.P. (R.I.P.), i.e.,
it has the A.A.I.P. Conversely, if R.I.P. holds, then for z = xy, we have
x = zy−1. Thus, z−1 = y−1(zy−1)−1 = y−1(yz−1), which proves the L.I.P.
5. This follows from 1 and Theorem 6.2.

Theorem 6.4. (cf. [19]) The following equivalent conditions de�ne an Os-
born loop (L, ·).

1. x(yz · x) = (x · yEx) · zx,
2. (x · yz)x = xy · (zE−1

x · x),
3. (Ax, Rx, RxLx) ∈ AUT (L),
4. (Lx, Bx, LxRx) ∈ AUT (L),

where Ax = ExLx, Bx = E−1
x Rx and Ex = RxLxR−1

x L−1
x .

Theorem 6.5. If a RC(LC)-loop has the L.I.P. (R.I.P.), then it is an
Osborn loop if every its element is a square.

Proof. Let L be an RC-loop with L.I.P. Then, by Theorem 6.2, L has the
W.I.P. Therefore (Ax2 , I, Lx2) ∈ AUT (L) ←→ yAx2 · z = (yz)Lx2 . But
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(yz)Lx2 = yEx2Lx2 · z = yRx2Lx2R−1
x2 L−1

x2 Lx2 · z = yRx2Lx2R−1
x2 · z =

yR2
xLx2R−1

x2 · z = yLx2R2
xR−1

x2 · z = yLx2 · z. This is equivalent to the fact
that (Lx2 , I, Lx2) ∈ AUT (L) for all x ∈ L, which is true by Corollary 6.3.

Thus, (I, R2
x, R2

x)(Ax2 , I, Lx2) = (Ax2 , Rx2 , Rx2Lx2) ∈ AUT (L). Using
Theorem 6.4, we see that L is an Osborn loop if every element in L is a
square.

Now, let L be an LC-loop. If L has the R.I.P., then, by Theorem 6.2,
L has the W.I.P. So, (I, Bx2 , Rx2) ∈ AUT (L) if and only if y · zBx2 =
(yz)Rx2 . But (yz)Rx2 = y · zE−1

x2 Rx2 = y · z(Rx2Lx2R−1
x2 L−1

x2 )−1Rx2 =
y · zLx2Rx2L−1

x2 R−1
x2 Rx2 = y · zLx2Rx2L−1

x2 = y · zRx2L2
xL−1

x2 = y · zRx2 . This
is equivalent to the fact that (I,Rx2 , Rx2) ∈ AUT (L) for all x ∈ L, which
is true by Corollary 6.3.

Thus, (L2
x, I, L2

x)(I, Bx2 , Rx2) = (Lx2 , Bx2 , Lx2Rx2) ∈ AUT (L). Whence,
as in previous case, we conclude that L is an Osborn loop if every element
in L is a square.

Corollary 6.4. An LC(RC)-loop with R.I.P. (L.I.P.) is an Osborn loop if
every its element is a square. Hence, this loop is a group.
Proof. This follows from Theorem 6.5. The last conclusion is as a conse-
quence of the fact that x2 ∈ N(L).

Corollary 6.5. A C-loop is an Osborn loop if every its element is a square.
Hence, this loop is a group.
Question. Does there exist a C-loop which is an Osborn loop but it is
non-associative, non Moufang and non-conjugacy closed?
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