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Left almost semigroups defined by a free algebra

Qaiser Mushtag and Muhammad Inam

Abstract

We have constructed LA-semigroups through a free algebra, and the
structural properties of such LA-semigroups have been investegated. More-
over, the isomorphism theorems for LA-groups constructed through free
algebra have been proved.

1. Introduction

A left almost semigroup, abbreviated as an LA-semigroup, is an algebraic
structure midway between a groupoid and a commutative semigroup. The
structure was introduced by M. A. Kazim and M. Naseeruddin [3] in 1972.
This structure is also known as Abel-Grassmann’s groupoid, abbreviated as
an AG-groupoid [6] and as an invertive groupoid [1].

A groupoid G with left invertive law, that is: (ab) ¢ = (¢b) a,Va,b,c € G,
is called an LA-semigroup.

An LA-semigroup satisfies the medial law: (ab) (cd) = (ac) (bd). An
LA-semigroup with left identity is called an LA-monoid.

An LA-semigroup in which either (ab)c =b(ca) or (ab) c = b (ac) holds
for all a,b,c,d € G, is called an AG*-groupoid [6].

Let G be an LA-semigroup and a € G. A mapping L, : G — G, defined
by L, (x) = ax, is called the left translation by a. Similarly, a mapping
R, : G — G, defined by R, () = za, is called the right translation by a.
An LA-semigroup G is called left (right) cancellative if all the left (right)
translations are injective. An LA-semigroup G is called cancellative if all
translations are injective.

Let X be a non-empty set and W% denote the free algebra over X in
the variety of algebras of the type {0, o, +}, consisting of nullary, unary and
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binary operations determined by the following identities:
(z+y)+z=2+Wy+2), z+y=y+z, z+0=uz,

a(z+y)=axr+ay, a0=0.

Every element u € W has the form u = )., a™xz;, where r > 0, and
n; are non-negative integers. This expression is unique up to the order of
the summands. Moreover r = 0 if and only if u = 0.

Let us define a multiplication on W% by uov = au + a?v. Then the
set W% is an LA-semigroup under this binary operation. We denote it by
Wx. Tt is easy to see that Wx is cancellative.

If n is the smallest non-negative integer such that a"x = x, then n is
called the order of a. The following examples show the existence of such
LA-semigroups.

Example 1. Consider a field F5 = {0,1,2,3,4} and define « (z) = 3z for
all x € F5. Then F5 becomes an LA-semigroup under the binary operation
defined by wov = au + o?v, ¥V u,v € Fj.

ol0 1 2 3 4
0j0 4 3 2 1
113 2 1 0 4
211 0 4 3 2
314 3 2 1 0
412 1 0 4 3

Example 2. Let X = {z,y} and « be defined as a (a) = 2a, for all a € X
and 2 € F3. Then the following table illustrates an L A-semigroup Wx.

o 0 T 2x Y 2y z+y 24y xz+4+2y 20+2y
0 0 T 2x Y 2y r+y 2x+y x+2y 2x+2y
T 2z 0 T 2r+y 22+ 2y Y T+y 2y T+ 2y
2x T 2x 0 r+y x+2y 2x+y Y T+ 2y 2y
Y 2y T+ 2y 2x+ 2y 0 Y T 2x r+y 2zx+y
2y y T+y 2zr+y 2y 0 T+ 2y 2z 42y T r+y
r+y 224+2y 2y T+ 2y 2x 2 +vy 0 T Y T +y
2r4+y|z+2y 2042y 2y z z+y 2z 0 2z + 2y y
42y |2z +y Y r4+y 220+2y 2z 2y T+ 2y 0 T
204+ 2yl x+y 2x+vy Y T+ 2y T 20 +2y 2y 2zx+2y 0

An LA-semigroup is called an LA-band [6], if all of its elements are
idempotents. An LA-band can eagily be constructed from a free algebra by
choosing a unary operation a such that o + a? = Idx, where Idx denotes
the identity map on X.
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Example 3. Define a unary operation « as «(z) = 2z, where z € F5.
Then under the binary operation o defined as above, F5 is an LA-band.

o0 1 2 3 4
00 4 3 2 1
112 1.0 4 3
214 3 2 10
311 0 4 3 2
413 2 1 0 4

An LA-semigroup (G, -) is called an LA-group [5], if
(1) there exists e € G such that ea = a for every a € G,
(77) for every a € G there exists a’ € G such that a'a = e.

A subset I of an LA-semigroup (G, ) is called a left (right) ideal of G,
if GI C I (IG C1I),and [ is called a two sided ideal of G if it is left and
right ideal of G. An LA-semigroup is called left (right) simple, if it has no
proper left (right) ideals. Consequently, an L A-semigroup is simple if it has
no proper ideals.

Theorem 1. A cancellative LA-semigroup is simple.

Proof. Let G be a cancellative LA-semigroup. Suppose that G has a proper
left ideal I. Then by definition GI C I and so I being its proper ideal, is
a proper LA-subsemigroup of G. If g € G\I, then gi € GI, for all ¢ € I.
But GI C I, so there exists an i € I, such that gi = i'. Since G is
cancellative so is then I. This implies that all the right and left translations
are bijective. Therefore there exists iy € I, such that L; (i) = i This
implies that gi = 717. By applying the right cancellation, we obtain g = ;.
This implies that g € I, which contradicts our supposition. Hence G is
simple. [

Corollary 1. An LA-semigroup defined by a free algebra is simple.
Theorem 2. If G is a right (left) cancellative LA-semigroup, then G2 = G.

Proof. Let G be a right (left) cancellative LA-semigroup. Then all the right
(left) translations are bijective. This implies that for each € G, there exist
some ¥y, z € G such that Ry (2) =z (L, (2) = z) . Hence G2 = G. O

Corollary 2. An AG*-groupoid cannot be defined by a free algebra.
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Proof. Tt has been proved in [6], that if G is an AG*-groupoid then G2
is a commutative semigroup. Moreover, if G is a right (left) cancellative
LA-semigroup, then G2 = G. O

We now define a subset Ty, of Wx such that T, = {>_;_, o™z |z € X}.
Theorem 3. T, is an LA-subsemigroup of Wx.

Proof. 1t is sufficient to show that T, is closed under the operation o. Let
u, v € Ty. Then u =" o™z, v=>" a"z, and so

uov=au)+a®@) =a>r, a%z)+a? (30, amtiz)
= (Xl om0 e ) = 3T oM,
where r =n+m, m; =n; + 1 for i <n and m; =n; + 2 for ¢ > n. O
Theorem 4. If X ={x1, za,...,2p}, then Wx =T, ®Tp, ... 0T, .

Proof. Every element u € Wx is of the form v =Y ;_; a™x;, where r and
n; are non-negative integers. This expression is unique up to the order of
the summands. This implies that Wx =Ty, + T}, +...4+T},. To complete
the proof it is sufficient to show that Ty, N T,, = {0}, for i # j. Let
ue Ty N sz, such that u # 0. Then v € T,, and u € TI].. This is possible
only if x; = x;. Which is a contradiction to the fact that z; # x;. Hence
the proof. O

Proposition 1. The direct sum of any Ty, and Ty; for i # j is an LA-
subsemigroup of Wx.

Proof. The proof is straightforward. O

Theorem 5. The direct sum of any finite number of Ty,’s is an LA-
subsemigroup of Wx .

Proof. The proof follows directly by induction. O

Theorem 6. The set Wx /T, of all right (left) cosets of Ty, in Wx is an
LA-semigroup.

Proof. Let Wx /T, = {uoT,|ue€ Wx}, and uoT,, voT, € Wx /T,.
Then by the medial law (uoT;)o(voTy) = (uov)oTyoT,. But TpyoT, =
T,. Hence (uoTy)o(voTy) = (uowv)oT, € Wx /Ty.
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Let wol,,voTl,,woT, € Wx /T,. Then

(woTy)o (voTy))o(woTy) = (wov)oTp) owo T,
= ((wov)ow)o Ty = (wov)ou)o Ty
= (woTy) o (voTy))o (uoTy)

implies that Wx /T, is an LA-simigroup. O
Remark 1. o (7T,) = T5.

Proposition 2. For any T, < Wx and v € Wx we have
(@) Toov=(a()oT,
(b) Tpo(Tyov)=a?(Tyov)=a>(voTy),
() (Tyov)oT,=a(T,ov)=a?(woT,),
(d) Tyov=a(voTy).

Proof. The proof is straightforward. O
Theorem 7. Wx /T,, ={voT,, :v e Wx} forms a partition of Wx.

Proof. We shall show that wo T,, NvoT, = 0 for u # v, and Wx =
UpewyvoTy,. Let we€ voTly, NuoTy,. Then w € voly, and w € uoly,.
This implies that w = vot; and w = uwoty, where t1,%3 € T,. This implies
vot; =uoty Hence a(v)+ a?(t1) = a(u) + o? (t2), which further gives
a () = a(u) + a? (t2) — a? (t1) where o? (t3) — o2 (1) € Ty,.

Now « (v) € a(u) + Ty, yields « (v) + Ty, € a(u) + Ty, ie, vo Ty, C
wo T,,. Similarly, wo T,, = voTy,. Hence voTy NuoTy, = 0. Obviously,
Upewy ¥ © Txi C Wx.

Conversely, let t € Wx. Then t = )., a"™iz; implies that

t=a"x1+a™zo+ ...+ a"x,
=a"xr; + o™z +are+ ...+l oMl 4.+ a .
If a™axy + o™z + ...+ o™l + o™z + ... 4+ o™z, = u, then
t =a"z; +u, o™z, € Ty,. Now t = "z, +u e Ty, +u=au) + T =

a(u)+a?(Ty,) = uoTy, € UpewyvoTy, implies Wx C Uyepw,voTy,. Hence
Wx = UpewyvoT}. O

Theorem 8. The order of T, divides the order of Wx.
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Proof. If X is a finite non-empty set then Wy is also finite. This implies
that the set of all the right (left) cosets of T, in Wy is finite.

Let Wx /Ty, = {v1 0Ty, v2 0 Ty,, ..., v 0 Ty, }. Then by virtue of The-
orem 7, Wx = vy o1y, Uvgo Ty, U...Uwv, oT;,. This implies that
(Wx|=|v10Ty,| + |vaoTy,| + ...+ v, 0Ty, |. Thus |[Wx| =r|T,,|. Hence
\Wx| = [Tz, Wx]||Ts,|, where [T,,, Wx] denotes the number of cosets of
Ty, in Wx. O

Theorem 9. If X is a non-empty finite set having v number of elements
and the order of Ty, is m, then |[Wx| =n".

Proof. Since it has already been proved that Wx =T, ®1,,®...®T;, for
X ={z1,®2,..., 2}, it is sufficient to show that |Ty, ® Ty, @ ... & Ty, | =
n”. We apply induction on r. Let r = 2, that is, Wx = T, $T,,. Construct
the multiplication table of T}, and write all the elements of T, except 0 in
the index row and in the index column. Then the number of elements in the
index row or column row is 2n—1. We see from the multiplication table that
when the elements of T}, are multiplied by the elements of T, some new
elements appear in the table, which are of the form uov = a (u) 4+ o? (v),
where v € Ty, and v € T}, and they are (n—1)? in number. We write
all such elements in index row and column and complete the multiplication
table of T, ®T},. We see that no new element appear in the table. Then the
number of elements in the index row or column is 2n—1+4(n — 1)? = n2. We
now consider n = 3. Take the multiplication table of T, ® T%,, and write
all elements of T, except 0 in the index row and column. The number
of elements in the index row and column are n? +n — 1. Multiply the
elements of T, ® T}, and T,. Then in the table, some new elements of
the form t o w = a(t) + o (w) appear, where t € Ty, ® Ty, w € Ty,
which are n? (n — 1) in number. Now we write all these elements in the
index row and column of the table of T}, & Ty, ® T,,. We see that no new
element appears in the table. The number of elements in the index row
or column is n? + n? (n — 1) = n3. Continuing in this way we finally get
Toy @1y, @ ... 0T, | =n". O

Theorem 10. Let p be prime and Fp a finite field. Let E denote the
r-th extension of Fp. Then there exists a unique epimorphism between LA-
semigroups formed by E and F),.

Proof. Let a be a unary operation. Suppose that 3 is a root of an irreducible
polynomial with respect to Fj,. It is not difficult to prove that the mapping
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¢ : B — Fp defined by ¢ (ag + a8+ ...+ ar,lﬁr_l) =ag+ai+..+a,is
a unique epimorphism. O

Theorem 11. T, is simple.

Proof. Suppose that T, has a proper left (right) ideal of S. Then by def-
inition ST, C S (T,S C S) and S is proper LA-subsemigroup of T,,. We
know that the order of T, is either prime or power of a prime. So, if it has
a proper LA-subsemigroup S, then the order of S will be prime. Since S
is embedded into T, so there exists a monomorphism between T, and S.
But by Theorem 10, there exists a unique epimorphism between T, and S.
This implies that there exists an isomorphism between T, and S. This is a
contradiction. Hence the proof. O

Theorem 12. If K is a kernel of a homomorphism h between LA-groups
W and W', then

(a) K<W,

(b) WK is an LA-group,

(¢) W,/K =1Im(h).

Proof. (a) and (b) are obvious. For (c) define a mapping ¢ : W,/ K —
Im(h) by p(uo K) = h(u) for u € W. Then ¢ is an isomorphism. O

Theorem 13. If T =T, &1, ®... &1y, To=T, ®T,, ®...®1y, ,
where n £ m, then

(1) T <T1®Ts and Ty NTH < T,

(2) Ty Ty,/Ty and Ty /Th N Ty are LA-semigroups,

(3) T T,/ T, =T, /T NTs.

Proof. (1) and (2) are obvious. For (3) define a mapping ¢ : To /T1NTy, —
Ty @& Ty/T) by e(vo (T1 NTy)) =voT for all v € Ty NTy. Then ¢ is an
isomorphism. O

Theorem 14. If Wx s an LA-group, and T =T, &T,, ®... BTy, then

Wx /Ty,) /(T /Ty,) is isomorphic to Wx /T, where 1 <1 < n.

n’

Proof. Define a mapping ¢ : Wx /Ty, — Wx /T, by p(voTy,)=voT,
where v € Wx. Then ¢ is an epimorphism. By Theorem 12,

Wx /Ty, / (Keryp) = Wx /T

and Kerp =T /T,,. Hence the proof. O



76 Q. Mushtaq and M. Inam

References

[1] P. Holgate: Groupoids satisfying a simple invertive law, The Math. Student
61 (1992), 101 — 106.

[2] J. Jezek and T. Kepka: Free entropic groupoids, Comm. Math. Univ. Car-
olinae 22 (1981), 223 — 233.

[3] M. Kazim and M. Naseeruddin: On almost semigroups, Alig. Bull. Math.
2 (1972), 1 — 7.

[4] T. Kepka and P. Nemec: A note on left distributive groupoids, Coll. Math.
Soc. J. Bolyai 29 (1977), 467 — 471.

[5] Q. Mushtaq and M. S. Kamran: On left almost groups, Proc. Pak. Acad.
Sci. 331 (1996), 53 — 55.

[6] V. Proti¢ and N. Stevanovié¢: AG-test and some general properties of Abel-
Grassmann’s groupoids, PU. M. A 4 (1995), 371 — 383.

Department of Mathematics Received February 11, 2007
Quaid-i-Azam University

Islamabad

Pakistan

E-mail: gqmushtaq@isb.apollo.net.pk



