Left almost semigroups defined by a free algebra

Qaiser Mushtaq and Muhammad Inam

Abstract

We have constructed LA-semigroups through a free algebra, and the structural properties of such LA-semigroups have been investegated. Moreover, the isomorphism theorems for LA-groups constructed through free algebra have been proved.

1. Introduction

A left almost semigroup, abbreviated as an LA-semigroup, is an algebraic structure midway between a groupoid and a commutative semigroup. The structure was introduced by M. A. Kazim and M. Naseeruddin [3] in 1972. This structure is also known as Abel-Grassmann's groupoid, abbreviated as an AG-groupoid [6] and as an invertive groupoid [1].

A groupoid G with left invertive law, that is: (ab) $c = (cb) a, \forall a, b, c \in G$, is called an LA-semigroup.

An LA-semigroup satisfies the medial law: (ab)(cd) = (ac)(bd). An LA-semigroup with left identity is called an LA-monoid.

An LA-semigroup in which either (ab) c = b(ca) or (ab) c = b(ac) holds for all $a, b, c, d \in G$, is called an AG^* -groupoid [6].

Let G be an LA-semigroup and $a \in G$. A mapping $L_a : G \longrightarrow G$, defined by $L_a(x) = ax$, is called the *left translation* by a. Similarly, a mapping $R_a : G \longrightarrow G$, defined by $R_a(x) = xa$, is called the *right translation* by a. An LA-semigroup G is called *left (right) cancellative* if all the left (right) translations are injective. An LA-semigroup G is called *cancellative* if all translations are injective.

Let X be a non-empty set and W'_X denote the free algebra over X in the variety of algebras of the type $\{0, \alpha, +\}$, consisting of nullary, unary and

2000 Mathematics Subject Classification: 20M10, 20N99

Keywords: LA-semigroup, free algebra, Abel Grassmann's groupoid, medial law.

binary operations determined by the following identities:

$$(x+y) + z = x + (y+z), \quad x+y = y+x, \quad x+0 = x,$$
 $\alpha(x+y) = \alpha x + \alpha y, \quad \alpha 0 = 0.$

Every element $u \in W_X'$ has the form $u = \sum_{i=1}^r \alpha^{n_i} x_i$, where $r \ge 0$, and n_i are non-negative integers. This expression is unique up to the order of the summands. Moreover r = 0 if and only if u = 0.

Let us define a multiplication on W'_X by $u \circ v = \alpha u + \alpha^2 v$. Then the set W'_X is an LA-semigroup under this binary operation. We denote it by W_X . It is easy to see that W_X is cancellative.

If n is the smallest non-negative integer such that $\alpha^n x = x$, then n is called the *order* of α . The following examples show the existence of such LA-semigroups.

Example 1. Consider a field $F_5 = \{0, 1, 2, 3, 4\}$ and define $\alpha(x) = 3x$ for all $x \in F_5$. Then F_5 becomes an LA-semigroup under the binary operation defined by $u \circ v = \alpha u + \alpha^2 v$, $\forall u, v \in F_5$.

Example 2. Let $X = \{x, y\}$ and α be defined as $\alpha(a) = 2a$, for all $a \in X$ and $a \in X$ and $a \in X$. Then the following table illustrates an LA-semigroup A.

0	0	x	2x	y	2y	x + y	2x + y	x + 2y	2x + 2y
0	0	x	2x	y	2y	x + y	2x + y		
x	2x	0	x	2x + y	2x + 2y	y	x + y	2y	x + 2y
2x	x	2x	0	x + y	x + 2y	2x + y	y	x + 2y	2y
y	2y	x + 2y	2x + 2y	0	y	x	2x	x + y	2x + y
2y	y	x + y	2x + y	2y	0	x + 2y	2x + 2y	x	x + y
x + y	2x + 2y	2y	x + 2y	2x	2x + y	0		y	x + y
2x + y	x+2y	2x + 2y	2y	x	x + y	2x	0	2x + 2y	y
x + 2y	2x + y	y	x + y	2x + 2y	2x	2y	x + 2y	0	x
2x + 2y	x+y	2x + y	y	x + 2y	x	2x + 2y	2y	2x + 2y	0

An LA-semigroup is called an LA-band [6], if all of its elements are idempotents. An LA-band can easily be constructed from a free algebra by choosing a unary operation α such that $\alpha + \alpha^2 = Id_X$, where Id_X denotes the identity map on X.

Example 3. Define a unary operation α as $\alpha(x) = 2x$, where $x \in F_5$. Then under the binary operation \circ defined as above, F_5 is an LA-band.

0	0	1	2	3	4
0	0	4	3	2	1
1	2	1	0	4	3
2	4	3	2	1	0
3	1	0	3 0 2 4 1	3	2
4	3	2	1	0	4

An LA-semigroup (G,\cdot) is called an LA-group [5], if

- (i) there exists $e \in G$ such that ea = a for every $a \in G$,
- (ii) for every $a \in G$ there exists $a' \in G$ such that a'a = e.

A subset I of an LA-semigroup (G,\cdot) is called a *left (right) ideal* of G, if $GI \subseteq I$ ($IG \subseteq I$), and I is called a *two sided ideal* of G if it is left and right ideal of G. An LA-semigroup is called *left (right) simple*, if it has no proper left (right) ideals. Consequently, an LA-semigroup is *simple* if it has no proper ideals.

Theorem 1. A cancellative LA-semigroup is simple.

Proof. Let G be a cancellative LA-semigroup. Suppose that G has a proper left ideal I. Then by definition $GI \subseteq I$ and so I being its proper ideal, is a proper LA-subsemigroup of G. If $g \in G \setminus I$, then $gi \in GI$, for all $i \in I$. But $GI \subseteq I$, so there exists an $i' \in I$, such that gi = i'. Since G is cancellative so is then I. This implies that all the right and left translations are bijective. Therefore there exists $i_1 \in I$, such that $L_{i_1}(i) = i'$. This implies that $gi = i_1i$. By applying the right cancellation, we obtain $g = i_1$. This implies that $g \in I$, which contradicts our supposition. Hence G is simple.

Corollary 1. An LA-semigroup defined by a free algebra is simple.

Theorem 2. If G is a right (left) cancellative LA-semigroup, then $G^2 = G$.

Proof. Let G be a right (left) cancellative LA-semigroup. Then all the right (left) translations are bijective. This implies that for each $x \in G$, there exist some $y, z \in G$ such that $R_y(z) = x$ ($L_y(z) = x$). Hence $G^2 = G$.

Corollary 2. An AG*-groupoid cannot be defined by a free algebra.

Proof. It has been proved in [6], that if G is an AG*-groupoid then G^2 is a commutative semigroup. Moreover, if G is a right (left) cancellative LA-semigroup, then $G^2 = G$.

We now define a subset T_x of W_X such that $T_x = \{\sum_{i=1}^r \alpha^{n_i} x \mid x \in X\}$.

Theorem 3. T_x is an LA-subsemigroup of W_X .

Proof. It is sufficient to show that T_x is closed under the operation \circ . Let $u, v \in T_x$. Then $u = \sum_{i=1}^n \alpha^{n_i} x, v = \sum_{i=1}^m \alpha^{n_i} x$, and so

$$u \circ v = \alpha(u) + \alpha^{2}(v) = \alpha(\sum_{i=1}^{n} \alpha^{n_{i}} x) + \alpha^{2}(\sum_{i=1}^{m} \alpha^{n_{i}} x)$$
$$= (\sum_{i=1}^{n} \alpha^{n_{i}+1} + \sum_{i=1}^{m} \alpha^{n_{i}+2}) x = \sum_{i=1}^{r} \alpha^{m_{i}} x,$$

where r = n + m, $m_i = n_i + 1$ for $i \leq n$ and $m_i = n_i + 2$ for i > n.

Theorem 4. If $X = \{x_1, x_2, ..., x_n\}$, then $W_X = T_{x_1} \oplus T_{x_2} \oplus ... \oplus T_{x_n}$.

Proof. Every element $u \in W_X$ is of the form $u = \sum_{i=1}^r \alpha^{n_i} x_i$, where r and n_i are non-negative integers. This expression is unique up to the order of the summands. This implies that $W_X = T_{x_1} + T_{x_2} + \ldots + T_{x_n}$. To complete the proof it is sufficient to show that $T_{x_i} \cap T_{x_j} = \{0\}$, for $i \neq j$. Let $u \in T_{x_i} \cap T_{x_j}$, such that $u \neq 0$. Then $u \in T_{x_i}$ and $u \in T_{x_j}$. This is possible only if $x_i = x_j$. Which is a contradiction to the fact that $x_i \neq x_j$. Hence the proof.

Proposition 1. The direct sum of any T_{x_i} and T_{x_j} for $i \neq j$ is an LA-subsemigroup of W_X .

Proof. The proof is straightforward.

Theorem 5. The direct sum of any finite number of T_{x_i} 's is an LA-subsemigroup of W_X .

Proof. The proof follows directly by induction.

Theorem 6. The set W_X/T_x of all right (left) cosets of T_x in W_X is an LA-semigroup.

Proof. Let $W_X/T_x = \{u \circ T_x \mid u \in W_X\}$, and $u \circ T_x$, $v \circ T_x \in W_X/T_x$. Then by the medial law $(u \circ T_x) \circ (v \circ T_x) = (u \circ v) \circ T_x \circ T_x$. But $T_x \circ T_x = T_x$. Hence $(u \circ T_x) \circ (v \circ T_x) = (u \circ v) \circ T_x \in W_X/T_x$.

Let $u \circ T_x, v \circ T_x, w \circ T_x \in W_X / T_x$. Then

$$((u \circ T_x) \circ (v \circ T_x)) \circ (w \circ T_x) = ((u \circ v) \circ T_x) \circ w \circ T_x$$
$$= ((u \circ v) \circ w) \circ T_x = ((w \circ v) \circ u) \circ T_x$$
$$= ((w \circ T_x) \circ (v \circ T_x)) \circ (u \circ T_x)$$

implies that W_X/T_x is an LA-simigroup.

Remark 1. $\alpha(T_x) = T_x$.

Proposition 2. For any $T_x \leq W_X$ and $v \in W_X$ we have

- (a) $T_x \circ v = (\alpha(v)) \circ T_x$,
- (b) $T_x \circ (T_x \circ v) = \alpha^2 (T_x \circ v) = \alpha^3 (v \circ T_x),$
- (c) $(T_x \circ v) \circ T_x = \alpha (T_x \circ v) = \alpha^2 (v \circ T_x),$
- (d) $T_x \circ v = \alpha (v \circ T_x)$.

Proof. The proof is straightforward.

Theorem 7. $W_X/T_{x_i} = \{v \circ T_{x_i} : v \in W_X\}$ forms a partition of W_X .

Proof. We shall show that $u \circ T_{x_i} \cap v \circ T_{x_i} = \emptyset$ for $u \neq v$, and $W_X = \bigcup_{v \in W_X} v \circ T_{x_i}$. Let $w \in v \circ T_{x_i} \cap u \circ T_{x_i}$. Then $w \in v \circ T_{x_i}$ and $w \in u \circ T_{x_i}$. This implies that $w = v \circ t_1$ and $w = u \circ t_2$, where $t_1, t_2 \in T_{x_i}$. This implies $v \circ t_1 = u \circ t_2$. Hence $\alpha(v) + \alpha^2(t_1) = \alpha(u) + \alpha^2(t_2)$, which further gives $\alpha(v) = \alpha(u) + \alpha^2(t_2) - \alpha^2(t_1)$ where $\alpha^2(t_2) - \alpha^2(t_1) \in T_{x_i}$.

Now $\alpha\left(v\right)\in\alpha\left(u\right)+T_{x_{i}}$ yields $\alpha\left(v\right)+T_{x_{i}}\subseteq\alpha\left(u\right)+T_{x_{i}}$, i.e., $v\circ T_{x_{i}}\subseteq u\circ T_{x_{i}}$. Similarly, $u\circ T_{x_{i}}=v\circ T_{x_{i}}$. Hence $v\circ T_{x_{i}}\cap u\circ T_{x_{i}}=\emptyset$. Obviously, $\cup_{v\in W_{X}}v\circ T_{x_{i}}\subseteq W_{X}$.

Conversely, let $t \in W_X$. Then $t = \sum_{i=1}^r \alpha^{n_i} x_i$ implies that

$$t = \alpha^{n_1} x_1 + \alpha^{n_2} x_2 + \dots + \alpha^{n_r} x_r$$

= $\alpha^{n_i} x_i + \alpha^{n_1} x_1 + \alpha^{n_2} x_2 + \dots + \alpha^{n_{i-1}} x_{i-1} + \alpha^{n_{i+1}} x_{i+1} + \dots + \alpha^{n_r} x_r$.

If $\alpha^{n_1}x_1 + \alpha^{n_2}x_2 + \ldots + \alpha^{n_{i-1}}x_{i-1} + \alpha^{n_{i+1}}x_{i+1} + \ldots + \alpha^{n_r}x_r = u$, then $t = \alpha^{n_i}x_i + u$, $\alpha^{n_i}x_i \in T_{x_i}$. Now $t = \alpha^{n_i}x_i + u \in T_{x_i} + u = \alpha(u) + T_{x_i} = \alpha(u) + \alpha^2(T_{x_i}) = u \circ T_{x_i} \in \bigcup_{v \in W_X} v \circ T_{x_i}$ implies $W_X \subseteq \bigcup_{v \in W_X} v \circ T_{x_i}$. Hence $W_X = \bigcup_{v \in W_X} v \circ T_x$.

Theorem 8. The order of T_{x_i} divides the order of W_X .

Proof. If X is a finite non-empty set then W_X is also finite. This implies that the set of all the right (left) cosets of T_{x_i} in W_X is finite.

Let $W_X/T_{x_i}=\{v_1\circ T_{x_i},v_2\circ T_{x_i},\ldots,v_r\circ T_{x_i}\}$. Then by virtue of Theorem 7, $W_X=v_1\circ T_{x_i}\cup v_2\circ T_{x_i}\cup\ldots\cup v_r\circ T_{x_i}$. This implies that $|W_X|=|v_1\circ T_{x_i}|+|v_2\circ T_{x_i}|+\ldots+|v_r\circ T_{x_i}|$. Thus $|W_X|=r\,|T_{x_i}|$. Hence $|W_X|=[T_{x_i},W_X]\,|T_{x_i}|$, where $[T_{x_i},W_X]$ denotes the number of cosets of T_{x_i} in W_X .

Theorem 9. If X is a non-empty finite set having r number of elements and the order of T_{x_i} is n, then $|W_X| = n^r$.

Proof. Since it has already been proved that $W_X = T_{x_1} \oplus T_{x_2} \oplus \ldots \oplus T_{x_r}$ for $X = \{x_1, x_2, \dots, x_r\},$ it is sufficient to show that $|T_{x_1} \oplus T_{x_2} \oplus \dots \oplus T_{x_r}| =$ n^r . We apply induction on r. Let r=2, that is, $W_X=T_{x_1}\oplus T_{x_2}$. Construct the multiplication table of T_{x_1} and write all the elements of T_{x_2} except 0 in the index row and in the index column. Then the number of elements in the index row or column row is 2n-1. We see from the multiplication table that when the elements of T_{x_1} are multiplied by the elements of T_{x_2} some new elements appear in the table, which are of the form $u \circ v = \alpha(u) + \alpha^{2}(v)$, where $u \in T_{x_1}$ and $v \in T_{x_2}$ and they are $(n-1)^2$ in number. We write all such elements in index row and column and complete the multiplication table of $T_{x_1} \oplus T_{x_2}$. We see that no new element appear in the table. Then the number of elements in the index row or column is $2n-1+(n-1)^2=n^2$. We now consider n=3. Take the multiplication table of $T_{x_1} \oplus T_{x_2}$, and write all elements of T_{x_3} except 0 in the index row and column. The number of elements in the index row and column are $n^2 + n - 1$. Multiply the elements of $T_{x_1} \oplus T_{x_2}$ and T_{x_3} . Then in the table, some new elements of the form $t \circ w = \alpha(t) + \alpha^2(w)$ appear, where $t \in T_{x_1} \oplus T_{x_2}, w \in T_{x_3}$ which are $n^{2}(n-1)$ in number. Now we write all these elements in the index row and column of the table of $T_{x_1} \oplus T_{x_2} \oplus T_{x_3}$. We see that no new element appears in the table. The number of elements in the index row or column is $n^2 + n^2(n-1) = n^3$. Continuing in this way we finally get $|T_{x_1} \oplus T_{x_2} \oplus \ldots \oplus T_{x_r}| = n^r.$

Theorem 10. Let p be prime and F_P a finite field. Let E denote the r-th extension of F_P . Then there exists a unique epimorphism between LA-semigroups formed by E and F_p .

Proof. Let α be a unary operation. Suppose that β is a root of an irreducible polynomial with respect to F_p . It is not difficult to prove that the mapping

 $\varphi: E \to F_P$ defined by $\varphi\left(a_0 + a_1\beta + \dots + a_{r-1}\beta^{r-1}\right) = a_0 + a_1 + \dots + a_r$ is a unique epimorphism.

Theorem 11. T_x is simple.

Proof. Suppose that T_x has a proper left (right) ideal of S. Then by definition $ST_x \subseteq S$ ($T_xS \subseteq S$) and S is proper LA-subsemigroup of T_x . We know that the order of T_x is either prime or power of a prime. So, if it has a proper LA-subsemigroup S, then the order of S will be prime. Since S is embedded into T_x , so there exists a monomorphism between T_x and S. But by Theorem 10, there exists a unique epimorphism between T_x and S. This implies that there exists an isomorphism between T_x and S. This is a contradiction. Hence the proof.

Theorem 12. If K is a kernel of a homomorphism h between LA-groups W and W', then

- (a) $K \leq W$,
- (b) W/K is an LA-group,
- (c) $W/K \cong Im(h)$.

Proof. (a) and (b) are obvious. For (c) define a mapping $\varphi : W/K \to Im(h)$ by $\varphi(u \circ K) = h(u)$ for $u \in W$. Then φ is an isomorphism. \square

Theorem 13. If $T_1 = T_{x_1} \oplus T_{x_2} \oplus \ldots \oplus T_{x_n}$, $T_2 = T_{x_1} \oplus T_{x_2} \oplus \ldots \oplus T_{x_m}$, where $n \neq m$, then

- (1) $T_1 \leq T_1 \oplus T_2 \text{ and } T_1 \cap T_2 \leq T_2$,
- (2) $T_1 \oplus T_2/T_1$ and $T_2/T_1 \cap T_2$ are LA-semigroups,
- (3) $T_1 \oplus T_2 / T_1 \cong T_2 / T_1 \cap T_2$.

Proof. (1) and (2) are obvious. For (3) define a mapping $\varphi: T_2/T_1 \cap T_2 \longrightarrow T_1 \oplus T_2/T_1$ by $\varphi(v \circ (T_1 \cap T_2)) = v \circ T_1$ for all $v \in T_1 \cap T_2$. Then ϕ is an isomorphism.

Theorem 14. If W_X is an LA-group, and $T = T_{x_1} \oplus T_{x_2} \oplus \ldots \oplus T_{x_n}$, then $(W_X/T_{x_i})/(T/T_{x_i})$ is isomorphic to W_X/T , where $1 \leq i \leq n$.

Proof. Define a mapping $\varphi: W_X/T_{x_i} \longrightarrow W_X/T$, by $\varphi(v \circ T_{x_i}) = v \circ T$, where $v \in W_X$. Then φ is an epimorphism. By Theorem 12,

$$(W_X/T_{x_i})/(Ker\,\varphi)\cong W_X/T$$

and $Ker\varphi = T/T_{x_i}$. Hence the proof.

References

- [1] **P. Holgate**: Groupoids satisfying a simple invertive law, The Math. Student **61** (1992), 101 106.
- [2] J. Jezek and T. Kepka: Free entropic groupoids, Comm. Math. Univ. Carolinae 22 (1981), 223 233.
- [3] M. Kazim and M. Naseeruddin: On almost semigroups, Alig. Bull. Math. 2 (1972), 1-7.
- [4] **T. Kepka and P. Nemec**: A note on left distributive groupoids, Coll. Math. Soc. J. Bolyai **29** (1977), 467 471.
- [5] Q. Mushtaq and M. S. Kamran: On left almost groups, Proc. Pak. Acad. Sci. 331 (1996), 53 – 55.
- [6] V. Protič and N. Stevanović: AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A 4 (1995), 371 383.

Department of Mathematics Quaid-i-Azam University Islamabad Pakistan

 $E\text{-}mail:\ qmushtaq@isb.apollo.net.pk$

Received February 11, 2007