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Kernel normal system of inverse AG∗∗-groupoids

Milan Boºinovi¢, Petar V. Protic and Neboj²a Stevanovi¢

Abstract. Abel-Grassmann's groupoids or shortly AG-groupoids have been studied in
a number of papers, although under di�erent names. In some papers they are named LA-
semigroups [3], in other left invertive groupoids [2]. In this paper we introduce a notion
of kernel normal system of inverse AG∗∗-groupoids and introduce congruences, in a similar
way as that have been de�ned for inverse semigroups, [6].

1. Introduction

A groupoid S on which the following is true

(∀a, b, c ∈ S) ab · c = cb · a,

is called an Abel-Grassmann's groupoid (AG-groupoid), [9]. It is easy to verify
that in every AG-groupoid medial law ab · cd = ac · bd holds. Thus, AG-
groupoids belongs to the wider class of entropic groupoids.

We denote the set of all idempotents of S by E(S).
Abel-Grassmann's groupoid S satisfying

(∀a, b, c ∈ S) ab · c = b · ca

is called an AG∗-groupoid.
Abel-Grassmann's groupoid S satisfying

(∀a, b, c ∈ S) a · bc = b · ac

is an AG∗∗-groupoid. It is obvious that in AG∗∗-groupoid for a, b, c, d ∈ S it
follows that

ab · cd = c(ab · d) = c(db · a) = db · ca.

If AG-groupoid S has the left identity e, then
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a · bc = ea · bc = eb · ac = b · ac,

so S is an AG∗∗-groupoid.
An AG-groupoid S is called inverse AG-groupoid if for every a ∈ S there

exists a′ ∈ S such that a = (aa′)a and a′ = (a′a)a′. Then a′ is an inverse
element of a, and by V (a) we shall mean the set of all inverses of a. It is easy
to prove that if a′ ∈ V (a), b ′ ∈ V (b), then a′b ′ ∈ V (ab) and that aa′ or a′a
are not necessary idempotents.

Example 1. Let AG-groupoid S be given by the following table:

1 2 3 4

1 2 3 1 4
2 4 1 3 2
3 3 2 4 1
4 1 4 2 3

Then 23 · 2 = 2, 32 · 3 = 3, 14 · 1 = 1, 41 · 4 = 4, whence S is an inverse
AG-groupoid, and E(S) = ∅.

Remark 1. Let S be an inverse AG-groupoid, a ∈ S, a′ ∈ V (a) and aa′ = a′a.
Then

(aa′)2 = aa′ · aa′ = (aa′ · a′)a = (a′a · a′)a = a′a = aa′,

imply that aa′ ∈ E(S).

AG-groupoids are not associative in general, however, there is close relation
between them and semigroups as well as with commutative structures.

The relationship of AG-groupoids with semigroups (especially with com-
mutative group) will be illustrated by the following two examples.

Example 2. Let (S, ·) be an AG-groupoid, a ∈ S be the �xed element. Then
we de�ne the so-called sandwich operation on S as follows,

(∀x, y ∈ S) x ◦ y = xa · y.

It is easy to verify that x ◦ y = y ◦ x for all x, y ∈ S. In other words (S, ◦) is a
commutative groupoid. If S is an AG∗-groupoid and x, y, z ∈ S then

(x ◦ y) ◦ z = ((xa · y)a)z = za · (xa · y)

and

x ◦ (y ◦ z) = xa · (y ◦ z) = xa · (ya · z) = za · (ya · x) = za · (xa · y),

whence (x◦y)◦z = x◦(y◦z). Consequently, (S, ◦) is a commutative semigroup.
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Example 3. Let (S, ·) be a commutative group with identity e. If we de�ne
operation ∗ on S by

(∀a, b ∈ S) a ∗ b = ba−1,

then (S, ∗) is an AG-groupoid. Clearly, e ∗ e = e. Moreover,

e ∗ b = be−1 = be = b,

so that e is the left identity on (S, ∗). It follows that (S, ∗) is an AG∗∗-groupoid.
Since a ∗a = aa−1 = e and (a ∗a) ∗a = a, we conclude that (S, ∗) is an inverse
AG∗∗-groupoid and for every a ∈ S, a ∈ V (a).

2. Kernel normal system

We �rst discuss some properties of inverse AG∗∗-groupoids.

Remark 2. Let S be an AG∗∗-groupoid and e, f ∈ E(S). Then

ef = ee · ff = ef · ef = ff · ee = fe,

imply that E(S) is a semilattice.

Remark 3. If S is an inverse AG∗∗-groupoid and x, y ∈ V (a), then

xa = x(ay · a) = ay · xa = ax · ya = y(ax · a) = ya,

and
x = xa · x = ya · x = xa · y = ya · y = y.

It follows that |V (a)| = 1.

It follows further that the inverse of a ∈ S is unique. We shall denote it
by a−1. Since in the inverse AG-groupoid S for element a the products aa−1

and a−1a are not necessarily idempotents, we need to establish the following
lemma.

Lemma 1. Let S be an inverse AG∗∗-groupoid, a ∈ S. Then

aa−1, a−1a ∈ E(S) ←→ aa−1 = a−1a.

Proof. Let aa−1, a−1a ∈ E(S). Then

aa−1 · a−1a = a−1(aa−1 · a) = a−1a,

a−1a · aa−1 = a(a−1a · a−1) = aa−1.

It then follows that aa−1 ∈ E(S) and since E(S) is a semilattice it further
means that aa−1 = a−1a. The converse follows easily by Remark 1.
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Example 4. Let AG-groupoid S be given by the following table:

1 2 3 4

1 2 2 4 4
2 2 2 2 2
3 1 2 3 4
4 1 2 1 2

Then S is an inverse AG∗∗-groupoid, E(S) = {2, 3} is a semilattice, elements
1 and 4 are mutually inverse and 1 · 4 6= 4 · 1.

The groupoid (S, ∗) in Example 3 is an inverse AG∗-groupoid, a = a−1 for
each a ∈ S and a ∗ a = e.

Remark 4. From now on we shall denote by S the inverse AG∗∗-groupoid in
which aa−1 = a−1a ∈ E(S).

Lemma 2. If ρ is a congruence relation on S, then S/ρ is an AG∗∗-groupoid,
and for every a, b ∈ S it holds that aρb if and only if a−1ρb−1.

The following de�nitions are introduced in [7].

Let K be a subset of S, then:

• K is full if E(S) ⊆ K;

• K is self-conjugate if a−1(Ka) ⊆ K for every a ∈ K;

• K is inverse closed if from a ∈ K it follows a−1 ∈ K;

• K is normal it is full, self-conjugate and inverse closed.

Let ρ be a congruence on S. The restriction ρ|E(S) is the trace of ρ and
will be denoted by trρ. The set kerρ = {a ∈ S | (∃e ∈ E(S)) aρe} is the kernel
of ρ.

Lemma 3. Let ρ be a congruence relation on S, then kerρ is a normal sub-

groupoid of S.

De�nition 1. Let K be a normal subgroupoid of S and τ a congruence on
E(S) such that

ea ∈ K, eτa−1a −→ a ∈ K

for every a ∈ S and e ∈ E(S). Then the pair (K, τ) is a congruence pair for
S. In such a case, we can de�ne the relation ρ(K,τ) on S by

aρ(K,τ)b ←→ a−1aτb−1b, ab−1, ba−1 ∈ K. (1)
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Theorem 1. [7] If (K, τ) is a congruence pair for S, then ρ(K,τ) is the unique

congruence on S for which kerρ(K,τ) = K and trρ(K,τ) = τ . Conversely,

if ρ is a congruence on S, then (kerρ, trρ) is a congruence pair for S and

ρ(kerρ,trρ) = ρ.

Let ρ be a congruence on S. We can then consider the collection of all
ρ-classes containing idempotents:

K(ρ) = {eρ | e ∈ E(S)}. (2)

Such collections of subsets of S can be characterized in the following fashion
also.

De�nition 2. Let K be a family of pairwise disjoint inverse subgroupoids of
S satisfying:

(a) E(S) ⊆
⋃

L∈K L,

(b) for each a ∈ S and L ∈ K there exists M ∈ K such that a−1(La) ⊆M ,

(c) for each a, b ∈ S if a, ab, bb−1 ∈ L,L ∈ K, then b ∈ L.

Then K is a kernel normal system for S. For such a family K we de�ne a
relation ξK on S by

aξKb ←→ aa−1, bb−1, ab−1, ba−1 ∈ L

for some L ∈ K.

By using (2) and the above de�nition, we can obtain the second characte-
rization of congruences on an inverse semigroup as follows.

Lemma 4. Let K be a kernel normal system on S, K =
⋃

L∈K L and τ the

relation on semilattice E(S) de�ned by

eτf ←→ e, f ∈ L (for some L ∈ K).

Then τ is a congruence and a pair (K, τ) is a congruence pair for S.

Proof. Let K is a kernel normal system on S. It is clear that relation τ is an
equivalence relation. Let e, f ∈ E(S)∩L, g ∈ E(S). Then by the De�nition 2
(b) there exists M ∈ K such that

eg = e · gg = g · eg = g−1 · eg ∈ g−1 · Lg ⊆M,

and
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fg = f · gg = g · fg = g−1 · fg ∈ g−1 · Lg ⊆M.

Now eg, fg ∈M implies egτfg. Hence, τ is a right congruence.
Similarly, τ is a left congruence and hence the congruence on E(S).
Next we prove that K is a subgroupoid on S. Let a, b ∈ K, then there

exist L, T ∈ K such that a ∈ L, b ∈ T . Since a−1 ∈ L, b−1 ∈ T , we have that
a−1a = e ∈ E(L), b−1b = f ∈ E(T ). Now

be = b · ee = e · be ∈ e · Te,

and by the De�nition 2 (b) there exists M ∈ K such that be ∈ e · Te ⊆M . In
a similar way, there exists N ∈ K such that

af = f · af ∈ f · Lf ⊆ N.

Since eτ = E(L), fτ = E(T ) and if (ef)τ = E(V ) for some V ∈ K, then
because τ is congruence on semilattice E(S) we obtain

E(L) · E(T ) = eτ · fτ = (ef)τ = (fe)τ = E(V ).

Now, a, e ∈ L, b, f ∈ T, be ∈M, af ∈ N, ef = fe ∈ V and

fe ∈ Te = T · ee = e · Te ∈M, ef ∈ Lf = L · ff = f · Le ⊆ N

implies that
fe ∈ V ∩M 6= ∅, ef ∈ V ∩N 6= ∅,

so that V = M = N . Hence be, af ∈ V implies that

ab = (aa−1 · a)(bb−1 · b) = ea · fb = ef · eb = fe · ab = be · af ∈ V ·V ⊆ V ⊆ K,

whence K is an subgroupoid of S.
Since each L ∈ K is closed under taking of inverses, so is K, and thus it is

an inverse subgroupoid of S. Conditions (a) and (b) of the De�nition 2 insure
that K is full and self-conjugate. Hence, K is a normal subgroupoid of S.

Now, ea ∈ K and eτaa−1, implies that there exists L ∈ K such that ea ∈ L
so, there exists T ∈ K such that e, aa−1 ∈ E(T ) ⊆ T and e · aa−1 ∈ T . From
ea ∈ L it follows that (ea)−1 = ea−1 ∈ L, so that ea · ea−1 = e · aa−1 ∈ L.
Hence, L ∩ T 6= ∅ i.e., L = T . Now e, ea−1, aa−1 ∈ L, and by (c) of the
De�nition 2, it follows that a ∈ L ⊆ K. Consequently, (K, τ) is a congruence
pair on S.

Theorem 2. If K is a kernel normal system for S, then ξK is the unique

congruence on S for which K(ξK) = K. Conversely, if ξ is a congruence on

S, then K(ξ) is a kernel normal system for S and ξK(ξ) = ξ.
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Proof. First we prove that ρ(K,τ) = ξK. Let

aρ(K,τ) ←→ aa−1τbb−1, ab−1, ba−1 ∈ K.

Hence aa−1, bb−1 ∈ L for some L ∈ K and there exists M,N ∈ K such that
ab−1 ∈ M, ba−1 ∈ N . Now (ab−1)−1 = a−1b ∈ M, (ba−1)−1 = b−1a ∈ N and
ab−1 · a−1b ∈M, ba−1 · b−1a ∈ N . Also, ab−1 · a−1b = aa−1 · bb−1 ∈ L · L ⊆ L
and ba−1 · b−1a = bb−1 · aa−1 ∈ L · L ⊆ L and so L ∩M 6= ∅ implies that
L = M, L ∩ N 6= ∅ implies that L = N . Hence aa−1, bb−1, ab−1, ba−1 ∈ L
if and only if aξKb, whence ρ(K,τ) ⊆ ξK.

Conversely, let

aξKb ←→ aa−1, bb−1, ab−1, ba−1 ∈ L

for some L ∈ K. Now, aa−1, bb−1 ∈ E(L), so that aa−1τbb−1. Since L ⊂ K,
we have ab−1, ba−1 ∈ K. Thus aρ(K,τ)b implies that ξK ⊆ ρ(K,τ). Hence
ξK = ρ(K,τ).

Next we prove that K(ξK) = K, where K(ξK) = {eξK | e ∈ E(S)}. First
let L ∈ K. Then L is an inverse subgroupoid of S. In order to prove that
L ∈ K(ξK), it is su�cient to prove that L is a ξK-class. If a, b ∈ L, then
aa−1, bb−1, ab−1, ba−1 ∈ L. Thus aξKb, so that L is a ξK-class. Let a ∈ L and
aξKb. Then aa−1, bb−1, ab−1, ba−1 ∈ T for some T ∈ K. However, aa−1 ∈ L∩T ,
so that L = T . From aξKb it follows that a−1ξKb−1. By stability of ξK we have

aa−1ξKbb−1, ab−1ξKbb−1, aa−1ξKba−1,

so there exists U ∈ K such that aa−1, bb−1, ab−1, ba−1 ∈ U , it follows that
L = U . Also, a−1 ∈ L, a−1b = (ab−1)−1, bb−1 ∈ L and De�nition 2 (c) imply
that b ∈ L. Consequently, L is a ξK-class and thus L ∈ K(ξK).

Conversely, let L ∈ K(ξK). Then L contains an idempotent e, and since by
De�nition 2 (a) it follows that E(S) ⊆ K then there exists T ∈ K such that
e ∈ T . Since T is also an ξK-class thus L = T .

Consequently, L ∈ K, which completes the veri�cation that K(ξK) = K.
Let now ρ be any congruence on S for which K(ρ) = K. Then by the �rst

part of the proof, we obtain kerρ = kerξK and trρ = trξK, and get ρ = ξK by
Theorem 1. This establishes the uniqueness of ξK and completes the proof of
the �rst part of the theorem.

Let ξ be a congruence on S. It is obvious that K(ξ) = {eξ | e ∈ E(S)}
consists of a family of pairwise disjoint inverse subgroupoids of S whose union
contains E(S). Let a ∈ S and let L be a ξ-class containing an idempotent
e. Then for any b ∈ L, a−1 · baξa−1 · ea = e · a−1a so that a−1 · La ⊆ M
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where M is the ξ-class containing idempotent e · a−1a. This veri�es (b) of
De�nition 2. With the same notation, assume a, ab, bb−1 ∈ L, where L be a
ξ-class containing an idempotent e. Then

b = bb−1 · b ξ eb ξ ab ξ e

so that b ∈ L. This veri�es (c) of De�nition 2 and completes the proof that
K(ξ) is a kernel normal system.

By K(ξK) = K we have K(ξK(ξ)) = K(ξ). Thus ξK(ξ) and ξ have the same
kernel normal system, so by the uniqueness proved in the �rst part of the
theorem, we obtain ξK(ξ) = ξ. This completes the proof of the theorem.

References

[1] J. Dénes and A. D. Keedwell, Latin squares and their applications, Akadémia
Kiadó, Budapest 1974.

[2] P. Holgate, Groupoids satisfying simple invertive law, Math. Student 61 (1992),
101− 106.

[3] M. A. Kazim and M. Naseeruddin, On almost semigroups, Aligarh Bull.
Math. 2 (1972), 1− 7.

[4] Q. Mushtaq and Q. Iqbal, Decomposition of a locally associative LA-

semigroup, Semigroup Forum 41 (1990), 155− 164.
[5] Q. Mushtaq and S. M. Yusuf, On LA-semigroup de�ned by a commutative

inverse semigroup, Matemati£ki Vesnik 40 (1988), 59− 62.
[6] M. Petrich, Inverse semigroups, Pure and Applied Mat. 1984.
[7] P. V. Proti¢ and M. Boºinovi¢, Some congruences on an AG∗∗-groupoids,

Filomat (Ni²) 9 (1995), 879− 886.
[8] P. V. Proti¢ and N. Stevanovi¢, On Abel-Grassmann's groupoids (review),

Proc. Math. Conference, Pri²tina 1994, 31− 38.
[9] P. V. Proti¢ and N. Stevanovi¢, AG-test and some general properties of

Abel-Grasmann's groupoids, PU.M.A. 6 (1995), 371− 383.
[10] P. V. Proti¢ and N. Stevanovi¢, Abel-Grassmann's bands, Quasigroups and

Related Systems 11 (2004), 95− 101.
Received May 11, 2008, Revised February 4, 2009

M. Boºinovi¢:
Faculty of Mathematical Sciences, University of Kosovska Mitrovica, Serbia
E-mail: mbozinovic@pt.rs

P. V. Proti¢ and N. Stevanovi¢:
Faculty of Civil Engineering, University of Ni², A. Medvedeva 14, 18000 Ni², Serbia
E-mails: pvprotic@yahoo.com, spreca@yahoo.com


