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A probabilistic model of error-detecting codes

based on quasigroups
Verica Bakeva and Natasa llievska

Abstract. Error-detecting codes are used to detect errors when messages are trans-
mitted through a noisy communication channel. We propose a new model of error-
detecting codes based on quasigroups. In order to detect errors, we extend an input
block aiaz...an to a block aiaz...anbibs ... by, where b; = a; * Qpyyqy * Qpg o % Qr
. . . . j | <n

i =1,2,...,n where % is a quasigroup operation and r; = { ;’ mod 7, i ;n . We

calculate an approximate formula which gives the probability that there will be errors

i+k—1

which will not be detected in two special cases: for the set A = {0,1} and k = 4; and
for the set A = {0,1,2,3} and k¥ = 2. We find the optimal block length such that
the probability of undetected errors is smaller than some previous given value . Also,
we compare two considered codes and conclude that quasigroups of higher order give
smaller probability of undetected errors. At the end of this paper we give a classification

of quasigroups of order 4 according to goodness for proposed codes.

1. Introduction

We propose a new model of error-detecting codes based on quasigroup op-
erations. Recall that a quasigroup (Q,*) is a groupoid (i.e., algebra with
one binary operation * on the set ) satisfying the law:

Vu,v e Q) 3Fz,y e Q) (zxu=v&uxy=0) (1)

In fact (1) says that the equations = x u = v, u*y = v for each given
u, v € @ and x,y unknown, have unique solutions.

In paper [1], using the image pattern authors gave classification of quasi-
groups of order 4 as fractal and non-fractal. In paper [2]|, the following
definition of linear quasigroup is given. Let (@, *) be a quasigroup of order
2™ and let
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flxy, ..o xn) = (f(z, - sxn), ooy fu(X1, ooy 2p))

be its corresponding representation as vector valued Boolean function. If
all f; for ¢ = 1,2,...,n are linear polynomials, then this quasigroup is
called linear quasigroup. Otherwise, if there exists function f; for some i =
1,2,...,n which is not linear, this quasigroup is called nonlinear quasigroup.

In papers [4] and [5], there are some design of codes based on quasigroups
of order 2. Here, we define the code design based on quasigroups of arbitrary
order (Section 2). In Section 3, we find the probability of undetected errors
for the codes based on quasigroups of order 2 and k = 4 where k is number
of symbols used in calculation of each redundancy symbol. On the same
way, in Section 4, we give the probability of undetected errors for the codes
based on quasigroups of order 4 and k = 2. We filter the 576 quasigroups
of order 4 such that the probability of undetected errors does not depend
of the input message. On that way, we obtain 160 quasigroups. In Section
5, we describe how to choose the block length n such that the probability
of undetected errors is smaller than a given value €. Also, we compare the
maximums of the obtained probability functions of undetected errors for
two considered codes and make some conclusions. In Section 6, we give a
classification of obtained 160 quasigroups according to their goodness for
our codes.

2. Designing of the codes

Let A be an arbitrary finite set called alphabet and (A, %) be a given quasi-
group. Let consider an input message

a102 ... plp 41042 - .. Q22041 -+ -, (@ € A, 1 =1,2,...)

which will be transmitted through a noisy channel. Since of the noise, the
received message can be different of the sent one. Our goal is designing a
code which will detect the errors during transmission such that the proba-
bility of undetected errors will be as small as possible. For that reason, we
have to add some redundancy to the message, i.e., some control bits.

Let divide the input message to blocks with length n:

aiag ...an, Ap+10np+2 ... A2n,y - ..

We extend each block ajas...a, to a block ajas...anb1bs...b, where
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b1 = ap*xagx---kag
b2 == ag * Az * - - % Q41 (2)
b, = ap*aip*---*aqQp_1

where £ < n.

At first, each letter from the extended block ajas . ..ayb1bs ... b, will be
presented in 2-base system. After that the obtained binary block will be
transmitted through the binary symmetrical channel with probability of bit
error p (0 < p < 0.5) (Figure 1)

1—p
Figure 1: Binary symmetrical channel

The rate of this code is 1/2. Because of the noises in the channel, some of
the characters may not be correctly transmitted. Let a; be transmitted as
ai, by as b, i € {1,2,...,n}. If the character transmission is correct than
a} will have the same value as a;. Otherwise, a] will not be the same as a;.
So, the output message is ajaj...a,bib,...0),. To check if there are any
errors during transmission, the receiver of the message checks if

b} = ajkxayx---xay
by = ahxagx---xap
/ _ / / /
b, = apxap*---kap_y

If any of these equalities are not satisfied, the receiver concludes that some
errors occured during the block transmission and it asks from the sender to
send that block once again. But, some equality can be satisfied although
some characters in that equality are incorrectly transmitted. In that case,
incorrect transmission (error in transmission) will not be detected. We will
consider two special cases of the proposed code. For the first one, we choose
A ={0,1} and k = 4 and for the second one, A = {0, 1,2,3} and & = 2. Our
goal is finding approximately the probability of undetected errors and make
that probability as small as possible. In the both codes, each redundant
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symbol b;, defined in (2), includes the same number of bits, i.e., 4 bits from
the input message, so it is reasonably to compare the obtained probabilities
of undetected errors.

3. An error-detecting code based on quasigroup
of order 2 and k=4

Let consider the binary set A = {0,1}. There are only two quasigroup
operations on the set A, and here we took (A, ) to be defined by the table

= OO
O ==

*
0
1
Denote that same results will be obtained if another quasigroup is used.
Each block ajasz . ..ay (a; € A) is extended to a block
a1as . ..apbibs ... by,

where b; = a; * ar,, * ar, , * ar,, . Here

- Js Jsn
J j(modn), j>mn

forj=i+1,i+2,i+3.
Let introduce the following notation:

g(T1, T2, ..., Tp) = T1 ¥ To * -+ % Tp,

where z; € {0,1}, i =1,2,...,n. In order to determine the probability of
undetected errors, we need the following proposition which proof is obvious.

Proposition 1. If odd number of x1,x2,...,x, (z; € {0,1}) change their

values then g(x1,x9,...,2,) will change its value, too. If even number of
x1,%2,...,%, change their values then the value of g(x1,xa, ..., x,) will be
unchanged. O

Using the previous proposition and some combinatorics the following
theorem can be proved.
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Theorem 1. Let fa(n,p) be the probability function of undetected errors
m a transmitted block with length n through the binary symmetric channel
where p is the probability of incorrect transmission of a bit. Then fa(n,p)
15 given by the following formulas:

fa(4p) = 6p°(1—p)°+p'(1—p)* +4p°(1 —p)® + 4p"(1 - p)

fo(5,p) = 10p*(1 —p)% + 16p°(1 — p)° + 5p*(1 — p)?

f2(6,p) = 2p°(1—p)? +6p*(1 —p)® +18p°(1 — p)”
+16p°(1 — p)S 4 6p" (1 — p)° + 9p*(1 — p)* + O(p?)

f(7,p) = Y1 —p)0 +21p°(1 —p)? + 21p°(1 — p)® +29p7(1 — p)”
+28p*(1 — p)5 4+ O(p?)

f2(8,p) = 14p*(1 —p)'2 +8p°(1 — p)'t +24p5(1 — p)1® 4+ 56p7 (1 — p)°
+49p%(1 — p)® + O(p°)

f2(9,p) = (1 —p)*+9p°(1 —p)t3 +36p5(1 — p)'2 + 81p" (1 — p)it
+63p°%(1 — p)'* + O(p%)

f2(10,p) = 10p*(1 —p)'® + 12p°(1 — p)*® + 20p°(1 — p)** 4 100p™ (1 — p)*?
+120p%(1 — p)'2 + O(p?)

fo(11,p) = 11p*(1 —p)*® + 11p°(1 — )17 + 22p%(1 — p)16 +99p7(1 — p)*°
+132p8(1 — p)* + O(p°)

f2(12,p) = 12p*(1 —p)?° + 12p°(1 — p)*® + 30p°(1 — p)*& + 72p7 (1 — p)*7
+162p%(1 — p)'® + O(p°)

fo(13,p) = 13p*(1 —p)?2 + 13p°(1 — p)?* + 26p°(1 — p)?° + 78p7(1 — p)**
+182p8(1 — p)18 + O(p°)

fo(n,p) = npt(1—p)*~* +np®(1 — p)?>" =5 + 2np®(1 — p)2" 6
+6np™ (1 —p)** =7 + ApS(1 — p)*" =8 + Bp"/2(1 — p)*"/2 + O(p?),

forn > 14,
where
M, n=15,17,19,... 0, nodd
A= (n —I?S)n B =< 2, neven, but 4in
o n=14,16,1s,.. 6, 4n
O

The remainder O(p?) denotes that the coefficients are exactly deter-
mined in terms which contain p’, i < 9. To obtain exactly the probability
of undetected errors, i.e., to obtain exactly O(p”), one has to make much
complicated combinatorial calculations. In the Figure 2, we can see that
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for small values of n, all functions have maximum in p = 0,5. When the
block length n increases, the maximum becomes smaller, it goes to the left
and the sequence of maximums converges to 0.
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Figure 2: The probability functions of undetected errors

4. An error-detecting code based on quasigroup
of order 4 and k=2

Let consider the set A = {0,1,2,3} and let * be an arbitrary quasigroup
operation on A. According to (2), we extend each block ajas . ..ay, (a; € A)
to a block ajas...a,b1bs...b,, where b, = a; x a(; mod n)+1, ¢ =1,2,...,m.
The extended message is transmitted through the binary symmetrical chan-
nel again. As previous, we want to calculate the probability that there will
be errors which will not be detected. There are 576 quasigroups of order
4. We find that for some quasigroups, the probability of undetected errors
depends on the distribution of letters in the input message. So, we filtered
the quasigroups such that this formula is independent from the distribution
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of the input message. After filtering, from the 576 quasigroups of order 4,
only 160 quasigroups remain. All of them are fractal quasigroups, but not
all fractal quasigroups are in these 160 quasigroups ([1]). For the filtered
160 quasigroups, we obtained a formula for calculating the probability func-
tion of undetected errors. It is given by the following theorem which proof
is done in [3].

Theorem 2. Let fy(n,p) be the probability of undetected errors in a trans-
mitted block with length n through the binary symmetric channel where p is
the probability of incorrect transmission of a bit. If one of the filtered 160
quasigroups is used for designing the code, then the probability of undetected
errors is given by the following formulas:

fa(2,p) = 2vov1 + 12
f1(3,p) = 3vdvy + 3vgva + 13
fa4,p) = 4vfvr +4vvs + 20507 + dvgus + 74
-3
faln,p) = m;lv(%”*?’ + nvgv§"75 + 471(”2 )vagnw + nv3v§”77
—4 -5
+n(n — d)vgvyvg™ 8 + n(n = 4)(n=5) g(n )vf’vgn_g + nvgug"?
-5
+n(n — 5)1}31}11)3"_10 + 7n(n2 )vgvgn_lo
-5 —6 -5 —6 -7
+n(n 2)(” )wv%vgn—n + n(n )(n24 )(n ),Uzllvgn—12’

forn = 5. In the formulas, we use the following notations:

v - the probability of undetected errors when exactly k consecutive charac-
ters of the initial message ajas . . .ay are incorrectly transmitted (the char-
acters a;, Giy1, .. .,0i+k—1 are incorrectly transmitted, but a;—1 and a;1y are
correctly transmitted), k = 1,2,3,4;

vg - the probability of correct transmission of a character;

ri - the probability of undetected errors in a block with length k if all k
characters are incorrectly transmitted, k = 2,3, 4. 0

Now, using the Theorem 2 and formulas for the probabilities vy, func-
tions f4(n,p) can be determined for all 160 fractal quasigroups. These 160
quasigroups do not define 160 different functions for the probability of un-
detected errors, but only 7. These functions are given in Section 6 (Figure
5) where using these functions, we give a classification of the quasigroups
of order 4 according to goodness for our codes.

The quasigroups which give the smallest probability of undetected errors
are the best for code design. For these quasigroups, using some combina-
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torics we calculate the following expressions for v; and r;.

v = (1-p)?

v = 3(1-p)’p*

va = (1-p)°p*(9p" — 16p° +12p> —dp + 1)

vs = (1-p)*p°(3p° — 4p+2)(9p" — 20p° + 18p” — 8p +2)

v = (1—p)2p(81p° — 432p" + 1060p5 — 1548p° + 1475p* — 944p® + 400p?
—104p + 13)

ro = p4(9p4 —32p% +48p% — 32p + 8)

r3 = ph27p® — 144p” + 348p5 — 484p° + 429p* — 252p> 4 98p% — 24p + 3)

ry = po(81pt° — 576p” + 1904p® — 3792p” + 5012p° — 4576p° + 2928p* — 1312p°

+404p? — 80p + 8)

Now, the probability of undetected errors is determined by the following
formulas:

f11(2,p) = p*(15p* —56p° + 84p” — 56p + 14)

f21(3,p) = p*(63p® —372p" 4+ 990p5 — 1540p° + 1545p* — 1032p> + 452p>
—120p + 15)

fai(4,p) = p*(255pt% — 2032pt + 7560p0 — 17360p" 4 27556p° — 32112p”

+28440p° — 19440p° + 10206p* — 4000p> + 1104p? — 192p + 16)
far(n,p) = np*(l—p)?n¥x
x [4 — 48p + 274p? — 980p° + (8n + 2431)p* — 8(8n + 547)p°
+2(130n + 2853)p° — 4(166n + 1259)p” + (9n? + 1078n + 2297)p®
—4(9n% 4 270n — 139)p” + (81n2 + 371n — 890)p'°
—2(45n2 — 165n + 194)p' + (3/8)(9n® — 42n? + 75n — 34)p12]
+0(p"), for n > 5.

The function f41(n,p) without the remainder O(p”) gives the probabil-
ity that at most 4 characters of the input message are incorrectly transmit-
ted and the errors are not detected. As previous, to obtain the probability
of undetected errors exactly, one has to calculate the probability that more
than 4 characters are incorrectly transmitted and the errors are not de-
tected, which is much complicated combinatorial problem. The shape of
the probability functions of undetected errors is similar as in the previous
case. When the block length n increases the maximum of these functions
becomes smaller, it goes to the left and the sequence of maximums converges
to 0 (Figure 3).
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Figure 3: The probability functions of undetected errors

5. Controlling of undetected errors and comparing
of the previous two codes

We want to control the probability of undetected errors, actually to make
that probability smaller than some previous given value €. So, we can find
for which values of n the maximum of the function f(n,p) (f(n,p) can be
fa(n,p) or fa1(n,p)) is smaller then e. Since the sequence of maximums of
the functions f(n,p) is strictly decreasing and converges to 0 when n — oo,
there will be ng € N, such that the maximum of the function f(n,p) will
be smaller than e, for all n > ng and the maximum of the function f(n,p)
will be greater than ¢, for all n < ng. We choose n = ng (see Figure 4).
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0.0001

0.00008 |
0.00006 | "
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0.00002 | ~ -

Figure 4: Choosing of ng
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Now, we separate the message in blocks with length n and we code
every block individually. From all values of n which satisfies the condition
f(n,p) < e, we choose the smallest one since in this case we have fastest
transmission. Namely, if the receiver detects errors in the received block,
it asks for repeated transmission, so it is better the block length to be as
small as possible.

In the Table 1, we give the maximums of the probability functions of
undetected errors for the first and the second proposed code. From this
table, we can conclude that the maximums of the functions of undetected
errors are smaller when the quasigroups of order 4 are used. It suggest that
using the quasigroup of order 4 we obtain better and more efficiently codes.

n | Quasigroups of order 2 | Quasigroups of order 4
10 9.75609 x 10~ 9.35406 x 10~°
11 5.29529 x 10~ 7% 6.82458 x 10~°
12 3.52349 x 10~ % 5.14707 x 1077
13 2.48784 x 1077 3.97896 x 10~5
14 1.86131 x 10~ * 3.14013 x 1075
15 1.43616 x 10~* 2.52198 x 10~°
16 1.13480 x 10~* 2.05631 x 10~°
17 9.13489 x 1077 1.69878 x 105
18 7.47017 x 107° 1.41968 x 10~°
19 6.19084 x 10~° 1.19860 x 10~°
20 5.19030 x 107> 1.02120 x 10~°
21 4.39585 x 1075 8.77182 x 1076
22 3.75666 x 10~° 7.59050 x 109
23 3.23631 x 1077 6.61231 x 10~
24 2.80827 x 10~° 5.79537 x 1076
25 2.45283 x 1077 5.10775 x 106
26 2.15517 x 107 4.52483 x 10~©

Table 1: The maximums of the probability functions

6. Classification of quasigroups of order 4
according to goodness for proposed codes

As we mentioned in Section 4 we filtered 576 quasigroups of order 4 such
that the probability of undetected errors does not depend on the distribution
of letters in the input messages. After filtering only 160 quasigroups remain
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and they give 7 different functions of probability of undetected errors. The
best of these functions is fy1(n,p) given in Section 4. Others are given with
the following formulas.

fa,2(2,p) = (1—p)?p?(3p* —4p+2)(5p® —2p+1)

f12(3,p) = 3(1—p)*p*(21p* — 40p® + 44p* — 24p + 6)

fa2(4,p) = (1 —p)*p*(255p% — 1012p7 + 1982p°% — 2468p° + 2145p* — 1320p3 + 556p>
—144p + 18)

faz2(n,p) = npt(1—p)2@n=8x

X [4 — 48p + 275p% — 990p> + (8n + 2475)p* — 8(8n + 561)p°

+2(130m + 2943)pS — 4(166n + 1305)p7 + (9n? + 1078n + 2409)p®
—4(9n? 4 270n — 131)p? + (81n2 + 371n — 890)p'°

—2(45n2 — 165n + 194)p'! + (3/8)(9In3 — 42n2 + 75n — 34)p12]
+0(p"), for n > 5.

f1,3(2,p) = p*(—p°+8p° —12p* +8p —p? —2p+1)
fa3(3,p) = p3(—p? + 12p8 — 66p7 + 220p% — 411p® + 456p* — 312p3 + 132p? — 33p + 4)
fa3(4,p) = p3(—p'3 + 16p'2 — 120p*! + 560p'° — 1628p” + 3216p® — 4568p” + 4800p°

—3765p° + 2188p* — 918p3 + 264p? — 47p + 4)

fra(np) = (1/24)np?(1 —p)2CEn—100x
x {24 — 384p + 2952p? + 12(n — 1203)p® — 48(3n — 1045)p? + 48(18n — 2731)p°
+4(n? — 837n + 66488)p5 — 8(4n? — 1158n 4+ 53327)p”
+4(37n2 — 4845n + 136880)p® + (n® — 44612 + 312590 — 566302)p°
—4(n3 — 22612 + 9701n — 118268)p'0 + 2(5n3 — 658n? + 18469n — 159020)p'!
—4(4n3 — 347n? 4 66651 — 42412)p*2 + (19n3 — 1078n2 + 14453n — 69890)p!3
—4(4n3 — 14902 + 1433n — 5314)p'* + 2(5n3 — 116n? + 817n — 2302)p'®
—4(n3 — 14n2 + 71n — 154)p'® + (n3 — 10n2 + 35n — 50)p17}
+0(p"), for n > 5.

f142,p) = (1—-p)*p(—p*+6p> —Tp+4)
faa(3,p) = (1—p)°p?(p® — 9p° + 36p* — 44p® +30p* — 12p + 3)
fua(4,p) = (1 —p)*p3(—p° +12p® — 66p7 + 220p° — 399p°® + 440p* — 300p° + 128p> — 32p + 4)
faa(n,p) = (1/24)np3(1 — p)2(n=10)x
X {24 — 384p + 2976p? 4 12(n — 1229)p3 — 144(n — 361)p* + 24(37n — 5729)p°
+4(n? — 891n + 70274)p% — 4(8n? — 2535n + 113035)p”
+8(20n? — 2709n + 72514)p8 + (n® — 530n2 + 35747n — 601066)p°
—4(n3 — 289n? + 11342n — 126548)p'0 + 2(5n3 — 880n2 + 21883n — 172004)p'!
—16(n3 — 11902 + 1979n — 11494)p'2 + (19n3 — 1474n2 + 17129n — 74834)p13
—4(4n® — 197n2 + 1721n — 5698)p* + 10(n3 — 28n? 4 197n — 518)p'®
—4(n® — 14n2 + T1n — 154)p'6 + (n3 — 10n2 + 35n — 50)p17}
+0(p"), for n > 5.
fa52,p) = (1—p)p(p®+ 9p* —19p° + 17p? — 8p + 2)
fa5(3,p) = (1—p)°p°(p° — 9p® + 36p* — 60p° + 54p? — 24p + 5)
fas(,p) = (1—p)?p°(—p'! + 14p'0 + 37p? — 276p® + 567p” — 526p° + 125p° + 216p* — 252p°

+128p2 — 34p + 4)
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f4,5(nap)

f4,6(2»p)
fa,6(3,p)
f4,6(4) p)

fa,6(n, p)

fa,7(2,p)
f4,7(3ap)
f4,7(4»p)
f4,7(n’p)

(1/24)np (1 — p)>Cn=10)x

X {24 — 330p + 2544p? 4 12(n — 933)p3 — 24(5n — 1424)p? + 12(47n — 6355)p°
+4(n? — 411n + 31844)p% — 4(5n? — 849n + 39922)p”

+4(7n? — 1431n + 37058)p® 4 (n? 4 82n2 4 8855n — 100714)p°

—4(n3 4+ 116n2 + 3131n — 14012)p'° + 2(5n3 + 518n2 + 7177n — 20420)p*!
—4(4n3 4 36102 + 277Tn — 9916)p12 + (19n3 + 1334n2 + 4385n — 28466)p'3
—4(4n3 4 20502 — 133n — 2602)p'* + 2(5n3 + 148n2 — 647n — 286)p!®

—4(n® +10n2 — 97n + 134)p'6 + (n® — 10n2 + 35n — 50)p17}

+0(p"), for n > 5.

(1 —p)?p*(—p* + 6p® — 3p> + 1)
(1 — p)3p?(pS — 9p° + 36p* — 52p> + 42p2 — 18p + 4)
(1 = p)*p3(—p°® + 12p8 — 66p” + 220p8 — 319p° + 280p* — 180p3 + 88p?

—27p +4)

(1/24)np3 (1 — p)22n=10) x

x |24 — 360p + 2592p% + 12(n — 995)p® — 120(n — 329)p* + 12(51n — 8297)p°
+4(n? — 537n + 49598)p8 — 20(n? — 285n + 15938)p”

+4(13n2 — 2955n + 104282)p® + (n® — 110n2 + 19199n — 445066)p°

—4(n3 — 52n2 + 6047n — 96152)p'°® + 2(5n3 — 178n2 + 11749n — 133004)p*?
—4(4n3 — 119n? + 4349n — 36172)p*2 + (19n3 — 490n? + 9761n — 60338)p'3
—4(4n3 — 89n? + 1013n — 4594)p'* + 2(5n3 — 92n2 + 649n — 2014)p'®
—4(n3 — 14n2 + 71n — 154)p'® + (n3 — 10n2 + 35n — 50)p17}

+0(p"), for n > 5.

(1 —p)2p%(1 + p)(—p® + 7p? — 6p + 2)

p)*p*(
(1 =p)*p3(4 —p)(p* —4p® +12p*> — 8p +2)
(1 — p)*p3(—p® + 6p% — Tp + 4)(p® — 6p°® + 23p* — 36p> + 30p% — 12p + 2)
(1/24)np3(1 — p)2(2n =12 x
X {48 — 960p + 9168p? + 24(2n — 2319)p® — 48(16n — 5021)p*
+48(122n — 16489)p® + 16(2n2 — 1785n + 127894)pS
—24(16n2 — 4188n + 178017)p” + 48(42n2 — 5635n + 152925)p8
+4(4n3 — 1492n2 + 142127n — 2630189)p°
—48(4n3 — 224n2 4 19395n — 263790)p!°
+48(22n% — 263n? + 24382n — 265501)p!!
—8(436n3 — 1819n? + 1394090 — 1320164)p'2
+144(53n3 — 208n2 + 5721n — 49048)p'3
—48(240n3 — 128512 + 11191n — 79021)p'4
+4(3030n3 — 21073n2 + 94395n — 427394)p15
—24(366n° — 303502 + 11013n — 29366)p'°
+12(354n3 — 3268n2 + 11509n — 21701)p'7
—8(163n3 — 1588n2 4 5591n — 8906)p'8 + 12(20n3 — 199n? 4 699n — 1030)p'?

—24(n3 — 10n? + 351 — 50)p2° + (n3 — 10n2 + 35n — 50)p?!
+0(p7), for n > 5.

The plots of the previous functions for n = 7 are given on the Figure 5.
We can see that the function f41(n,p) is the best one, it gives the smallest
probability of undetected errors. But the function fy2(n,p) is very closed
to the fi1(n,p). Their plots almost overlap each other. Using functions
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fai(n,p) for i
sets.

= 1,...,7 we can classify remaining 160 quasigroups in 7
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Figure 5: Seven different functions of probability of undetected errors

Fach quasigroup is presented by a number according to lexicographic
ordering of the set of quasigroups of order 4. Namely, each quasigroup is
presented as a string of 16 letters that is a concatenation of the rows of the
corresponding Latin square. Then lexicographic ordering of that strings is
applied, assuming that the letters are already ordered. The obtained sets of
quasigroups are ordered such that the quasigroups from the first set give the
smallest, and the quasigroups from the last set give the biggest probability
of undetected errors.
Set 1: 46, 92, 111, 127, 160, 213, 222, 274, 303, 355, 364, 417, 450, 466, 485, 531
Set 2: 43, 93, 101, 133, 157, 196, 235, 275, 302, 342, 381, 420, 444, 476, 484, 534
Set 3: 40, 80, 116, 138, 166, 206, 228, 269, 308, 349, 371, 411, 439, 461, 497, 537
Set 4: 14, 21, 37, 54, 71, 77, 100, 132, 163, 179, 192, 197, 234, 243, 253, 272, 305

324, 334, 343, 380, 385, 398, 414, 445, 477, 500, 506, 523, 540, 556, 563
Set 5: 27, 83, 113, 139, 146, 203, 229, 285, 292, 348, 374, 431, 438, 464, 494, 550
Set 6: 4, 24, 26, 60, 70, 82, 110, 126, 147, 169, 182, 212, 223, 252, 262, 284, 293,

315, 325, 354, 365, 395, 408, 430, 451, 467, 495, 507, 517, 551, 553, 573

Set 7 can be presented as union of two subsets:
Subset 7': 1, 11, 51, 57, 172, 189, 246, 259, 318, 331, 388, 405, 520, 526, 566, 576
Subset 7": 7, 9, 49, 63, 174, 185, 242, 263, 314, 335, 392, 403, 514, 528, 568, 570

Repeat that all of these 160 quasigroups are fractal. The sets 1-6 contain
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only linear fractal quasigroups. The set 7 contains two subsets such that the
subset 7' contains linear fractal quasigroups too, but the subset 7’ contains
16 nonlinear fractal quasigroups with nonlinear part x1x3 + xox3 + x124 +
xox4 (see [2]). Also, one can check that there is not quasigroup in Set 1
which is a group.

7. Conclusion

In this paper we compare two special cases of these codes: the first one
with the binary set A = {0,1} and k£ = 4 and the second one with the set
A ={0,1,2,3} and k£ = 2. In the both codes, each control bit includes 4
bits from the input message and the rates of the both codes are the same,
so the comparing of two codes are reasonable. From this comparing we can
conclude that the obtained results are much better when we use quasigroups
of order 4. Also, in this paper we give a classification of quasigroups of order
4 according to goodness for proposed codes. Our next step is to develop
some other codes based on quasigroups of order 4 or 2% for k > 3, which
give smaller probability of undetected errors.
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