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Generalized quadratic quasigroup equations

with three variables

Aleksandar Krapez

Abstract. F. M. Sokhats’kyi recently posed the problem of classification of (un)cancel-
lable generalized quadratic quasigroup equations. Refining relevant results of S. Krsti¢,
A. Krapez and D. Zivkovi¢ solved this problem by reducing it to the classification of con-
nected (3—connected) cubic graphs. They also started systematic investigation by solving
all equations with two variables. Here we consider equations with exactly three variables.
There are 330 of them and they split into five classes of parastrophic equivalence. We

give solutions to five representative equations, one from each class.

1. Introduction

This paper is a sequel of [7] by A. Krapez and D. Zivkovi¢. Although we
define the most important notions and state essential results of [7], it is
assumed that the reader is thoroughly familiar with it.

In [7] authors consider the correspondence between generalized quadratic
quasigroup functional equations and connected cubic graphs as established
by S. Krsti¢ in his PhD thesis [8]. It is proved that the important no-
tion of parastrophic equivalence of quadratic equations corresponds to the
isomorphism of graphs obtained from given equations. The set of nine nor-
mal equations with two variables is divided into two classes of parastrophic
equivalence corresponding to two nonisomorphic graphs.

Much more is known about the special case of parastrophically uncan-
cellable equations. Various authors obtained instances of number u, of
classes of parastrophically nonequivalent uncancellable equations with small
number n of variables. The results are: uy = 1 (KrapeZ and Zivkovié [7]),
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uz = 1 (Sokhats’kyi [10] after Duplak [4]), usa = 2 (Sokhats’kyi [10]), us = 4
(Koval’ [5]) and ug = 14 (Krapez, Simi¢ and Togi¢ [6]).

In this paper we prove that there are five classes of cancellable and
uncancellable equations with three variables, we give their Krsti¢ graphs
and solve five parastrophically nonequivalent representative equations.

2. Quasigroups and functional equations

Let us recall necessary definitions and results of [7]. For bare essentials
on quasigroups see |7|. More can be found in standard references V. D.
Belousov [2], O. Chein, H. O. Pflugfelder and J. D. H. Smith [3] and H.
O. Pflugfelder [9]. We just state that the language of quasigroups contains
six binary operations: multiplication (-), left (\) and right (/) division and
their respective dual operations: * (dual of -), \\ (dual of \) and / (dual
of /). These six operations are known as parastrophes of - (and of each
other) and the connection between them is: zy = z iff 2\z = y iff z/y =
ziff yxz=ziff 2\e =y iff y)z = x.

When we use prefix notation for operations and a quasigroup operation
is A, we define: A(xy,x5) = a3 iff AV (2, 20) = x5 iff A0 (29, 21) =
T3 iff A(l?’)(l'g,l‘g) = I iff A(Qg)(l'l,l‘g,) = X2 iff A(123)(IE2,ZE3) = I iff
AU32) (g3, 21) = x9. In general, A(zy,x0) = x3 iff A%(T(1), To2)) = To(3)
for o € S3.

We assume that all operations are quasigroups. Further:

Definition 2.1. Functional equation s = t is quadratic if every object
variable appears exactly twice in s = t.

Definition 2.2. Functional equation s = t is generalized if every functional
variable F' (including all parastrophes of F') appears only once in s = ¢.

We also need the following:

Definition 2.3. Let Eq[Fy,..., F,] be a generalized quadratic functional
equation on quasigroups. We write F; ~ F; (1 <4,j < n) and say that F;
and F} are necessarily isostrophic if in every solution Q1,...,Q, of Eq the
operations (); and @); are isostrophic.

A functional variable F; is loop, group, abelian if Q; is isostrophic to a
loop, group, abelian group respectively.

Definition 2.4. A ~—class with one or two elements is called small, other-
wise it is big.
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Definition 2.5. Two equations Fq and Eq’ are parastrophically equivalent
(EqPE E¢') if one of them can be obtained from the other by applying a
finite number of the following steps:

1. Renaming object and/or functional variables.

2. Replacing s =t by t = s.

3. Replacing equation A(t1,t2) = t3 by one of the following equations:
Ag(tg(l),tJ(Q)) = t0(3) for some o € Ss.

4. Replacing a subterm A(ty,t3) of s or t by A0 (to, ;).

5. Replacing a subterm A(z,t2) by a new variable y and simultane-
ously replacing all other occurrences of x by either A13)(y, t5) or
A(123) (t27 y).

6. Replacing a subterm A(t;,x) by a new variable y and simultane-
ously replacing all other occurrences of x by either A@3)(¢,y) or
A(132) (y’ tl)-

If we use notation Fql...,A,...], we denote by Eq[..., A%, ...] the
equation obtained by one of the steps (3) — (7) above, always preserving the
order of other functional variables. Using this convention we get:

Theorem 2.6 (Krsti¢ [8]) . If equations Eq[F, ..., F,] and Eq |G, ..., Gy)]
are parastrophically equivalent and Q1,...,Qyn and Ry, ..., Ry are solutions
of respectively Eq, Eq' on a set S, then the operations Q; and R; (1 <i < n)
are mutually isostrophic.

3. Graphs and functional equations

Following S. Krsti¢ 8] we represent functional equations by graphs. These
‘graphs’ may have loops and multiple edges between two vertices and are
technically known as multigraphs.

We define graphs as relation systems (V, E;I) with I C V x E. It is
assumed that the sets V' of vertices and E of edges are disjoint and that
for every edge e there are at most two vertices incident to e. A loop is an
edge with a unique vertex incident to it. A loop in a graph should not be
confused with a loop as a quasigroup with an identity.

A graph is cubic if for every vertex v there are exactly three edges to
which v is incident, provided that if edge is a loop it is counted twice.

Definition 3.1. Two vertices v, v9 of a graph G are 3—connected (and we
write v1 = v9) if there are three disjoint paths in G from vy to vy. A graph
G is 3—connected if all vertices of G are 3—connected.
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In graph theory, 3—connectedness, as defined above, is usually called
3-edge—connectedness, but we shortened it to 3-connectedness. A graph is
3—connected iff removal of any two edges does not disconnect it. Obviously,
a cubic graph G is 3—connected iff the relation = is a full relation on V.

Definition 3.2. A =class with one or two elements is called small, other-
wise it is big.

Based on the theory of S. Krstié¢ [8], two constructioins are presented
in |7] - the one which produces the graph K(Eq) for a given generalized
quadratic functional equation FEq and the other, which gives an equation
QE(G) for a given finite connected cubic graph G.

We have:

Theorem 3.3 (Krapez and Zivkovic |7] after Krsti¢ [8]). Generalized qua-
dratic quasigroup functional equations Eq and Eq are parastrophically equi-
valent iff their Krsti¢ graphs K(Eq) and K(Eq') are isomorphic.

The following theorem is also important.

Theorem 3.4 (Krstic [8]). Let Eq[F,. .., F,] be a generalized quadratic
functional equation. Then F; ~ F; in Eq iff F; = F; in K(Eq). Moreover:

Every F; is a loop functional variable.

A symbol F; is a group functional variable iff F;/ = is big iff Ky is
homeomorphically embeddable in K(Eq) within F;/ =.

A symbol F; is an abelian functional variable iff the subgraph of K(Eq)
defined by F;/ = is not planar iff K33 is homeomorphically embeddable in
K(Eq) within F;/ =.

4. Equations with three variables

In the paper [7] A. Krapez and D. Zivkovi¢ defined sequences (E,), (e,) and
(mp)(n > 1), where E,, is the number of generalized quadratic quasigroup
functional equations with n variables, e, is the number of normal equations
among them and 7, is the number of classes of parastrophically equivalent
equations with n variables. By the Theorem 5.9 of [7] 7, is also the number
of nonisomorphic cubic graphs with 2(n — 1) vertices. We have E3 = 3780
and es = 330. It is announced that w3 = 5. We give the proof of this fact
now but also a new proof that mo = 2.

By the Lemma 5.2 of [7], equations with 2, 3 variables have Krsti¢ graphs
which are connected, cubic and have 2, 4 vertices and 3, 6 edges respectively.



Quadratic equations with three variables 257
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Figure 1. Graphs with two vertices

AoF]
CA

Figure2. Graphs with four vertices

Theorem 4.1. Every connected cubic graph with two vertices is isomorphic
to either the dumbbell graph Hy or to the dipole graph Ds (Figure 1). Every
connected cubic graph with four vertices is isomorphic to either one of: Hy,
Hs, Hs, Hy, K4 (Figure 2). Consequently, mo =2 and w3 = 5.

Proof. Let G be a connected cubic graph with either two or four vertices.
There are four possibilities:

(1) G has a loop,
(2) G has no loops but has a triple edge,
(3) G has no loops or triple edges but has a double edge,
(4) G has no loops or multiple edges.
(1) G has aloop. Then there is a vertex, say 1, with the loop. Since G is
cubic, there is another edge in 1 connecting it to a new vertex 2. There are
three possibilities:
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(11) the vertex 2 has a loop,
(12) 2 has no loop but has a double edge,
(13) 2 has no loops or double edges.

(11) The vertex 2 has a loop. Since G is cubic and connected, no further
extension is possible. Therefore G is isomorphic to the dumbbell graph Hy.

(12) The vertex 2 has no loop but has a double edge. Let the vertex
2 connects to the vertex 3 by the double edge. The single remaining edge
at 3 has to connect it to the new vertex 4. All vertices except 4 now have
three edges. Therefore 4 has to connect to itself by the loop. The graph G
is isomorphic to Ho.

(13) The vertex 2 has no loops or double edges. Therefore 2 has to
connect to two more vertices 3 and 4 by single edges. There are two possi-
bilities:

(131) there is a loop in 3,

(132) there is no loop in 3.

(131) There is a loop in 3. There must be a loop in 4 as well and G is
isomorphic to Hj.

(132) There is no loop in 3. Then 3 and 4 must be connected by the
double edge. The graph G is isomorphic to Hs.

(2) G has no loops but has a triple edge. Then two vertices 1 and 2
are triply connected and no further extension is possible. The graph G is
isomorphic to the dipole graph Ds.

(3) G has no loops or triple edges but has a double edge. Assume that the
vertex 1 has a double edge to the vertex 2 and consequently a single edge
to another vrtex 3. There are two possibilities:

(31) there is an edge connecting vertices 2 and 3,

(32) there is no such edge.

(31) There is an edge connecting vertices 2 and 3. The edge must be
a single one since 2 is connected to 1 by the double edge. Then 3 must be
connected to the only remaining vertex 4 by the single edge. But then the
vertex 4 must have a loop which contradicts assumption (3).

(32) There is no edge connecting 2 and 3. Since no loops are alowed, 2
must be singly and 3 doubly connected to 4. The graph G is isomorphic to
Hy.

(4) G has no loops or multiple edges. Therefore 1 is singly connected to 2, 3
and 4. Since no loops or multiple edges are alowed, 2 must connect to both
3 and 4. Also, the 3 and 4 are connected and the graph G is isomorphic to
the graph Kjy. O
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We prove four usefull lemmas. They generalize Lemmas 8.1-8.4 from [7].

Lemma 4.2. Let a,b and e be elements and o a permutation of a set S. A
general solution to the equation

oF(a,b) =e¢ (1)

on a set S is given by:
F(z,y) = aL(\z, oy)
where:
— L is an arbitrary loop on S with the identity e,
— a, A and o are arbitrary permutations of S such that: oo =o', ha = e
and ob = e.

Proof. 1t is trivial to check that the above formulas always give a solution
to the equation (1). Next, we prove that every solution to the equation (1)
is of the form given in the statement of the Lemma.

Let F' be a particular quasigroup on S which satisfies (1). Define o =
oL, \r = oF(z,b), 00 = 0F(a,z) and L(z,y) = cF(A\"'z, 07 1y). We see
that A and p are permutations of S such that Aa = pb = e and F(x,y) =
aL(A\x, oy). The operation L is a quasigroup as an isotope of the quasigroup
F. Moreover, it is a loop, as follows from: L(e,x) = ocF (A" le,o7tx) =
oF(a,07'z) = oo~ 'z = x and L(z,e) = cF(\ "'z, 07 te) = s F(A\"lz,b) =
M lr =z O

S.

Lemma 4.3. Let b be an element and v,0 and T permutations of a set
A general solution to the equation

oF(yx,b) =712 (2)

on a set S is given by:
F(z,y) = aL(\z, oy)
where:
- L is an arbitrary loop on S with the identity e,
— o, \ and o are arbitrary permutations of S such that: o = o1,
Ay =T and ob = e.

Proof. 1t is easy to check that the above formulas always give a solution to
the equation (2).

Assume that a quasigroup F' is a solution of (2). We are proving that
F must be of the form indicated in the statement of the Theorem.
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Take a € S and define e = 7a,a = 0~ !, \x = o F(2,b), ox = 0 F(va, x).
Operations a, A and g are permutations such that Ayx = oF(yz,b) = T
and pb = oF(vya,b) = Ta =e.

Define a quasigroup L by L(u,v) = a ' F(A\"lu, 071v). We have L(e,z) =
a 'F(A\ e, o71l2) = oF(y77te,07'2) = 0F(va,0 'z) = oo 'z = x and
L(z,e) =a 'F(A\ 'z, 07 e) = o F(A\ "', b) = A\ "'z = 2 proving that L is
a loop with the identity e. O

By duality we have:

Lemma 4.4. Let a be an element and 6,0 and T permutations of a set S.
A general solution to the equation

oF(a,dz) =12 (3)

on a set S is given by:
F(z,y) = aL(Az, oy)
where:
— L is an arbitrary loop on S with the identity e,
— a, A and o are arbitrary permutations of S such that: a« = o~
and 00 = T.

L'dxa=e

Lemma 4.5. Let e be an element and v,6 and o permutations of a set S.
A general solution to the equation

oF(yx,dz) =e (4)

on a set S is given by:
F(z,y) = aL® Az, 0y)
where:
- L is an arbitrary loop on S with the identity e,
- a, A and ¢ are arbitrary permutations of S such that: cae = e, Ay =0
and pd = o.

Proof. Since L is a loop, we have L(x,e) = x i.e., L™2(x,x) = e. Therefore
oF (yz,é6x)=cal~?(\yz, 06x) =cal™?(ox,0r) =cae=e so F satisfies (4).
Assume that a quasigroup F' is a particular solution of (4). Define
ar = F(yo~le,d07'x). The function a is a permutation and cae =
oF(yo~le,d07te) =e.
Define also A = oy~ and o = 06~ !. It follows that Ay = ¢ and o6 = o.
If a quasigroup L is defined by L(u,v) = oF ~2(A~'u, av) then F(z,y) =
aL™2(\x, 0y), L(e,z) = oF 2(\"te,ax) = oF 2(\ " le, F(\le, 07 '2)) =

1
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oo tr =z and L(z,e) = oF 2(A\ "z, ae) = oF 2(A\ 1o, F(A\ "t 07 1)) =
o0 'z = x. Therefore L is a loop. O
There are three equations corresponding to the graph Hj:
A(B(z,z),C(y,y)) = D(z,2),
Az, B(C(y,y),D(2,2))) =z,  AB(C(z,),D(y,y)),z) = 2.

To reduce some space we shall not write appropriate generalized equa-
tions, as above, but the corresponding equations in the language with the
single operation -. So the three equations representing generalized equations
which correspond to the graph H; are:

x(yy.zz) = x (zxyy)z =z

One of the equations is also boxed, indicating the equation chosen to
represent the whole PE—class. The distinguished equation is then written
in full form and its solution is given in the following theorem. In this case
the representative equation is:

A(B(z,z),C(y,y)) = D(z,2) (5)

and the corresponding theorem is:

Theorem 4.6. A general solution of the equation (5) on a set S is given

by:
A(z,y) = L(Az, 0y)
B(z,y) = A 'Us(x,y)
C(z,y) = 0 'Us(z,y)
D(z,y) = Us(z,y)
where:

— L is an arbitrary loop on S with an identity e,

~ U; (2 <i < 4) are arbitrary unipotent quasigroups with a common
idempotent e,

- X and ¢ are arbitrary permutations of S.

Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(B(IL’, l‘), C(yv y)) = L(B(IL’, l‘), C(yv y)) = L(A)‘_1U2($v 'I)v QQ_1U3(y7 y))
= L(e,e) = e = Uy(z,2) = D(z,z). Therefore a quadruple of such quasi-
groups is a solution to (5).
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2) Let a quadruple of quasigroups A, B, C, D be a solution to (5). As-
sume p, q be arbitrary but fixed elements from S. Define b = B(p,p),c =
C(g,q) and e = A(b,c). Fixing z and y in the equation yields D(z,z) = e.
We can easily infer B(z,z) = b and C(y,y) = c. From A(b,c) = e, by the
Lemma 4.2, we find A(z,y) = aL(\zx, 0y) where L is a loop on S with an
identity e and «, A, ¢ are permutations of S such that a = Id and A\b = oc =
e. But then AB(x,z) = \b = e and if we define Us(x,y) = AB(x,y) we get
B(z,y) = A" Us(x,y). We can define Uz and Uy similarly. O

The ~—classes of (5) are all singletons.

The question arises as to why we use unipotent quasigroups to express
the solutions to functional equations when the Theorem 3.4 stresses the role
of loops, groups and/or Abelian groups. The reason is pure convenience
since we could use loops instead of unipotent quasigroups. Namely, by the
Lemma 4.5, for every unipotent quasigroup U the quasigroup U (23) with
the (unique) idempotent e is a loop with the identity e, and conversely, if
L is a loop with the identity e, then the quasigroup L(23) is unipotent and
has a unique idempotent e. The alternative general solution to (5) is then

given in:
Theorem 4.7. A general solution of the equation (5) on a set S is given
by:
A(z,y) = L(Az, oy)
B(z,y) = A\ 1LE (2,y)
Cla,y) = o~ L (2,y)
D(x.y) = L{ (2,y)
where:

— L, Lo, Ls and Ly are arbitrary loops on S with an identity e,
- X and ¢ are arbitrary permutations of S.

Further on, we state only one version of the solution, the one using
unipotent quasigroups.
There are 19 equations corresponding to the graph Ho:

TXY = Y.2%

XY = 22.Y

x(z.yy) = 2z z(yy.x) = 2z (xyy)r = 2z
(zx.y)y = 22 xy(y.zz) =x xy(zzy) =x
x.(y.zz)y =x x.(yy.2)z = x xx.(y.22) =y
zx.(yy.z) = z (zyy).zz =x (zxy).zz =1y
x(z.yy).z =z z(yy.x).z =z (zyy)r.z =z

(zzy)y.z =2
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The ~—classes of operations are again singletons. The representative
equation is

A(z, B(y,y)) = C(x, D(z, 2)) (6)
and its solution is given in the following theorem.

Theorem 4.8. A general solution of the equation (6) on a set S is given

by:
A(z,y) = Li(Mz, 01y)
B(z,y) = 07 'Us(,y)
C(z,y) = L3(A37, 03y)
D(x,y) = 05 'Us(x,y)
where:

— Ly and Ls are arbitrary loops on S with a common identity e,

- Uy and Uy are arbitrary unipotent quasigroups on S with a common
idempotent e,

- A1, 01, A3 and p3 are arbitrary permutations of S such that A\ = As.

Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(z,B(y,y)) = Li(\w, 010 ' Ua(y,y)) = Li(Mw,e) = Mz = A3z =
L3(Asz,e) = Ls(Asx, 93Q3_1U4(z, z)) = C(x, D(z, z)). Therefore the quadru-
ple of such quasigroups is a solution to (6).

2) Let a quadruple of quasigroups A, B, C, D be a solution to (6). Sup-
pose that p,q,r are arbitrary but fixed elements from S and define b =
B(q,q),e = A(p,b),d = D(r,r). Fixing z and y we get C(p,d) = e.

Define also Mz = A(x,b),01z = A(p,x),\3¢ = C(z,d) and g3z =
C(p,x). The relation A\; = A3 immediately follows. The equation (6)
reduces to the system: A(z,b) = A3z, 01B(y,y) = e, C(x,d) = Mz,
03D(z,z) =e.

By the Lemma 4.3 we can choose A(z,y) = Li(Aiz, 01y) for some L.
It is rather obvious that we have to take L;(u,v) = A(\; u, 0] 'v). Since
A1 and p; are translations of A, the operation L; must be a loop with the
identity e. Analogously, C(z,y) = L3(Asx, o3y) for a suitable loop Lz with
the identity e.

If we define Us(x,y) = 01B(z,y) we get Us(x,z) = ¢o1b = e and
B(z,y) = QIIUQ(:U,y). Similarly, D(z,y) = Q§IU4(x,y) for a unipotent
quasigroup Uy with the idempotent e. O
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There are 94 equations corresponding to the graph Hs.

TYY = 2.2T
TY.T = Y.2%2
TTY = 2Y.2

TYT = Y.2%2
TTY = 2.Yz
TY.Y = T.2%2
TY.T = 22.Y

TYY = 2.2
TTY = 2.2y
TTY = Yz.2
TY.Y = 22.T

x(y.xy) = zz x(yyzr) = zz x(y.zz) = zy
x(y.zz) = yx x(zy.y) = 2z x(yx.y) = 2z
x(yy.z) = xz x(yy.z) = zx TT.Yz = Yz
TTYZ = 2Y TY.rY = 22 TY.Yr = 22
TY.22 = TY TY.22 = YT (x.xy)y = 22
(ryx)y = 22 (r.yy)z = xz (x.yy)z = zx
(zxy)z = yz (zz.y)z = 2y (zy.x)y = 22
(zy.y)x = 2z r.x(y.zz) =y rxylr.zz) =y
xy(z.yz) =x x.y(z.2y) = r.x(yy.z) = z
xylyz.z) =x xy(zy.z) = xy(zz.x) =y
x(xy.zz) = x(yzr.zz) = x(yy.xz) = z
x(yy.zx) = x(yz.yz) = x(yz.2y) = x
©(zyy)s = 2 2(yy2)e =1 2(yoy)e =
z.(yzz)r =1y z.(yy.x)z = z z.(yy.2)r =z
z.(yz.y)z = x z.(yz.2)y == zx.(y.yz) = 2z
zx.(y.2y) = xy.(x.zz) =y y.(y.2z) =x
zx.(yz.y) = xx.(yz.2) =y xy.(zz.x) =y
xy.(zz.y) = (r.ay).zz=1y (ryz).zz =1y
(zyy).xz =z (z.yy).zx =z (zr.y).yz =z
(zz.y).2y = 2 (vy.z).zz =1y (zy.y).zz =2z
z(y.xy).z =z x(y.yzr).z = z x(y.zz)x =y
x(y.zz)y == x(ry.y).z =z z(yx.y).z =z
z(yy.z).x = z x(yy.z).z =x (zxyz)y =z
(zxyz)z =y (xy.xy)z =z (xy.yz)z = 2
(ry.zz)x =y (ry.zz)y ==z (z.xy)y.z =2
(ryx)y.z =z (xyy)z.x =z (xyy)z.z =x
(zry)zy =2 (zxy)z.z2 =1y (zy.x)y.z =2z
(zyy)r.z =2

In this case we have two ~—classes which are singletons and one class with
two elements. The representative equation is

Az, B(z,y)) = C(y, D(2,2)) (7)

and its solution is given in the following theorem.
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Theorem 4.9. A general solution of the equation (7) on a set S is given

by:
A(z,y) = L (\z, 01y)
B(z,y) = 07" L1(Aaz, 02y)
C(z,y) = L3(A3x, 03y)
D(z,y) = 05'Ul(z,y)
where:

— Ly and Ls are arbitrary loops on S with a common identity e,

— U 1is an unipotent quasigroup with the idempotent e,

— A1, 01, A2, 02, A3, 03 are arbitrary permutations of S such that A\ = Ao
and 09 = A3.

Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(z, B(z,y)) = L§23)(/\1m,gg_1L1()\2x, 02y)) = L§23)()\2m,L1()\2x,92y)) =
00y = A3y = L3(M\3y,e) = La(A3y, 0305 'U(2,2)) = C(y, D(2,2)). There-
fore the quadruple of such quasigroups is a solution to (7).

2) Let a quadruple of particular quasigroups A, B,C, D be a solution
to (7). Let p,q,r be arbitrary but fixed elements from S. Define b =
B(p,q),d = D(r,r) and e = A(p,b). Fixing = and y in the equation yields
C(q,d) = e. Define Asx = A(p,x), Bix = B(z,q), Bex = B(p,z),Cix =
C(z,d) and Cox = C(g,x) and their various compositions: A\; = Ay =
A9 By, 01 = Az, 09 = AsBs, A3 = C1, 03 = Cs. Equation (7) is equivalent to
the system:

A(z, B(z,y)) = Asy

C(y,d) = 02y
03D(z,2) =e .

Moreover, g2 = As.

By the Lemma 4.2, there is a unipotent quasigroup U such that D(z,y) =
03U (z,y) with a unipotent e. Also, by the Lemma , there is a loop Lg with
the identity e such that C(z,y) = L3(Asz, 03y). If we define a quasigroup
L1 by Ly (u,v) = A®3)(\ju, p1v), then it is a loop with the identity e and
Alz,y) = L (\z, 019), B(x,y) = 0111 (Ao, 021).

The rest of the requirements of the Theorem are satisfied too, which
completes the proof. O
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There are 114 equations corresponding to the graph Hy.

T.TY = 2.YZ
rYr = 2.2y
TY.T = 2.Yz
TY.Y = 2.2%
TY.T = Yz.2
TY.Y = 2X.2

x(x.yz) =yz
x(y.yz) = zx
x(yz.x) = yz
x(yz.y) = za
(z.xy)z = yz
(ryz)z = 2y
(zy.x)z = yz
(zy.y)z = 2z
r.x(yyz) =
rxy(y.zx) =z
r.x(yz.y) =z
xy(zrz.2) =y
z.(yxy)z =z
z.(yyz)r =z
z.(xyy)z =z
z.(yx.2)z =y
xy.(z.xy) =
xy.(z.yz) = x
xy.(xy.z) =

z
xy.(yz.z) = x
z
z
xY.xr).yz =z
z
z
z

)
z(yyz).z ==
)

).

(yz.x).y =
r(yzy)z=x
(z.ay)zy =2
(ryz)z.z2 =1y
(ry.x)zy =2z
(zy.y)

TY.Yy)z.2 =

T.XY = 2.2y
TY.T = 2.2y
xY.2 = 2.2y
TY.T = 2Y.2
TY.2 = XTY.Z

x(xyz) = zy
x(y.zy) = xz
x(yz.x) = zy
x(yz.z) = zy
r.xy)z = 2y
T.Yz)T =Yz

r.x(y.zy) =z
xy(z.xz) =
r.x(yz.z) =
ry(zzy) = 2

z.(yxz)y =z
:):Eyz:l:)y =2z

z.(zy.2)z =1y
z.(yz.y)r = z
xy.(z.xz) =y
xy.(z.zx) =y
xy.(xz.2) =y
xy.(zz.z) =y
(x.xy).2y = 2

TYz).yz = x

(
(ry.x).2y = 2
(ry.z).xy = 2

x(ryz).z =1y
z(y.zy).x =z
z(yz.x).z =y

2(yz2) =y
Tay)zz =y
rYyz)ry =2

(

(z.yz)
(ry.x)z.z2 =1y
(zy.2)

TY.2)z.x =Yy

TYT = 2.Yz
Yz = x.2Yy
TY.Y = 2.2
TY.Z = 2.9Yx
TY.Y = T2.2
TY.Z2 = Yx.Z

x(y.yz) =z
x(y.zy) = zx
x(yz.y) = xz
w(yz.z) = yx
(ryx)z = yz
(ryz)r = zy
(zy.y)z = 22
(zy.2)z = yx
rxyly.zz) =z
z.y(z.20) = y
vy(vzy) =
x.y(zx.z) =
z.(y.yz)z =
x.(y.zy)r =
(yz.y)z =
(yz.2)z =
xy.(z.yz) =
xy.(z.2y)
xy.(yz.z)

8
<
s
N
IS
|
W& N &8 8 w8 w8 w838 e v e
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There are two ~—classes with two elements each. The representative equa-
tion is
A(z,B(y, 2)) = C(z, D(y, 2)) (8)

and its solution is given in the following theorem.

Theorem 4.10. A general solution of the equation (8) on a set S is given

by:
A(z,y) = Li1(Aizx, 01y)
B(z,y) = oy 'La(Aat, 02y)
C(z,y) = L1(Asz, 03y)
D(x,y) = 05" La(Aaz, 0ay)
where:

— Ly and Lo are arbitrary loops on S with a common unit e,
— A1, 01, A2, 02, A3, 03, Mg, 04 are arbitrary permutations of S such that
AL = A3, Ao = Ay, 02 = 04.

Proof. 1) Let quasigroups A, B,C and D be given by the formulas above.
Then
A(z, B(y, 2)) = Li(Miz, 0107 ' La(Aay, 022))
= L1(A3x, 0305 ' La(My, 042)) = C(z, D(y, 2))

and the quadruple A, B,C, D is a solution to (8).
2) Let a quadruple A, B,C, D of quasigroups be a solution to (8) and

p,q,r arbitrary fixed elements from S. Define b = B(q,r), e = A(p,b) and
d = D(q,r). It follows that C(p,d) = e.

Define also \ix = A(z,b), o1z = A(p,x), Aox = 01B(z,r), 0ox =
QlB(qvx)a )‘3:17 = C(.’E7d), 03T = C(p7 x); )\4‘7: = Q3D( ) and 04T =
03D(q, ). Tt follows that \yz = A(x,b) = A(x, B(q,r)) = C(z,D(q,r)) =

C(z,d) = Aszx and oy = 01B(y,r) = A(p,B(y,r)) = C(p,D(y,r)) =
03D(y,r) = Agy. Analogously g2z = p42.

Let us define quasigroups Lj(u,v) = A\ u,07'v) and Lo(u,v) =
ng()\glu, lev). It is easy to check that L, and Lo are both loops with
a common identity e. Trivially A(z,y) = Li(M\izx,01y) and B(z,y) =
01 ' La(Maw, 02y). Also C(x, 05" \ay) = C(=, 05 03D(y, 7)) = C(x, D(y, 7))
= Az, B(y, 7)) = Az, 07 "1 B(y, 7)) = Alz, 01 ' Aay) = Li(Miz, 0107 ' A2y)
= Li( A3z, Q3Q§1A4y). Consequently C(z,y) = Li(\s3z, 03y).

Finally, D(y,2) = 05" 03D(y, 2) = 03 'C(p, D(y, z)) = 05 ' A(p, B(y, 2))
= 05'01B(y, z) = 03 ' La(A2y, 022) = 03 ' La(My, 04%). O
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There are 100 equations corresponding to the graph Kj.

TYZ = Y.xZ2
TYz = 2.Yx
TY.Z = Y.xZ2
TY.Z2 = Yz.x

x(y.xz) =yz
x(y.zz) = 2y
x(yzr.z) = yz

xY.xz = 2Y

xTY.2T = Yz

TY.2Y = 2T
(r.yz)z =y
(vy.2)x = zy
zylryz) =z
rxy(z.yx) = z
zylyz.x) =z
x(xy.zy) = 2

x. z=y
z.(yr.2)y = 2
xy.(ryz) =z
xy.(y.zx) = z
xy.(zxy) = 2
(ryz)zz=1y
(zy.2).xz =y
(xy.2).2zy =x
x(y.zz)y =z
x(zy.z).z =y
(ry.zz)y =2
(ry.yz)z =x
(ry.zy)x =z
(ryz)y.z =x
(zy.2)zy =2z

TYz = Y.2T
TY.Z2 = Y.2T
TY.z = Zx.Y

x(y.xz) = zy
x(xy.z) = yz
x(yzr.z) = zy
TY.Yz = x2
xy.zx = 2y
(r.yz)y = xz
(r.yz)z = yx
(ry.2)y = xz
zy(z.zy) =z
xy(ry.z) =z
rxy(zy.x) =z
z(yz.yz) =
x(yz.xz) =
ea gy = 2
z.(y.zx)z =y
z.(yz.x)y = 2
xy.(x.2y) =
xy.(xzy) =
xy.(zy.x) = 2
(r.yz)yx =z
(ry.2).yz =x
x(y.xz)y =z
x(y.zz)z =y
x(yx.z).y =z
(zy.zz)z =1y
(vy.ze)y = 2
(ry.zy)z =z
(ryz)zx =y
(ry.2)r.z =y
(zy.2)y.z =x

T.Yz = 2.2Y
TY.z = T.2Y
TY.Z = x2.Y
TY.2 = 2Y.T

x(y.zx) = yz
x(xy.z) = zy
TY.TZ = Yz
TY.Yyz = 2z

TY.2Y = T2

(r.yz)y = zx
(zy.2)z = yz
(ry.2)y = zx
z.y(z.2y) =
rylyr.z) = z
x(xy.yz) =z
x(yx.zy) = z
x(yz.yx) = z
z.(ryz)z =y
z.(xy.2)y =z
z.(yz.x)z =y
xy.(y.xz) = 2
xy.(yz.x) = z
(ryz).xy =z
(ryz).ze =y
(ry.z).2x =
z(y.xz).z =y
z(zy.z).y =2
z(yz.z).z =y
(xy.yz)xr =z
(vy.zx)z =y
(zyz)yx ==z
(ryz)zy ==
(zy.2)y.x =z

There is just one ~—class with four elements. The representative equation

is

A(B(z,y), z) = C(z, D(y, 2))

(9)
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and its solution is given in the following theorem.

Theorem 4.11 (Aczél, Belousov, Hosszu [1]). A general solution of the
generalized associativity equation (9) on a set S is given by:

where:
— - 18 an arbitrary group on S,
— A1, 01, A2, 02, A3, 03, Ag, 04 are arbitrary permutations of S such that:
A2 =A3, 02=MN\y, 01=04

The results are summarized in the Table 1.

Number of Number of Representative
PE-class Graph . .
~—classes equations equation
1 H, 4 3 (5)
2 H, 4 19 (6)
3 Hs 3 94 (7)
4 Hy 2 114 (8)
5 Ky 1 100 9)

Table 1: Equations with 3 variables — summary
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