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 quasigroup equationswith three variablesAleksandar KrapeºAbstra
t. F. M. Sokhats'kyi re
ently posed the problem of 
lassi�
ation of (un)
an
el-lable generalized quadrati
 quasigroup equations. Re�ning relevant results of S. Krsti¢,A. Krapeº and D. �ivkovi¢ solved this problem by redu
ing it to the 
lassi�
ation of 
on-ne
ted (3�
onne
ted) 
ubi
 graphs. They also started systemati
 investigation by solvingall equations with two variables. Here we 
onsider equations with exa
tly three variables.There are 330 of them and they split into �ve 
lasses of parastrophi
 equivalen
e. Wegive solutions to �ve representative equations, one from ea
h 
lass.1. Introdu
tionThis paper is a sequel of [7℄ by A. Krapeº and D. �ivkovi¢. Although wede�ne the most important notions and state essential results of [7℄, it isassumed that the reader is thoroughly familiar with it.In [7℄ authors 
onsider the 
orresponden
e between generalized quadrati
quasigroup fun
tional equations and 
onne
ted 
ubi
 graphs as establishedby S. Krsti¢ in his PhD thesis [8℄. It is proved that the important no-tion of parastrophi
 equivalen
e of quadrati
 equations 
orresponds to theisomorphism of graphs obtained from given equations. The set of nine nor-mal equations with two variables is divided into two 
lasses of parastrophi
equivalen
e 
orresponding to two nonisomorphi
 graphs.Mu
h more is known about the spe
ial 
ase of parastrophi
ally un
an-
ellable equations. Various authors obtained instan
es of number un of
lasses of parastrophi
ally nonequivalent un
an
ellable equations with smallnumber n of variables. The results are: u2 = 1 (Krapeº and �ivkovi¢ [7℄),2010 Mathemati
s Subje
t Classi�
ation: 20N05, 39B52, 05C25Keywords: quasigroup, quadrati
 fun
tional equation, 
onne
ted 
ubi
 graph, para-strophi
 equivalen
e.The author is supported by grants 144013 and 144018 of the Ministry of S
ien
e andTe
hnology of Serbia.



254 A. Krapeº
u3 = 1 (Sokhats'kyi [10℄ after Duplák [4℄), u4 = 2 (Sokhats'kyi [10℄), u5 = 4(Koval' [5℄) and u6 = 14 (Krapeº, Simi¢ and To²i¢ [6℄).In this paper we prove that there are �ve 
lasses of 
an
ellable andun
an
ellable equations with three variables, we give their Krsti¢ graphsand solve �ve parastrophi
ally nonequivalent representative equations.2. Quasigroups and fun
tional equationsLet us re
all ne
essary de�nitions and results of [7℄. For bare essentialson quasigroups see [7℄. More 
an be found in standard referen
es V. D.Belousov [2℄, O. Chein, H. O. P�ugfelder and J. D. H. Smith [3℄ and H.O. P�ugfelder [9℄. We just state that the language of quasigroups 
ontainssix binary operations: multipli
ation (·), left (\) and right (/) division andtheir respe
tive dual operations: ∗ (dual of ·), \\ (dual of \) and // (dualof /). These six operations are known as parastrophes of · (and of ea
hother) and the 
onne
tion between them is: xy = z i� x\z = y i� z/y =
x i� y ∗ x = z i� z\\x = y i� y//z = x.When we use pre�x notation for operations and a quasigroup operationis A, we de�ne: A(x1, x2) = x3 i� A(1)(x1, x2) = x3 i� A(12)(x2, x1) =
x3 i� A(13)(x3, x2) = x1 i� A(23)(x1, x3) = x2 i� A(123)(x2, x3) = x1 i�
A(132)(x3, x1) = x2. In general, A(x1, x2) = x3 i� Aσ(xσ(1), xσ(2)) = xσ(3)for σ ∈ S3.We assume that all operations are quasigroups. Further:De�nition 2.1. Fun
tional equation s = t is quadrati
 if every obje
tvariable appears exa
tly twi
e in s = t.De�nition 2.2. Fun
tional equation s = t is generalized if every fun
tionalvariable F (in
luding all parastrophes of F ) appears only on
e in s = t.We also need the following:De�nition 2.3. Let Eq[F1, . . . , Fn] be a generalized quadrati
 fun
tionalequation on quasigroups. We write Fi ∼ Fj (1 6 i, j 6 n) and say that Fiand Fj are ne
essarily isostrophi
 if in every solution Q1, . . . , Qn of Eq theoperations Qi and Qj are isostrophi
.A fun
tional variable Fi is loop, group, abelian if Qi is isostrophi
 to aloop, group, abelian group respe
tively.De�nition 2.4. A ∼�
lass with one or two elements is 
alled small, other-wise it is big.



Quadrati
 equations with three variables 255De�nition 2.5. Two equations Eq and Eq′ are parastrophi
ally equivalent(Eq PEEq′) if one of them 
an be obtained from the other by applying a�nite number of the following steps:1. Renaming obje
t and/or fun
tional variables.2. Repla
ing s = t by t = s.3. Repla
ing equation A(t1, t2) = t3 by one of the following equations:
Aσ(tσ(1), tσ(2)) = tσ(3) for some σ ∈ S3.4. Repla
ing a subterm A(t1, t2) of s or t by A(12)(t2, t1).5. Repla
ing a subterm A(x, t2) by a new variable y and simultane-ously repla
ing all other o

urren
es of x by either A(13)(y, t2) or
A(123)(t2, y).6. Repla
ing a subterm A(t1, x) by a new variable y and simultane-ously repla
ing all other o

urren
es of x by either A(23)(t1, y) or
A(132)(y, t1).If we use notation Eq[. . . , A, . . . ], we denote by Eq′[. . . , Aσ, . . . ] theequation obtained by one of the steps (3)− (7) above, always preserving theorder of other fun
tional variables. Using this 
onvention we get:Theorem 2.6 (Krsti¢ [8℄) . If equations Eq[F1, . . . , Fn] and Eq′[G1, . . . , Gn]are parastrophi
ally equivalent and Q1, . . . , Qn and R1, . . . , Rn are solutionsof respe
tively Eq, Eq′ on a set S, then the operations Qi and Ri (1 6 i 6 n)are mutually isostrophi
.3. Graphs and fun
tional equationsFollowing S. Krsti¢ [8℄ we represent fun
tional equations by graphs. These'graphs' may have loops and multiple edges between two verti
es and arete
hni
ally known as multigraphs.We de�ne graphs as relation systems (V, E; I) with I ⊆ V × E. It isassumed that the sets V of verti
es and E of edges are disjoint and thatfor every edge e there are at most two verti
es in
ident to e. A loop is anedge with a unique vertex in
ident to it. A loop in a graph should not be
onfused with a loop as a quasigroup with an identity.A graph is 
ubi
 if for every vertex v there are exa
tly three edges towhi
h v is in
ident, provided that if edge is a loop it is 
ounted twi
e.De�nition 3.1. Two verti
es v1, v2 of a graph G are 3�
onne
ted (and wewrite v1 ≡ v2) if there are three disjoint paths in G from v1 to v2. A graph

G is 3�
onne
ted if all verti
es of G are 3�
onne
ted.



256 A. KrapeºIn graph theory, 3�
onne
tedness, as de�ned above, is usually 
alled
3�edge�
onne
tedness, but we shortened it to 3�
onne
tedness. A graph is
3�
onne
ted i� removal of any two edges does not dis
onne
t it. Obviously,a 
ubi
 graph G is 3�
onne
ted i� the relation ≡ is a full relation on V .De�nition 3.2. A ≡�
lass with one or two elements is 
alled small, other-wise it is big.Based on the theory of S. Krsti¢ [8℄, two 
onstru
tioins are presentedin [7℄ - the one whi
h produ
es the graph K(Eq) for a given generalizedquadrati
 fun
tional equation Eq and the other, whi
h gives an equation
QE(G) for a given �nite 
onne
ted 
ubi
 graph G.We have:Theorem 3.3 (Krapeº and �ivkovi¢ [7℄ after Krsti¢ [8℄). Generalized qua-drati
 quasigroup fun
tional equations Eq and Eq

′ are parastrophi
ally equi-valent i� their Krsti¢ graphs K(Eq) and K(Eq
′

) are isomorphi
.The following theorem is also important.Theorem 3.4 (Krsti¢ [8℄). Let Eq[F1, . . . , Fn] be a generalized quadrati
fun
tional equation. Then Fi ∼ Fj in Eq i� Fi ≡ Fj in K(Eq). Moreover:Every Fi is a loop fun
tional variable.A symbol Fi is a group fun
tional variable i� Fi/ ≡ is big i� K4 ishomeomorphi
ally embeddable in K(Eq) within Fi/ ≡.A symbol Fi is an abelian fun
tional variable i� the subgraph of K(Eq)de�ned by Fi/ ≡ is not planar i� K3,3 is homeomorphi
ally embeddable in
K(Eq) within Fi/ ≡.4. Equations with three variablesIn the paper [7℄ A. Krapeº and D. �ivkovi¢ de�ned sequen
es (En), (en) and
(πn)(n ≥ 1), where En is the number of generalized quadrati
 quasigroupfun
tional equations with n variables, en is the number of normal equationsamong them and πn is the number of 
lasses of parastrophi
ally equivalentequations with n variables. By the Theorem 5.9 of [7℄ πn is also the numberof nonisomorphi
 
ubi
 graphs with 2(n − 1) verti
es. We have E3 = 3780and e3 = 330. It is announ
ed that π3 = 5. We give the proof of this fa
tnow but also a new proof that π2 = 2.By the Lemma 5.2 of [7℄, equations with 2, 3 variables have Krsti¢ graphswhi
h are 
onne
ted, 
ubi
 and have 2, 4 verti
es and 3, 6 edges respe
tively.
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Figure 2. Graphs with four verti
esTheorem 4.1. Every 
onne
ted 
ubi
 graph with two verti
es is isomorphi
to either the dumbbell graph H0 or to the dipole graph D3 (Figure 1). Every
onne
ted 
ubi
 graph with four verti
es is isomorphi
 to either one of: H1,
H2, H3, H4, K4 (Figure 2). Consequently, π2 = 2 and π3 = 5.Proof. Let G be a 
onne
ted 
ubi
 graph with either two or four verti
es.There are four possibilities:(1) G has a loop,(2) G has no loops but has a triple edge,(3) G has no loops or triple edges but has a double edge,(4) G has no loops or multiple edges.(1) G has a loop. Then there is a vertex, say 1, with the loop. Sin
e G is
ubi
, there is another edge in 1 
onne
ting it to a new vertex 2. There arethree possibilities:



258 A. Krapeº(11) the vertex 2 has a loop,(12) 2 has no loop but has a double edge,(13) 2 has no loops or double edges.(11) The vertex 2 has a loop. Sin
e G is 
ubi
 and 
onne
ted, no furtherextension is possible. Therefore G is isomorphi
 to the dumbbell graph H0.(12) The vertex 2 has no loop but has a double edge. Let the vertex2 
onne
ts to the vertex 3 by the double edge. The single remaining edgeat 3 has to 
onne
t it to the new vertex 4. All verti
es ex
ept 4 now havethree edges. Therefore 4 has to 
onne
t to itself by the loop. The graph Gis isomorphi
 to H2.(13) The vertex 2 has no loops or double edges. Therefore 2 has to
onne
t to two more verti
es 3 and 4 by single edges. There are two possi-bilities:(131) there is a loop in 3,(132) there is no loop in 3.(131) There is a loop in 3. There must be a loop in 4 as well and G isisomorphi
 to H1.(132) There is no loop in 3. Then 3 and 4 must be 
onne
ted by thedouble edge. The graph G is isomorphi
 to H3.(2) G has no loops but has a triple edge. Then two verti
es 1 and 2are triply 
onne
ted and no further extension is possible. The graph G isisomorphi
 to the dipole graph D3.(3) G has no loops or triple edges but has a double edge. Assume that thevertex 1 has a double edge to the vertex 2 and 
onsequently a single edgeto another vrtex 3. There are two possibilities:(31) there is an edge 
onne
ting verti
es 2 and 3,(32) there is no su
h edge.(31) There is an edge 
onne
ting verti
es 2 and 3. The edge must bea single one sin
e 2 is 
onne
ted to 1 by the double edge. Then 3 must be
onne
ted to the only remaining vertex 4 by the single edge. But then thevertex 4 must have a loop whi
h 
ontradi
ts assumption (3).(32) There is no edge 
onne
ting 2 and 3. Sin
e no loops are alowed, 2must be singly and 3 doubly 
onne
ted to 4. The graph G is isomorphi
 to
H4.(4) G has no loops or multiple edges. Therefore 1 is singly 
onne
ted to 2, 3and 4. Sin
e no loops or multiple edges are alowed, 2 must 
onne
t to both3 and 4. Also, the 3 and 4 are 
onne
ted and the graph G is isomorphi
 tothe graph K4.



Quadrati
 equations with three variables 259We prove four usefull lemmas. They generalize Lemmas 8.1�8.4 from [7℄.Lemma 4.2. Let a, b and e be elements and σ a permutation of a set S. Ageneral solution to the equation
σF (a, b) = e (1)on a set S is given by:

F (x, y) = αL(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S su
h that: α = σ−1, λa = eand ̺b = e.Proof. It is trivial to 
he
k that the above formulas always give a solutionto the equation (1). Next, we prove that every solution to the equation (1)is of the form given in the statement of the Lemma.Let F be a parti
ular quasigroup on S whi
h satis�es (1). De�ne α =
σ−1, λx = σF (x, b), ̺x = σF (a, x) and L(x, y) = σF (λ−1x, ̺−1y). We seethat λ and ̺ are permutations of S su
h that λa = ̺b = e and F (x, y) =
αL(λx, ̺y). The operation L is a quasigroup as an isotope of the quasigroup
F . Moreover, it is a loop, as follows from: L(e, x) = σF (λ−1e, ̺−1x) =
σF (a, ̺−1x) = ̺̺−1x = x and L(x, e) = σF (λ−1x, ̺−1e) = σF (λ−1x, b) =
λλ−1x = x.Lemma 4.3. Let b be an element and γ, σ and τ permutations of a set S.A general solution to the equation

σF (γx, b) = τx (2)on a set S is given by:
F (x, y) = αL(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S su
h that: α = σ−1,

λγ = τ and ̺b = e.Proof. It is easy to 
he
k that the above formulas always give a solution tothe equation (2).Assume that a quasigroup F is a solution of (2). We are proving that
F must be of the form indi
ated in the statement of the Theorem.



260 A. KrapeºTake a ∈ S and de�ne e = τa, α = σ−1, λx = σF (x, b), ̺x = σF (γa, x).Operations α, λ and ̺ are permutations su
h that λγx = σF (γx, b) = τxand ̺b = σF (γa, b) = τa = e.De�ne a quasigroup L by L(u, v) = α−1F (λ−1u, ̺−1v). We have L(e, x) =
α−1F (λ−1e, ̺−1x) = σF (γτ−1e, ̺−1x) = σF (γa, ̺−1x) = ̺̺−1x = x and
L(x, e) = α−1F (λ−1x, ̺−1e) = σF (λ−1x, b) = λλ−1x = x proving that L isa loop with the identity e.By duality we have:Lemma 4.4. Let a be an element and δ, σ and τ permutations of a set S.A general solution to the equation

σF (a, δx) = τx (3)on a set S is given by:
F (x, y) = αL(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S su
h that: α = σ−1, λa = eand ̺δ = τ .Lemma 4.5. Let e be an element and γ, δ and σ permutations of a set S.A general solution to the equation

σF (γx, δx) = e (4)on a set S is given by:
F (x, y) = αL(23)(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S su
h that: σαe = e, λγ = σand ̺δ = σ.Proof. Sin
e L is a loop, we have L(x, e) = x i.e., L−2(x, x) = e. Therefore

σF (γx, δx)=σαL−2(λγx, ̺δx)=σαL−2(σx, σx)=σαe=e so F satis�es (4).Assume that a quasigroup F is a parti
ular solution of (4). De�ne
αx = F (γσ−1e, δσ−1x). The fun
tion α is a permutation and σαe =
σF (γσ−1e, δσ−1e) = e.De�ne also λ = σγ−1 and ̺ = σδ−1. It follows that λγ = σ and ̺δ = σ.If a quasigroup L is de�ned by L(u, v) = ̺F−2(λ−1u, αv) then F (x, y) =
αL−2(λx, ̺y), L(e, x) = ̺F−2(λ−1e, αx) = ̺F−2(λ−1e, F (λ−1e, ̺−1x)) =
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̺̺−1x = x and L(x, e) = ̺F−2(λ−1x, αe) = ̺F−2(λ−1x, F (λ−1x, ̺−1x)) =
̺̺−1x = x. Therefore L is a loop.There are three equations 
orresponding to the graph H1:

A(B(x, x), C(y, y)) = D(z, z),

A(x, B(C(y, y), D(z, z))) = x, A(B(C(x, x), D(y, y)), z) = z.To redu
e some spa
e we shall not write appropriate generalized equa-tions, as above, but the 
orresponding equations in the language with thesingle operation ·. So the three equations representing generalized equationswhi
h 
orrespond to the graph H1 are:
xx.yy = zz x(yy.zz) = x (xx.yy)z = zOne of the equations is also boxed, indi
ating the equation 
hosen torepresent the whole PE�
lass. The distinguished equation is then writtenin full form and its solution is given in the following theorem. In this 
asethe representative equation is:

A(B(x, x), C(y, y)) = D(z, z) (5)and the 
orresponding theorem is:Theorem 4.6. A general solution of the equation (5) on a set S is givenby:






















A(x, y) = L(λx, ̺y)

B(x, y) = λ−1U2(x, y)

C(x, y) = ̺−1U3(x, y)

D(x, y) = U4(x, y)where:� L is an arbitrary loop on S with an identity e,� Ui (2 6 i 6 4) are arbitrary unipotent quasigroups with a 
ommonidempotent e,� λ and ̺ are arbitrary permutations of S.Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(B(x, x), C(y, y)) = L(B(x, x), C(y, y)) = L(λλ−1U2(x, x), ̺̺−1U3(y, y))
= L(e, e) = e = U4(z, z) = D(z, z). Therefore a quadruple of su
h quasi-groups is a solution to (5).



262 A. Krapeº2) Let a quadruple of quasigroups A, B, C, D be a solution to (5). As-sume p, q be arbitrary but �xed elements from S. De�ne b = B(p, p), c =
C(q, q) and e = A(b, c). Fixing x and y in the equation yields D(z, z) = e.We 
an easily infer B(x, x) = b and C(y, y) = c. From A(b, c) = e, by theLemma 4.2, we �nd A(x, y) = αL(λx, ̺y) where L is a loop on S with anidentity e and α, λ, ̺ are permutations of S su
h that α = Id and λb = ̺c =
e. But then λB(x, x) = λb = e and if we de�ne U2(x, y) = λB(x, y) we get
B(x, y) = λ−1U2(x, y). We 
an de�ne U3 and U4 similarly.The ∼�
lasses of (5) are all singletons.The question arises as to why we use unipotent quasigroups to expressthe solutions to fun
tional equations when the Theorem 3.4 stresses the roleof loops, groups and/or Abelian groups. The reason is pure 
onvenien
esin
e we 
ould use loops instead of unipotent quasigroups. Namely, by theLemma 4.5, for every unipotent quasigroup U the quasigroup U (23) withthe (unique) idempotent e is a loop with the identity e, and 
onversely, if
L is a loop with the identity e, then the quasigroup L(23) is unipotent andhas a unique idempotent e. The alternative general solution to (5) is thengiven in:Theorem 4.7. A general solution of the equation (5) on a set S is givenby:























A(x, y) = L(λx, ̺y)

B(x, y) = λ−1L
(23)
2 (x, y)

C(x, y) = ̺−1L
(23)
3 (x, y)

D(x, y) = L
(23)
4 (x, y)where:� L, L2, L3 and L4 are arbitrary loops on S with an identity e,� λ and ̺ are arbitrary permutations of S.Further on, we state only one version of the solution, the one usingunipotent quasigroups.There are 19 equations 
orresponding to the graph H2:

x.yy = x.zz xx.y = y.zz xx.y = zz.y

x(x.yy) = zz x(yy.x) = zz (x.yy)x = zz
(xx.y)y = zz x.y(y.zz) = x x.y(zz.y) = x
x.(y.zz)y = x x.(yy.z)z = x xx.(y.zz) = y
xx.(yy.z) = z (x.yy).zz = x (xx.y).zz = y
x(x.yy).z = z x(yy.x).z = z (x.yy)x.z = z

(xx.y)y.z = z



Quadrati
 equations with three variables 263The ∼�
lasses of operations are again singletons. The representativeequation is
A(x, B(y, y)) = C(x, D(z, z)) (6)and its solution is given in the following theorem.Theorem 4.8. A general solution of the equation (6) on a set S is givenby:






















A(x, y) = L1(λ1x, ̺1y)

B(x, y) = ̺−1
1 U2(x, y)

C(x, y) = L3(λ3x, ̺3y)

D(x, y) = ̺−1
3 U4(x, y)where:� L1 and L3 are arbitrary loops on S with a 
ommon identity e,� U2 and U4 are arbitrary unipotent quasigroups on S with a 
ommonidempotent e,� λ1, ̺1, λ3 and ̺3 are arbitrary permutations of S su
h that λ1 = λ3.Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then

A(x, B(y, y)) = L1(λ1x, ̺1̺
−1
1 U2(y, y)) = L1(λ1x, e) = λ1x = λ3x =

L3(λ3x, e) = L3(λ3x, ̺3̺
−1
3 U4(z, z)) = C(x, D(z, z)). Therefore the quadru-ple of su
h quasigroups is a solution to (6).2) Let a quadruple of quasigroups A, B, C, D be a solution to (6). Sup-pose that p, q, r are arbitrary but �xed elements from S and de�ne b =

B(q, q), e = A(p, b), d = D(r, r). Fixing x and y we get C(p, d) = e.De�ne also λ1x = A(x, b), ̺1x = A(p, x), λ3x = C(x, d) and ̺3x =
C(p, x). The relation λ1 = λ3 immediately follows. The equation (6)redu
es to the system: A(x, b) = λ3x, ̺1B(y, y) = e, C(x, d) = λ1x,
̺3D(z, z) = e.By the Lemma 4.3 we 
an 
hoose A(x, y) = L1(λ1x, ̺1y) for some L1.It is rather obvious that we have to take L1(u, v) = A(λ−1

1 u, ̺−1
1 v). Sin
e

λ1 and ̺1 are translations of A, the operation L1 must be a loop with theidentity e. Analogously, C(x, y) = L3(λ3x, ̺3y) for a suitable loop L3 withthe identity e.If we de�ne U2(x, y) = ̺1B(x, y) we get U2(x, x) = ̺1b = e and
B(x, y) = ̺−1

1 U2(x, y). Similarly, D(x, y) = ̺−1
3 U4(x, y) for a unipotentquasigroup U4 with the idempotent e.



264 A. KrapeºThere are 94 equations 
orresponding to the graph H3.
x.xy = y.zz x.yx = y.zz x.yy = z.xz

x.yy = z.zx xx.y = z.yz xx.y = z.zy
xy.x = y.zz xy.y = x.zz xx.y = yz.z
xx.y = zy.z xy.x = zz.y xy.y = zz.x

x(y.xy) = zz x(y.yx) = zz x(y.zz) = xy
x(y.zz) = yx x(xy.y) = zz x(yx.y) = zz
x(yy.z) = xz x(yy.z) = zx xx.yz = yz

xx.yz = zy xy.xy = zz xy.yx = zz
xy.zz = xy xy.zz = yx (x.xy)y = zz

(x.yx)y = zz (x.yy)z = xz (x.yy)z = zx
(xx.y)z = yz (xx.y)z = zy (xy.x)y = zz
(xy.y)x = zz x.x(y.zz) = y x.y(x.zz) = y
x.y(z.yz) = x x.y(z.zy) = x x.x(yy.z) = z
x.y(yz.z) = x x.y(zy.z) = x x.y(zz.x) = y
x(xy.zz) = y x(yx.zz) = y x(yy.xz) = z
x(yy.zx) = z x(yz.yz) = x x(yz.zy) = x
x.(x.yy)z = z x.(y.yz)z = x x.(y.zy)z = x
x.(y.zz)x = y x.(yy.x)z = z x.(yy.z)x = z
x.(yz.y)z = x x.(yz.z)y = x xx.(y.yz) = z
xx.(y.zy) = z xy.(x.zz) = y xy.(y.zz) = x
xx.(yz.y) = z xx.(yz.z) = y xy.(zz.x) = y
xy.(zz.y) = x (x.xy).zz = y (x.yx).zz = y
(x.yy).xz = z (x.yy).zx = z (xx.y).yz = z
(xx.y).zy = z (xy.x).zz = y (xy.y).zz = x
x(y.xy).z = z x(y.yx).z = z x(y.zz).x = y
x(y.zz).y = x x(xy.y).z = z x(yx.y).z = z
x(yy.z).x = z x(yy.z).z = x (xx.yz)y = z
(xx.yz)z = y (xy.xy)z = z (xy.yx)z = z
(xy.zz)x = y (xy.zz)y = x (x.xy)y.z = z
(x.yx)y.z = z (x.yy)z.x = z (x.yy)z.z = x
(xx.y)z.y = z (xx.y)z.z = y (xy.x)y.z = z

(xy.y)x.z = zIn this 
ase we have two ∼�
lasses whi
h are singletons and one 
lass withtwo elements. The representative equation is
A(x, B(x, y)) = C(y, D(z, z)) (7)and its solution is given in the following theorem.



Quadrati
 equations with three variables 265Theorem 4.9. A general solution of the equation (7) on a set S is givenby:






















A(x, y) = L
(23)
1 (λ1x, ̺1y)

B(x, y) = ̺−1
1 L1(λ2x, ̺2y)

C(x, y) = L3(λ3x, ̺3y)

D(x, y) = ̺−1
3 U(x, y)where:� L1 and L3 are arbitrary loops on S with a 
ommon identity e,� U is an unipotent quasigroup with the idempotent e,� λ1, ̺1, λ2, ̺2, λ3, ̺3 are arbitrary permutations of S su
h that λ1 = λ2and ̺2 = λ3.Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then

A(x, B(x, y)) = L
(23)
1 (λ1x, ̺̺−1L1(λ2x, ̺2y)) = L

(23)
1 (λ2x, L1(λ2x, ̺2y)) =

̺2y = λ3y = L3(λ3y, e) = L3(λ3y, ̺3̺
−1
3 U(z, z)) = C(y, D(z, z)). There-fore the quadruple of su
h quasigroups is a solution to (7).2) Let a quadruple of parti
ular quasigroups A, B, C, D be a solutionto (7). Let p, q, r be arbitrary but �xed elements from S. De�ne b =

B(p, q), d = D(r, r) and e = A(p, b). Fixing x and y in the equation yields
C(q, d) = e. De�ne A2x = A(p, x), B1x = B(x, q), B2x = B(p, x), C1x =
C(x, d) and C2x = C(q, x) and their various 
ompositions: λ1 = λ2 =
A2B1, ̺1 = A2, ̺2 = A2B2, λ3 = C1, ̺3 = C2. Equation (7) is equivalent tothe system:











A(x, B(x, y)) = λ3y

C(y, d) = ̺2y

̺3D(z, z) = e .Moreover, ̺2 = λ3.By the Lemma 4.2, there is a unipotent quasigroup U su
h that D(x, y) =
̺3U(x, y) with a unipotent e. Also, by the Lemma , there is a loop L3 withthe identity e su
h that C(x, y) = L3(λ3x, ̺3y). If we de�ne a quasigroup
L1 by L1(u, v) = A(23)(λ1u, ̺1v), then it is a loop with the identity e and
A(x, y) = L

(23)
1 (λ1x, ̺1y), B(x, y) = ̺1L1(λ2x, ̺2y).The rest of the requirements of the Theorem are satis�ed too, whi
h
ompletes the proof.



266 A. KrapeºThere are 114 equations 
orresponding to the graph H4.
x.xy = z.yz x.xy = z.zy x.yx = z.yz
x.yx = z.zy x.yz = x.yz x.yz = x.zy

xy.x = z.yz xy.x = z.zy xy.y = z.xz
xy.y = z.zx xy.z = z.xy xy.z = z.yx
xy.x = yz.z xy.x = zy.z xy.y = xz.z
xy.y = zx.z xy.z = xy.z xy.z = yx.z

x(x.yz) = yz x(x.yz) = zy x(y.yz) = xz
x(y.yz) = zx x(y.zy) = xz x(y.zy) = zx
x(yz.x) = yz x(yz.x) = zy x(yz.y) = xz
x(yz.y) = zx x(yz.z) = xy x(yz.z) = yx
(x.xy)z = yz (x.xy)z = zy (x.yx)z = yz
(x.yx)z = zy (x.yz)x = yz (x.yz)x = zy
(xy.x)z = yz (xy.x)z = zy (xy.y)z = xz
(xy.y)z = zx (xy.z)z = xy (xy.z)z = yx
x.x(y.yz) = z x.x(y.zy) = z x.y(y.xz) = z
x.y(y.zx) = z x.y(z.xz) = y x.y(z.zx) = y
x.x(yz.y) = z x.x(yz.z) = y x.y(xz.y) = z
x.y(xz.z) = y x.y(zx.y) = z x.y(zx.z) = y
x.(y.xy)z = z x.(y.xz)y = z x.(y.yx)z = z
x.(y.yz)x = z x.(y.zx)y = z x.(y.zy)x = z
x.(xy.y)z = z x.(xy.z)z = y x.(yx.y)z = z
x.(yx.z)z = y x.(yz.y)x = z x.(yz.z)x = y
xy.(z.xy) = z xy.(z.xz) = y xy.(z.yx) = z
xy.(z.yz) = x xy.(z.zx) = y xy.(z.zy) = x
xy.(xy.z) = z xy.(xz.z) = y xy.(yx.z) = z
xy.(yz.z) = x xy.(zx.z) = y xy.(zy.z) = x
(x.xy).yz = z (x.xy).zy = z (x.yx).yz = z
(x.yx).zy = z (x.yz).yz = x (x.yz).zy = x
(xy.x).yz = z (xy.x).zy = z (xy.y).xz = z
(xy.y).zx = z (xy.z).xy = z (xy.z).yx = z
x(x.yz).y = z x(x.yz).z = y x(y.yz).x = z
x(y.yz).z = x x(y.zy).x = z x(y.zy).z = x
x(yz.x).y = z x(yz.x).z = y x(yz.y).x = z
x(yz.y).z = x x(yz.z).x = y x(yz.z).y = x
(x.xy)z.y = z (x.xy)z.z = y (x.yx)z.y = z
(x.yx)z.z = y (x.yz)x.y = z (x.yz)x.z = y
(xy.x)z.y = z (xy.x)z.z = y (xy.y)z.x = z
(xy.y)z.z = x (xy.z)z.x = y (xy.z)z.y = x



Quadrati
 equations with three variables 267There are two ∼�
lasses with two elements ea
h. The representative equa-tion is
A(x, B(y, z)) = C(x, D(y, z)) (8)and its solution is given in the following theorem.Theorem 4.10. A general solution of the equation (8) on a set S is givenby:























A(x, y) = L1(λ1x, ̺1y)

B(x, y) = ̺−1
1 L2(λ2x, ̺2y)

C(x, y) = L1(λ3x, ̺3y)

D(x, y) = ̺−1
3 L2(λ4x, ̺4y)where:� L1 and L2 are arbitrary loops on S with a 
ommon unit e,� λ1, ̺1, λ2, ̺2, λ3, ̺3, λ4, ̺4 are arbitrary permutations of S su
h that

λ1 = λ3, λ2 = λ4, ̺2 = ̺4.Proof. 1) Let quasigroups A, B, C and D be given by the formulas above.Then
A(x, B(y, z)) = L1(λ1x, ̺1̺

−1
1 L2(λ2y, ̺2z))

= L1(λ3x, ̺3̺
−1
3 L2(λ4y, ̺4z)) = C(x, D(y, z))and the quadruple A, B, C, D is a solution to (8).2) Let a quadruple A, B, C, D of quasigroups be a solution to (8) and

p, q, r arbitrary �xed elements from S. De�ne b = B(q, r), e = A(p, b) and
d = D(q, r). It follows that C(p, d) = e.De�ne also λ1x = A(x, b), ̺1x = A(p, x), λ2x = ̺1B(x, r), ̺2x =
̺1B(q, x), λ3x = C(x, d), ̺3x = C(p, x), λ4x = ̺3D(x, r), and ̺4x =
̺3D(q, x). It follows that λ1x = A(x, b) = A(x, B(q, r)) = C(x, D(q, r)) =
C(x, d) = λ3x and λ2y = ̺1B(y, r) = A(p, B(y, r)) = C(p, D(y, r)) =
̺3D(y, r) = λ4y. Analogously ̺2z = ̺4z.Let us de�ne quasigroups L1(u, v) = A(λ−1

1 u, ̺−1
1 v) and L2(u, v) =

̺1B(λ−1
2 u, ̺−1

2 v). It is easy to 
he
k that L1 and L2 are both loops witha 
ommon identity e. Trivially A(x, y) = L1(λ1x, ̺1y) and B(x, y) =
̺−1
1 L2(λ2x, ̺2y). Also C(x, ̺−1

3 λ4y) = C(x, ̺−1
3 ̺3D(y, r)) = C(x, D(y, r))

= A(x, B(y, r)) = A(x, ̺−1
1 ̺1B(y, r)) = A(x, ̺−1

1 λ2y) = L1(λ1x, ̺1̺
−1
1 λ2y)

= L1(λ3x, ̺3̺
−1
3 λ4y). Consequently C(x, y) = L1(λ3x, ̺3y).Finally, D(y, z) = ̺−1

3 ̺3D(y, z) = ̺−1
3 C(p, D(y, z)) = ̺−1

3 A(p, B(y, z))
= ̺−1

3 ̺1B(y, z) = ̺−1
3 L2(λ2y, ̺2z) = ̺−1

3 L2(λ4y, ̺4z).



268 A. KrapeºThere are 100 equations 
orresponding to the graph K4.
x.yz = y.xz x.yz = y.zx x.yz = z.xy
x.yz = z.yx xy.z = x.yz xy.z = x.zy

xy.z = y.xz xy.z = y.zx xy.z = xz.y
xy.z = yz.x xy.z = zx.y xy.z = zy.x

x(y.xz) = yz x(y.xz) = zy x(y.zx) = yz
x(y.zx) = zy x(xy.z) = yz x(xy.z) = zy
x(yx.z) = yz x(yx.z) = zy xy.xz = yz

xy.xz = zy xy.yz = xz xy.yz = zx
xy.zx = yz xy.zx = zy xy.zy = xz
xy.zy = zx (x.yz)y = xz (x.yz)y = zx

(x.yz)z = xy (x.yz)z = yx (xy.z)x = yz
(xy.z)x = zy (xy.z)y = xz (xy.z)y = zx
x.y(x.yz) = z x.y(x.zy) = z x.y(z.xy) = z
x.y(z.yx) = z x.y(xy.z) = z x.y(yx.z) = z
x.y(yz.x) = z x.y(zy.x) = z x(xy.yz) = z
x(xy.zy) = z x(yx.yz) = z x(yx.zy) = z
x(yz.xy) = z x(yz.xz) = y x(yz.yx) = z
x(yz.zx) = y x.(x.yz)y = z x.(x.yz)z = y
x.(y.xz)z = y x.(y.zx)z = y x.(xy.z)y = z
x.(yx.z)y = z x.(yz.x)y = z x.(yz.x)z = y
xy.(x.yz) = z xy.(x.zy) = z xy.(y.xz) = z
xy.(y.zx) = z xy.(xz.y) = z xy.(yz.x) = z
xy.(zx.y) = z xy.(zy.x) = z (x.yz).xy = z
(x.yz).xz = y (x.yz).yx = z (x.yz).zx = y
(xy.z).xz = y (xy.z).yz = x (xy.z).zx = y
(xy.z).zy = x x(y.xz).y = z x(y.xz).z = y
x(y.zx).y = z x(y.zx).z = y x(xy.z).y = z
x(xy.z).z = y x(yx.z).y = z x(yx.z).z = y
(xy.xz)y = z (xy.xz)z = y (xy.yz)x = z
(xy.yz)z = x (xy.zx)y = z (xy.zx)z = y
(xy.zy)x = z (xy.zy)z = x (x.yz)y.x = z
(x.yz)y.z = x (x.yz)z.x = y (x.yz)z.y = x
(xy.z)x.y = z (xy.z)x.z = y (xy.z)y.x = z

(xy.z)y.z = xThere is just one ∼�
lass with four elements. The representative equationis
A(B(x, y), z) = C(x, D(y, z)) (9)



Quadrati
 equations with three variables 269and its solution is given in the following theorem.Theorem 4.11 (A
zél, Belousov, Hosszú [1℄). A general solution of thegeneralized asso
iativity equation (9) on a set S is given by:






















A(x, y) = λ1x · ̺1y

B(x, y) = λ−1
1 (λ2x · ̺2y)

C(x, y) = λ3x · ̺3y

D(x, y) = ̺−1
3 (λ4x · ̺4y)where:� · is an arbitrary group on S,� λ1, ̺1, λ2, ̺2, λ3, ̺3, λ4, ̺4 are arbitrary permutations of S su
h that:

λ2 = λ3, ̺2 = λ4, ̺1 = ̺4.The results are summarized in the Table 1.PE�
lass Graph Number of
∼�
lasses Number ofequations Representativeequation

1 H1 4 3 (5)
2 H2 4 19 (6)
3 H3 3 94 (7)
4 H4 2 114 (8)
5 K4 1 100 (9)Table 1: Equations with 3 variables � summaryReferen
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