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Products of the symmetric or

alternating groups with L3(3)

Mohammad Reza Darafsheh and Anagaldi Mahmiani

Abstract. The structure of simple groups G with proper subgroups A and B such that
G = AB, where B is isomorphic to L3(3) and A is isomorphic to the alternating or symmetric
group on n > 5 letters, is described.

1. Introduction

Let A and B be proper subgroups of a group G. If G = AB, then G is called
a factorizable group. In this case G is also called the product of A and B. In
[1] page 13, the question of �nding all the factorizable groups is raised. This
is in general a hard question. We should remark that there are groups which
are not factorizable. For example by [11] the smallest Janko simple group J1

of order 175560 is not a factorizable group. Of course an in�nite group whose
proper subgroups are �nite is not a factorizable group as well, one may recall
a Tarski group for this purpose. In what follows we will assume G is a �nite
group.

A factorization G = AB is called maximal if both factors A and B are
maximal subgroups of G. In [11] all the maximal factorizations of all the �nite
simple groups and their automorphism groups are found. A factorization G =
AB with the condition A ∩ B = 1 is called an exact factorization. In [15] the
authors found all the exact factorizations of the alternating and the symmetric
groups. In [13] all the factorizations of the alternating and the symmetric
groups were found with both factors simple. In [7] an interesting application
of exact factorization is given. The authors show that an exact factorization of
a �nite group leads to the construction of a biperfect Hopf algebra, and then
they �nd such a factorization for the Mathieu group M24, where A∼=M23 and
B∼=24 : A7, both perfect groups (a group G is called perfect if G′ = G).
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The involvement of the alternating or the symmetric group in a factoriza-
tion received attention in the past. In [9] all �nite groups G = AB, where
A and B are isomorphic to the alternating group on 5 letters are classi�ed
and in [12] factorizable groups where one factor is a non-abelian simple group
and the other factor is isomorphic to the alternating group on 5 letters are
classi�ed. In [14] factorizable �nite groups are classi�ed in the case where one
factor is simple and the other factor is almost simple. In [5] all �nite groups
G = AB, where A∼= A6 and B∼= Sn, n > 5, are determined. Similarly all �nite
groups G = AB, A∼= A7 and B∼= Sn, n > 5, were found in [3]. Also in [6] we
determined the structure of a �nite factorizable group with one factor a simple
group and the other factor isomorphic to the symmetric group on 6 letters.
In [4] we obtained the structure of groups G which factor as G = AB, where
A is isomorphic to an alternating group and B is isomorphic to a symmetric
group on more than 5 letters. Motivated by the above results, in this paper
we �nd the structure of simple groups G with a factorization G = AB, where
A = L3(3) and B isomorphic to an alternating or symmetric group on more
than 5 letters. Throughout the paper all groups are assumed to be �nite.
Notation for the names of the �nite simple groups is taken from [2].

2. Preliminary results

In the following we quote two results from [14] which are useful when dealing
with factorizable groups.

Lemma 1. Let A and B be subgroups of a group G. Then the following state-

ments are equivalent:

(a) G = AB.

(b) A acts transitively on the coset space Ω(G : B) of right cosets B in G.

(c) B acts transitively on the coset space Ω(G : A) of right cosets of A in

G.

(d) (πA, πB) = 1, where πA and πB are the permutation characters of G

on Ω(G : A) and Ω(G : B), respectively.

Lemma 2. Let G be a permutation group on a set Ω of size n. Suppose the

action of G on Ω is k-homogeneous, 1 6 k 6 n. If a subgroup H of G acts on

Ω k-homogeneously, then G = G(∆)H, where ∆ is a k-subset of Ω and G(∆)

denotes its global stabilizer.
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Since L3(3) has a 2-transitive action on 13 points, using Lemma 2 we
obtain the factorization A13 = L3(3)A11 involving L3(3). Transitive actions of
L3(3) corresponds to the indices of its subgroups. According to [2] maximal
subgroups of L3(3) have the following shapes: 32 : GL2(3), S4 and 13 : 3. Using
these we can verify that L3(3) has proper subgroups with the following orders
only: 1,2,3,4,6,8,9,12,13,16,18,24,27,36,39,48,54,72,144,216,432. Therefore the
indices of proper subgroups of L3(3) are as follows: 13, 26, 39, 78, 104, 117,
144, 156, 208, 234, 312, 351, 432, 468, 624, 702, 936, 1404, 1872, 2808, 5616.

Now using the above information we prove the following Lemma.

Lemma 3. Let Am denote the alternating group of degree m. If Am = AB is

a factorization of Am with A a non-abelian simple group and B ∼= L3(3), then
one of the following occurs:

(a) Am = Am−1L3(3) where m = 13, 26, 39, 78, 104, 117, 144, 156, 208,
234, 312, 351, 432, 468, 624, 702, 936, 1404, 1872, 2808, 5616.

(b) A13 = A11L3(3).

Proof. Let Am = AB, where A is a simple group and B ∼= L3(3). Obviously
m > 13. By [11], Theorem D, we have the following two cases.

(i) Am−k E A E Sm−k × Sk for some k with 1 6 k 6 5, and B k-
homogenous on m letters.

Since B ∼= L3(3) it is clear that k = 1 or 2. If k = 2, then m = 13, and from
A11 E A E S11×S2 and the simplicity of A we obtain A = A11 and (b) occurs.
If k = 1, then A = Am−1 and the factorization Am = Am−1B corresponds to
transitive actions of B on m letters. Since we have already found indices of
subgroups of B ∼= L3(3), hence m is one of the numbers in case (a) and all
possibilities in case (a) occur.

(ii) Am−k E B E Sm−k × Sk for some k with 1 6 k 6 5, and A is
k-homogenous on m letters.

Since B is a simple group we obtain Am−k = 1, the trivial group. Therefore
m− k = 1, and from 1 6 k 6 5 we get 2 6 m 6 6, contradicting m > 13.

Lemma 4. Let Am = AB, where A is isomorphic to a symmetric group Sn

and B ∼= L3(3). Then m = 13 and n = 11 and we have the factorization

A13 = S11L3(3).

Proof. The proof is the same as the proof of Lemma 3.
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3. The main result

According to the classi�cation theorem for the �nite simple groups every �nite
simple non-abelian group G is isomorphic to one of the following: alternating
group Am, m > 5; a sporadic group or a group of Lie type. Therefore to see if
G has an appropriate factorization we have to go through all the members of
the above list. In the Lemmas 3 and 4 we dealt with the case of the alternating
group. Here the other cases will be examined.

Lemma 5. Let G be a sporadic �nite simple group Then it is impossible to write

G = AB where B ∼= L3(3) and A isomorphic to an alternating or symmetric

group on more than 5 letters.

Proof. Let G be a sporadic simple group. First we assume G = AB where A
is isomorphic to a simple alternating group and B ∼= L3(3). Since in this case
both factors A and B are simple we can use [8] to see there is no possibilities
for A and B.

Secondly we assume G = AB where A is isomorphic to the symmetric
group Sn, n > 5, and B ∼= L3(3). By [11] factorizable sporadic simple groups
G whose orders are divisible by 13 are Ru, Suz, Co1. By [2] the structure of
maximal subgroups of these groups are known. Therefore using [2] we see that
if Sn 6 Ru or Suz, then n 6 6, and if Sn 6 Co1, then n 6 8. Now taking into
account each of the above sporadic groups G and considering the order of AB,
A ∼= Sn, B ∼= L3(3), a contradiction is reached and the Lemma is proved.

Simple groups of Lie type are divided into two large families called the
classical groups and the exceptional groups of Lie type. According to [11] fac-
torizations of exceptional groups of Lie type are given in Theorem B from which
it follows that none of these groups have the desired factorization. Therefore we
are left with the projective special linear, symplectic, unitary and orthogonal
groups.

Lemma 6. The decomposition Lm(q) = AB where A ∼= An or Sn, n > 5,
B ∼= L3(3) is impossible.

Proof. Let Lm(q) = AB where A ∼= An or Sn, n > 5, and B ∼= L3(3). By [10]
the minimum degree of a projective modular representation of An or Sn is n−2
and therefore m > n− 2 which implies n 6 m + 2. First we consider the case
q = 2. In this case the 2-part of |Lm(2)| is equal to 2m(m−1)/2. If the 2-part of
Sn is 2a, then it is well-known that a = [n2 ]+ [n4 ]+ · · · 6 n

2 + n
4 + · · · = n, hence
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the 2-part of AB is at most 2(n+3). Therefore we must have m(m−1)/2 6 n+3
from which it follows that n > (m− 3)(m + 2)/2. If m > 5, then from the last
inequality we obtain n > m + 2 which contradicts the condition n 6 m + 2. If
m 6 5 then since 13 does not divide the order of Lm(2), hence L3(3) cannot
be involved in Lm(2). Therefore the condition q = 2 is ruled out. Hence in the
following we will assume q > 2 and distinguish two cases:

(i) n > 9. Since n > 9 we will obtain m > 7. For any natural number

k > 2 we have qk−1
q−1 = qk−1 + · · ·+ q + 1 > 3k−1+ · · ·+ 3 + 1 = 3k−1

2 > k + 2.

Hence qk − 1 > (k + 2)(q − 1) > (k + 2)q1/2. But

|Lm(q)| = 1
d
qm(m−1)/2(qm − 1) · · · (q2 − 1),

where d = (m, q − 1). Therefore using the above inequality and the fact that
d 6 q − 1 < q we obtain:

|Lm(q)| > 1
6
(m + 2)!q(m2−3)/2 (1)

From Lm(q) = AB and n 6 m + 2 we obtain: |Lm(q)| < |A| × |B| 6
|Sn| × |L3(3)| 6 24.33.13(m + 2)!. Therefore

|Lm(q)| 6 24.33.13(m + 2)! (2)

Combining inequalities (1) and (2) results: q(m2−3)/2 < 25.34.13. Since m > 7
we can write q(72−3)/2 6 q(m2−3)/2 < 33696, which implies q23 < 33696, a
contradiction, and case (i) is proved.

(ii) n 6 8. In this case using (1) and the inequality |Lm(q)| 6 |A| × |B| 6
24.33.13.n! we obtain (m+2)!q(m2−3)/2 < 25.34.13.n! and since n 6 8 we obtain

(m + 2)!q(m2−3)/2 < 212.36.5.7.13 (3)

If m > 5, then it is easy to see that (3) leads to a contradiction. Therefore
m 6 5.

If m = 5, then from (3) we obtain q11 < 29.34.13 which implies q = 2,
which is not the case. If m = 4, then again using inequality (3) we obtain
q = 2,3,4,5,7,8 or 9. Now considering orders of the groups Lm(q) in each
case a contradiction is obtained. For the case m = 3 similar computation is
applicable.
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Lemma 7. The decomposition S2m(q) = AB, where A ∼= An or Sn, n > 5 and

B ∼= L3(3) is impossible.

Proof. We assume S2m(q) = AB, where A ∼= An or Sn, n > 5 and B ∼= L3(3).
Of course S2m(q) denotes the symplectic group in dimension 2m over a �eld
with q elements. Similar to Lemma 6 we distinguish two cases.

(i) n > 9. Again by [10] we have 2m > n − 2 and hence n 6 2m + 2
which implies m > 4. By the order of the symplectic group and using the
same argument and inequality as in the proof of Lemma 6 we obtain

|S2m(q)| = 1
d
qm2

(q2m − 1) · · · (q2 − 1) >
1
6d

(2m + 2)!qm(2m+1)/2,

where d = 1 or 2. Therefore we obtain the following inequality:

|S2m(q)| > 1
12

(2m + 2)!qm(2m+1)/2 (4)

But then from S2m(q) = AB and n 6 2m + 2 we obtain:

|S2m(q)| 6 |A| × |B| 6 n!.24.33.13 6 (2m + 2)!.24.33.13 (5)

Combining (4) with (5) will result the following inequality:

qm(2m+1)/2 6 26.34.13 (6)

Now from m > 4 and using (6) we obtain q18 6 26.34.13 which is a contra-
diction because q > 2. This proves the Lemma in case (i).

(ii) n 6 8. In this case using (5) and the inequality |S2m(q)| 6 24.33.13.n!
we obtain (2m + 2)!qm(2m+1)/2 6 26.34.13.n! 6 26.34.13.8!. Therefore

(2m + 2)!qm(2m+1)/2 6 26.34.13.8! (7)

from which it follows that if m > 4, then q18 6 25.32.13
5 which is a contradiction

because q is at least 2. Hence m = 1,2 or 3. If m = 3, then from (7) we get
q21/2 6 26.34.13 which forces q = 2. But in this case S6(2) does not contain
L3(3). If m = 2 then from (7) we obtain q5 6 29.34.7.13 which implies q < 20,
hence q = 2,3,4,5,7, 8, 9, 11,13,16,17 and 19. Now a case by case examination
of these values result desire contradiction. In the case of m = 1 we have
S2(q) = L2(q) which is treated in Lemma 6.

Lemma 8. Decomposition of the unitary group or the orthogonal groups as

the product of An or Sn, n > 5, with the group L3(3) is impossible.
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Proof. Since the proof is similar to that of Lemma 6 and 7, we describe the
inequalities which are used in the unitary and orthogonal groups only. We have
|Um(q)| = 1

dqm(m−1)/2(qm−(−1)m) · · · (q2−1) where d = (m, q+1). Using the
inequality qk− (−1)k > (k+2)q1/2 which holds for every positive integer k, we
obtain |Um(q)| > 1

6d(m + 2)!q(m2−1)/2 and since d = (m, q + 1) 6 q + 1 < q2,

the following inequality holds: |Um(q)| > 1
6(m + 2)!q(m2−5)/2. Now using the

above inequality and applying the method of proof in Lemma 6 a contradiction
is obtained.

Next we consider the orthogonal groups Ω2m+1(q), m > 3, in odd dimen-
sion. We have |Ω2m+1(q)| = 1

dqm2
(q2m − 1) · · · (q2 − 1) where d = (2, q − 1).

Since in this case orders of Ω2m+1(q) and the symplectic groups S2m(q) are
equal, we can apply the same inequality obtained in Lemma 7 to derive a
contradiction.

Finally we will consider the orthogonal groups in even dimensions. These
groups are denoted by Oε

2m(q) where m > 4 and ε = ±. We have |Oε
2m(q)| =

1
dqm(m−1)(qm +ε1)(q2m−2−1) · · · (q2−1) where d = (4, qm +ε1). Since m > 4,
we have qm+ε1 > (2m+2)q1/2. Hence considering the order of Oε

2m(q) and the
inequalities qk − 1 > (k +2)q1/2, we obtain |Oε

2m(q)| > 1
6dq(2m2−m)/2(2m+2)!.

But d = (4, qm + ε1) 6 4, and applying it to the above inequality we obtain
|Oε

2m(q)| > 1
24q(2m2−m)/2(2m + 2)!. The above inequality is used to obtain a

contradiction in assuming a factorization of the kind in the Lemma. The proof
of Lemma 8 is complete now.

In this way we have proved the following theorem which is the main result
of this paper.

Theorem 9. Let G be a �nite non-abelian simple group such that G = AB,

where A ∼= An or Sn, n > 5, and B ∼= L3(3). Then the following possibilities

occur:

(a) Am = Am−1L3(3), where m = 13, 26, 39, 78, 104, 117, 144, 156, 208,
234, 312, 351, 432, 468, 624, 702, 936, 1404, 1872, 2808, 5616.

(b) A13 = A11L3(3).
(c) A13 = S11L3(3).
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