Products of the symmetric or alternating groups with $L_3(3)$

Mohammad Reza Darafsheh and Anagaldi Mahmiani

Abstract. The structure of simple groups G with proper subgroups A and B such that G = AB, where B is isomorphic to $L_3(3)$ and A is isomorphic to the alternating or symmetric group on $n \ge 5$ letters, is described.

1. Introduction

Let A and B be proper subgroups of a group G. If G = AB, then G is called a factorizable group. In this case G is also called the product of A and B. In [1] page 13, the question of finding all the factorizable groups is raised. This is in general a hard question. We should remark that there are groups which are not factorizable. For example by [11] the smallest Janko simple group J_1 of order 175560 is not a factorizable group. Of course an infinite group whose proper subgroups are finite is not a factorizable group as well, one may recall a Tarski group for this purpose. In what follows we will assume G is a finite group.

A factorization G = AB is called maximal if both factors A and B are maximal subgroups of G. In [11] all the maximal factorizations of all the finite simple groups and their automorphism groups are found. A factorization G = AB with the condition $A \cap B = 1$ is called an exact factorization. In [15] the authors found all the exact factorizations of the alternating and the symmetric groups. In [13] all the factorizations of the alternating and the symmetric groups were found with both factors simple. In [7] an interesting application of exact factorization is given. The authors show that an exact factorization of a finite group leads to the construction of a biperfect Hopf algebra, and then they find such a factorization for the Mathieu group M_{24} , where $A \cong M_{23}$ and $B \cong 2^4 : A_7$, both perfect groups (a group G is called perfect if G' = G).

2000 Mathematics Subject Classification: 20D40.

Keywords: Factorization, product of groups, symmetric group.

The involvement of the alternating or the symmetric group in a factorization received attention in the past. In [9] all finite groups G = AB, where A and B are isomorphic to the alternating group on 5 letters are classified and in [12] factorizable groups where one factor is a non-abelian simple group and the other factor is isomorphic to the alternating group on 5 letters are classified. In [14] factorizable finite groups are classified in the case where one factor is simple and the other factor is almost simple. In [5] all finite groups G = AB, where $A \cong \mathbb{A}_6$ and $B \cong \mathbb{S}_n$, $n \geqslant 5$, are determined. Similarly all finite groups G = AB, $A \cong \mathbb{A}_7$ and $B \cong \mathbb{S}_n$, $n \geqslant 5$, were found in [3]. Also in [6] we determined the structure of a finite factorizable group with one factor a simple group and the other factor isomorphic to the symmetric group on 6 letters. In [4] we obtained the structure of groups G which factor as G = AB, where A is isomorphic to an alternating group and B is isomorphic to a symmetric group on more than 5 letters. Motivated by the above results, in this paper we find the structure of simple groups G with a factorization G = AB, where $A = L_3(3)$ and B isomorphic to an alternating or symmetric group on more than 5 letters. Throughout the paper all groups are assumed to be finite. Notation for the names of the finite simple groups is taken from [2].

2. Preliminary results

In the following we quote two results from [14] which are useful when dealing with factorizable groups.

Lemma 1. Let A and B be subgroups of a group G. Then the following statements are equivalent:

- (a) G = AB.
- (b) A acts transitively on the coset space $\Omega(G:B)$ of right cosets B in G.
- (c) B acts transitively on the coset space $\Omega(G:A)$ of right cosets of A in G.
- (d) $(\pi_A, \pi_B) = 1$, where π_A and π_B are the permutation characters of G on $\Omega(G:A)$ and $\Omega(G:B)$, respectively.

Lemma 2. Let G be a permutation group on a set Ω of size n. Suppose the action of G on Ω is k-homogeneous, $1 \leq k \leq n$. If a subgroup H of G acts on Ω k-homogeneously, then $G = G_{(\Delta)}H$, where Δ is a k-subset of Ω and $G_{(\Delta)}$ denotes its global stabilizer.

Since $L_3(3)$ has a 2-transitive action on 13 points, using Lemma 2 we obtain the factorization $\mathbb{A}_{13} = L_3(3)\mathbb{A}_{11}$ involving $L_3(3)$. Transitive actions of $L_3(3)$ corresponds to the indices of its subgroups. According to [2] maximal subgroups of $L_3(3)$ have the following shapes: $3^2 : GL_2(3)$, \mathbb{S}_4 and 13 : 3. Using these we can verify that $L_3(3)$ has proper subgroups with the following orders only: 1,2,3,4,6,8,9,12,13,16,18,24,27,36,39,48,54,72,144,216,432. Therefore the indices of proper subgroups of $L_3(3)$ are as follows: 13, 26, 39, 78, 104, 117, 144, 156, 208, 234, 312, 351, 432, 468, 624, 702, 936, 1404, 1872, 2808, 5616.

Now using the above information we prove the following Lemma.

Lemma 3. Let \mathbb{A}_m denote the alternating group of degree m. If $\mathbb{A}_m = AB$ is a factorization of \mathbb{A}_m with A a non-abelian simple group and $B \cong L_3(3)$, then one of the following occurs:

- (a) $\mathbb{A}_m = \mathbb{A}_{m-1}L_3(3)$ where m = 13, 26, 39, 78, 104, 117, 144, 156, 208, 234, 312, 351, 432, 468, 624, 702, 936, 1404, 1872, 2808, 5616.
- (b) $\mathbb{A}_{13} = \mathbb{A}_{11}L_3(3)$.

Proof. Let $\mathbb{A}_m = AB$, where A is a simple group and $B \cong L_3(3)$. Obviously $m \geqslant 13$. By [11], Theorem D, we have the following two cases.

(i) $\mathbb{A}_{m-k} \leq A \leq \mathbb{S}_{m-k} \times \mathbb{S}_k$ for some k with $1 \leq k \leq 5$, and B k-homogenous on m letters.

Since $B \cong L_3(3)$ it is clear that k = 1 or 2. If k = 2, then m = 13, and from $\mathbb{A}_{11} \preceq A \preceq \mathbb{S}_{11} \times \mathbb{S}_2$ and the simplicity of A we obtain $A = \mathbb{A}_{11}$ and (b) occurs. If k = 1, then $A = \mathbb{A}_{m-1}$ and the factorization $\mathbb{A}_m = \mathbb{A}_{m-1}B$ corresponds to transitive actions of B on m letters. Since we have already found indices of subgroups of $B \cong L_3(3)$, hence m is one of the numbers in case (a) and all possibilities in case (a) occur.

(ii) $\mathbb{A}_{m-k} \leq B \leq \mathbb{S}_{m-k} \times \mathbb{S}_k$ for some k with $1 \leq k \leq 5$, and A is k-homogenous on m letters.

Since B is a simple group we obtain $\mathbb{A}_{m-k} = 1$, the trivial group. Therefore m-k=1, and from $1 \leq k \leq 5$ we get $2 \leq m \leq 6$, contradicting $m \geq 13$. \square

Lemma 4. Let $\mathbb{A}_m = AB$, where A is isomorphic to a symmetric group \mathbb{S}_n and $B \cong L_3(3)$. Then m = 13 and n = 11 and we have the factorization $\mathbb{A}_{13} = \mathbb{S}_{11}L_3(3)$.

Proof. The proof is the same as the proof of Lemma 3. \Box

3. The main result

According to the classification theorem for the finite simple groups every finite simple non-abelian group G is isomorphic to one of the following: alternating group A_m , $m \ge 5$; a sporadic group or a group of Lie type. Therefore to see if G has an appropriate factorization we have to go through all the members of the above list. In the Lemmas 3 and 4 we dealt with the case of the alternating group. Here the other cases will be examined.

Lemma 5. Let G be a sporadic finite simple group Then it is impossible to write G = AB where $B \cong L_3(3)$ and A isomorphic to an alternating or symmetric group on more than 5 letters.

Proof. Let G be a sporadic simple group. First we assume G = AB where A is isomorphic to a simple alternating group and $B \cong L_3(3)$. Since in this case both factors A and B are simple we can use [8] to see there is no possibilities for A and B.

Secondly we assume G = AB where A is isomorphic to the symmetric group \mathbb{S}_n , $n \geq 5$, and $B \cong L_3(3)$. By [11] factorizable sporadic simple groups G whose orders are divisible by 13 are Ru, Suz, Co_1 . By [2] the structure of maximal subgroups of these groups are known. Therefore using [2] we see that if $\mathbb{S}_n \leq Ru$ or Suz, then $n \leq 6$, and if $\mathbb{S}_n \leq Co_1$, then $n \leq 8$. Now taking into account each of the above sporadic groups G and considering the order of AB, $A \cong \mathbb{S}_n$, $B \cong L_3(3)$, a contradiction is reached and the Lemma is proved. \square

Simple groups of Lie type are divided into two large families called the classical groups and the exceptional groups of Lie type. According to [11] factorizations of exceptional groups of Lie type are given in Theorem B from which it follows that none of these groups have the desired factorization. Therefore we are left with the projective special linear, symplectic, unitary and orthogonal groups.

Lemma 6. The decomposition $L_m(q) = AB$ where $A \cong \mathbb{A}_n$ or \mathbb{S}_n , $n \geqslant 5$, $B \cong L_3(3)$ is impossible.

Proof. Let $L_m(q) = AB$ where $A \cong \mathbb{A}_n$ or \mathbb{S}_n , $n \geqslant 5$, and $B \cong L_3(3)$. By [10] the minimum degree of a projective modular representation of \mathbb{A}_n or \mathbb{S}_n is n-2 and therefore $m \geqslant n-2$ which implies $n \leqslant m+2$. First we consider the case q=2. In this case the 2-part of $|L_m(2)|$ is equal to $2^{m(m-1)/2}$. If the 2-part of \mathbb{S}_n is 2^a , then it is well-known that $a=\left[\frac{n}{2}\right]+\left[\frac{n}{4}\right]+\cdots\leqslant \frac{n}{2}+\frac{n}{4}+\cdots=n$, hence

the 2-part of AB is at most $2^{(n+3)}$. Therefore we must have $m(m-1)/2 \le n+3$ from which it follows that $n \ge (m-3)(m+2)/2$. If m > 5, then from the last inequality we obtain n > m+2 which contradicts the condition $n \le m+2$. If $m \le 5$ then since 13 does not divide the order of $L_m(2)$, hence $L_3(3)$ cannot be involved in $L_m(2)$. Therefore the condition q=2 is ruled out. Hence in the following we will assume q > 2 and distinguish two cases:

(i) $n \ge 9$. Since $n \ge 9$ we will obtain $m \ge 7$. For any natural number $k \ge 2$ we have $\frac{q^k - 1}{q - 1} = q^{k - 1} + \dots + q + 1 \ge 3^{k - 1} + \dots + 3 + 1 = \frac{3^k - 1}{2} \ge k + 2$. Hence $q^k - 1 \ge (k + 2)(q - 1) \ge (k + 2)q^{1/2}$. But

$$|L_m(q)| = \frac{1}{d}q^{m(m-1)/2}(q^m - 1)\cdots(q^2 - 1),$$

where d = (m, q - 1). Therefore using the above inequality and the fact that $d \leq q - 1 < q$ we obtain:

$$|L_m(q)| > \frac{1}{6}(m+2)!q^{(m^2-3)/2}$$
 (1)

From $L_m(q) = AB$ and $n \le m + 2$ we obtain: $|L_m(q)| < |A| \times |B| \le |\mathbb{S}_n| \times |L_3(3)| \le 2^4 \cdot 3^3 \cdot 13(m+2)!$. Therefore

$$|L_m(q)| \le 2^4 \cdot 3^3 \cdot 13(m+2)!$$
 (2)

Combining inequalities (1) and (2) results: $q^{(m^2-3)/2} < 2^5.3^4.13$. Since $m \ge 7$ we can write $q^{(7^2-3)/2} \le q^{(m^2-3)/2} < 33696$, which implies $q^{23} < 33696$, a contradiction, and case (i) is proved.

(ii) $n \le 8$. In this case using (1) and the inequality $|L_m(q)| \le |A| \times |B| \le 2^4 \cdot 3^3 \cdot 13 \cdot n!$ we obtain $(m+2)! q^{(m^2-3)/2} < 2^5 \cdot 3^4 \cdot 13 \cdot n!$ and since $n \le 8$ we obtain

$$(m+2)!q^{(m^2-3)/2} < 2^{12}.3^6.5.7.13 (3)$$

If m > 5, then it is easy to see that (3) leads to a contradiction. Therefore $m \leq 5$.

If m=5, then from (3) we obtain $q^{11} < 2^9.3^4.13$ which implies q=2, which is not the case. If m=4, then again using inequality (3) we obtain q=2,3,4,5,7,8 or 9. Now considering orders of the groups $L_m(q)$ in each case a contradiction is obtained. For the case m=3 similar computation is applicable.

Lemma 7. The decomposition $S_{2m}(q) = AB$, where $A \cong \mathbb{A}_n$ or \mathbb{S}_n , $n \geqslant 5$ and $B \cong L_3(3)$ is impossible.

Proof. We assume $S_{2m}(q) = AB$, where $A \cong \mathbb{A}_n$ or \mathbb{S}_n , $n \geqslant 5$ and $B \cong L_3(3)$. Of course $S_{2m}(q)$ denotes the symplectic group in dimension 2m over a field with q elements. Similar to Lemma 6 we distinguish two cases.

(i) $n \ge 9$. Again by [10] we have $2m \ge n-2$ and hence $n \le 2m+2$ which implies $m \ge 4$. By the order of the symplectic group and using the same argument and inequality as in the proof of Lemma 6 we obtain

$$|S_{2m}(q)| = \frac{1}{d}q^{m^2}(q^{2m} - 1)\cdots(q^2 - 1) \geqslant \frac{1}{6d}(2m + 2)!q^{m(2m+1)/2},$$

where d = 1 or 2. Therefore we obtain the following inequality:

$$|S_{2m}(q)| \ge \frac{1}{12} (2m+2)! q^{m(2m+1)/2}$$
 (4)

But then from $S_{2m}(q) = AB$ and $n \leq 2m + 2$ we obtain:

$$|S_{2m}(q)| \le |A| \times |B| \le n! \cdot 2^4 \cdot 3^3 \cdot 13 \le (2m+2)! \cdot 2^4 \cdot 3^3 \cdot 13$$
 (5)

Combining (4) with (5) will result the following inequality:

$$q^{m(2m+1)/2} \leqslant 2^6.3^4.13 \tag{6}$$

Now from $m \ge 4$ and using (6) we obtain $q^{18} \le 2^6 \cdot 3^4 \cdot 13$ which is a contradiction because $q \ge 2$. This proves the Lemma in case (i).

(ii) $n \leq 8$. In this case using (5) and the inequality $|S_{2m}(q)| \leq 2^4.3^3.13.n!$ we obtain $(2m+2)!q^{m(2m+1)/2} \leq 2^6.3^4.13.n! \leq 2^6.3^4.13.8!$. Therefore

$$(2m+2)!q^{m(2m+1)/2} \le 2^6.3^4.13.8! \tag{7}$$

from which it follows that if $m \ge 4$, then $q^{18} \le \frac{2^5 \cdot 3^2 \cdot 13}{5}$ which is a contradiction because q is at least 2. Hence m = 1,2 or 3. If m = 3, then from (7) we get $q^{21/2} \le 2^6 \cdot 3^4 \cdot 13$ which forces q = 2. But in this case $\mathbb{S}_6(2)$ does not contain $L_3(3)$. If m = 2 then from (7) we obtain $q^5 \le 2^9 \cdot 3^4 \cdot 7 \cdot 13$ which implies q < 20, hence q = 2,3,4,5,7,8,9,11,13,16,17 and 19. Now a case by case examination of these values result desire contradiction. In the case of m = 1 we have $\mathbb{S}_2(q) = L_2(q)$ which is treated in Lemma 6.

Lemma 8. Decomposition of the unitary group or the orthogonal groups as the product of \mathbb{A}_n or \mathbb{S}_n , $n \geq 5$, with the group $L_3(3)$ is impossible.

Proof. Since the proof is similar to that of Lemma 6 and 7, we describe the inequalities which are used in the unitary and orthogonal groups only. We have $|U_m(q)| = \frac{1}{d}q^{m(m-1)/2}(q^m-(-1)^m)\cdots(q^2-1)$ where d=(m,q+1). Using the inequality $q^k-(-1)^k\geqslant (k+2)q^{1/2}$ which holds for every positive integer k, we obtain $|U_m(q)|\geqslant \frac{1}{6d}(m+2)!q^{(m^2-1)/2}$ and since $d=(m,q+1)\leqslant q+1< q^2$, the following inequality holds: $|U_m(q)|>\frac{1}{6}(m+2)!q^{(m^2-5)/2}$. Now using the above inequality and applying the method of proof in Lemma 6 a contradiction is obtained.

Next we consider the orthogonal groups $\Omega_{2m+1}(q)$, $m \ge 3$, in odd dimension. We have $|\Omega_{2m+1}(q)| = \frac{1}{d}q^{m^2}(q^{2m}-1)\cdots(q^2-1)$ where d=(2,q-1). Since in this case orders of $\Omega_{2m+1}(q)$ and the symplectic groups $\mathbb{S}_{2m}(q)$ are equal, we can apply the same inequality obtained in Lemma 7 to derive a contradiction.

Finally we will consider the orthogonal groups in even dimensions. These groups are denoted by $O_{2m}^{\varepsilon}(q)$ where $m \geqslant 4$ and $\varepsilon = \pm$. We have $|O_{2m}^{\varepsilon}(q)| = \frac{1}{d}q^{m(m-1)}(q^m+\varepsilon 1)(q^{2m-2}-1)\cdots(q^2-1)$ where $d=(4,q^m+\varepsilon 1)$. Since $m\geqslant 4$, we have $q^m+\varepsilon 1\geqslant (2m+2)q^{1/2}$. Hence considering the order of $O_{2m}^{\varepsilon}(q)$ and the inequalities $q^k-1\geqslant (k+2)q^{1/2}$, we obtain $|O_{2m}^{\varepsilon}(q)|\geqslant \frac{1}{6d}q^{(2m^2-m)/2}(2m+2)!$. But $d=(4,q^m+\varepsilon 1)\leqslant 4$, and applying it to the above inequality we obtain $|O_{2m}^{\varepsilon}(q)|\geqslant \frac{1}{24}q^{(2m^2-m)/2}(2m+2)!$. The above inequality is used to obtain a contradiction in assuming a factorization of the kind in the Lemma. The proof of Lemma 8 is complete now.

In this way we have proved the following theorem which is the main result of this paper.

Theorem 9. Let G be a finite non-abelian simple group such that G = AB, where $A \cong \mathbb{A}_n$ or \mathbb{S}_n , $n \geqslant 5$, and $B \cong L_3(3)$. Then the following possibilities occur:

- (a) $\mathbb{A}_m = \mathbb{A}_{m-1}L_3(3)$, where m = 13, 26, 39, 78, 104, 117, 144, 156, 208, 234, 312, 351, 432, 468, 624, 702, 936, 1404, 1872, 2808, 5616.
- (b) $\mathbb{A}_{13} = \mathbb{A}_{11}L_3(3)$.
- (c) $\mathbb{A}_{13} = \mathbb{S}_{11}L_3(3)$.

References

[1] B. Amberg, S. Franciosi, F. DeGiovanni, *Products of groups*, Oxford University Press, 1992.

- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
- [3] M. R. Darafsheh, Product of the symmetric group with the alternating group on seven letters, Quasigroups Related Systems 9 (2002), 33 44.
- [4] M. R. Darafsheh, Finite groups which factor as product of an alternating group and a symmetric group, Comm. Algebra 32 (2004), 637 647.
- [5] M. R. Darafsheh, G. R. Rezaeezadeh, Factorization of groups involving symmetric and alternating groups, Int. J. Math. Math. Sci. 27 (2001), 161-167.
- [6] M. R. Darafsheh, G. R. Rezaeezadeh, G. L. Walls, Groups which are the product of S₆ and a simple group, Algebra Colloq. 10 (2003), 195 204.
- [7] P. Etingof, S. Gelaki, R. Guralnick, J. Saxl, Biperfect Hopf algebras, J. Algebra 232 (2000), 331 335.
- [8] **T. R. Gentchev**, Factorizations of the sporadic simple groups, Arch. Math. (Basel) 47 (1986), 97 102.
- [9] O. Kegel, H. Luneberg, Uber die kleine reidermeister bedingungen, Arch. Math. (Basel) 14 (1963), 7 10.
- [10] P. Kleidman, M. Liebeck, The subgroups structure of the finite classical groups, Cambridge University Press, 1990.
- [11] M. W. Liebeck, C. E. Praeger, J. Saxl, The maximal factorizations of the finite simple groups and their authomorphism groups, Mem. AMS 86, no. 432, 1990
- [12] W. R. Scott, Products of A_5 and a finite simple group, J. Algebra 37 (1975), 165-171.
- [13] G. L. Walls, Non-simple groups which are the product of simple groups, Arch. Math. (Basel) 53 (1989), 209 – 216.
- [14] **G. L. Walls**, Products of simple groups and symmetric groups, Arch. Math. (Basel) **58** (1992), 313 321.
- [15] J. Wiegold, A. G. Williamson, The factorization of the alternating and symmetric groups, Math. Z. 175 (1980), 171 179.

Received December 18, 2008

M. R. Darafsheh:

School of Mathematics, College of Science, University of Tehran, Tehran, Iran E-mail: darafsheh@ut.ac.ir

A. Mahmiani:

Islamic Azad University, Aliabad-e-Katool, Iran