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New primitives for digital signature algorithms

Nikolay A. Moldovyan and Peter A. Moldovyanu

Abstract. Particular types of the multiplication operation over elements of the �nite
vector space over the �eld GF (pd), d > 1, are introduced so that there are formed
the �nite �elds GF

(
(pd)m

)
with fast multiplication operation that also suites well to

parallelized implementation. Finite �elds implemented in such form are proposed for
accelerating the digital signature algorithms.

1. Introduction

The �nite �elds (FFs) GF (p) and GF (pd) represented by rings Zp, where p
is a prime, and polynomials, correspondingly, are well studied as primitives
for the digital signature (DS) algorithms design [8, 11, 13].

Finding discrete logarithm (DL) in a subgroup of the multiplicative
group of the FF is used as the hard computational problem put into the
base of the DS algorithms (DSAs).

The upper security boundary of such DSAs is limited by the di�culty of
the DL problem in the used FF. There are known the general-purpose meth-
ods for solving the DL, which work in arbitrary groups [8]. Such methods
have exponential complexity W = O(

√
q), where O(·) is the order notation,

and q is the largest prime divisor of the group order. If q > 2160, then the
general methods are impracticable, i.e., computationally infeasible. How-
ever in the case of the mentioned above FFs some particular methods for
solving the DL problem can be applied, which have sub-exponential com-
plexity.

Therefore the DSAs based on computations in the ground FFs GF (p)
and in the polynomial FFs �elds GF (pd) satisfy the minimum security re-
quirement (di�culty of the best attack should be equal to > 280 exponen-
tiation operations in the used FF), if the size of the FF order is greater or
equal to 1024 bits [4]. This fact restricts signi�cantly the performance of
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the known DSAs based on computations in the FFs GF (p) and GF (pd).
Higher performance is provided by the DSA using the computations in the
�nite groups of the elliptic curve (EC) points, while the EC are de�ned over
FFs the size order of which equals 160 to 320 bits [5, 9].

The complexity of the point addition operation is de�ned by the com-
plexity of the multiplication operation in the underlying FF. However in
many cases of the practical use of DSAs there are required the DS schemes
providing higher performance in hardware and in software. To meet such
requirements there have been proposed di�erent approaches to accelerating
the EC-based cryptographic algorithms [9, 7].

These approaches can be categorized into two groups: i) high-level al-
gorithm that manage the ECs selection and ii) low-level algorithm that
manage the FF operation. Especially much attention in these researches
is paid to the EC-based algorithms implementation using the FFs GF (2d),
GF

((
2d

)s)
, and GF (pd), because of their e�ciency in hardware implemen-

tation [1, 2, 3].

However in the both approaches few attention is paid to accelerating the
EC-based DSAs with parallelization of the multiplication in the underlying
FF. Actually, in these approaches there are used the ground or polynomial
FFs in which the multiplication operation involves arithmetic division by a
prime or by an irreducible polynomial, respectively.

In present paper it is proposed a particular form of the FFs implemen-
tation, called vector FFs, providing possibility of e�cient parallelization of
the multiplication operation.

Besides, in the proposed particular form of the extension FFs GF (pm′
)

the multiplication complexity is lower than in the ground FFs GF (p′) and
in polynomial FFs GF (pd) for the same size of the FF order. The vector
FFs are proposed to implement ECs providing faster DSAs.

The rest of the paper is organized as follows. In Section 2, the multipli-
cation operation in the �nite vector spaces over the FFs GF (pd) is de�ned
using so called basis vector multiplication tables (BVMTs). This particular
method allows one to de�ne only a particular subclass of all possible vari-
ants of the associative multiplication. However this subclass includes the
multiplication variants for which the vector space represents a �eld.

Section 3 provides comparison of the computational e�cacy of the mul-
tiplication operation in FFs implemented in di�erent forms. Section 4 con-
cludes the paper.

In the paper the following speci�c term is used:
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The k-th power element a of the �eld GF (pd) is an element of the �eld
GF (pd) for which the equation xk = a has solutions in the �eld GF (pd),
d > 1.

2. Extension of �nite �elds in the vector form

The vector form of the extension FFs implementation represents signi�cant
interest for the applied cryptography due to lower complexity of the multi-
plication and possibility to e�cient parallelization. This form of the imple-
mentation of the extension FFs is introduced using some subclass of possible
associative multiplications in �nite vector spaces over the FF GF (pd), where
d > 1. The multiplication operation is introduced with BVMT.

This particular method is su�ciently simple and provides possibility to
de�ne vector FFs GF

(
(pd)m

)
for arbitrary value of m.

The vector FFs can be de�ned with BVMT not for all possible triples
m, p, and d, though. However the proposed method suites well for de�ning
the vector FFs oriented to application in the applied cryptography.

2.1. Addition and multiplication operations

in �nite vector spaces

Let us consider the set of the m-dimension vectors

ae + bi + · · ·+ cj,

where e, i, . . . j are some formal basis vectors and a, b, . . . c ∈ GF (pd), d > 1,
are coordinates. Vector can be also represented as a set of its coordinates
(a, b, . . . , c).

The terms εv, where ε ∈ GF (pd) and v ∈ {e, i, . . . , j}, are called com-
ponents of the vector.

The addition of two vectors (a, b, . . . , c) and (x, y, . . . , z) is de�ned in
the usual way as follows

(a, b, . . . , c) + (x, y, . . . , z) = (a + x, b + y, . . . , c + z),

where �+� denotes addition operation in the �eld GF (pd). It is easy to see
that the �rst representation of the vectors can be interpreted as sum of the
vector components.
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The multiplication of the vectors (a, b, . . . , c) and (x, y, . . . , z) is de�ned
analogously to multiplication of polynomials, i.e., it is de�ned with the
formula

(ae + bi + · · ·+ cj) · (xe + yi + · · ·+ zj) =
= axe · e + bxi · e + · · ·+ cxj · e + aye · i + byi · i + · · ·+ cyj · i + . . .

· · ·+ aze · j + bzi · j + · · ·+ czj · j,

where gh denotes multiplication of the elements g ∈ GF (pd) and h ∈
GF (pd). See [12] for more details.

In the �nal expression each product of two basis vectors is replaced by
a vector component εv (ε ∈ GF (pd)) in accordance with some given tables
called basis-vector multiplication tables (BVMT).

For example, if the used BVMT de�nes i · j = εe, then bzi · j = εbze.
The coordinate ε is called the expansion coe�cient. The BVMT de�nes the
concrete variant of the multiplication in the �nite vector space.

It is easy to see, if the BVMT de�nes commutative and associative mul-
tiplication of the basis vectors, then the multiplication in the �nite vector
space is also commutative and associative. In this case the �nite vector
space is a commutative ring. In some particular cases the �nite vector rings
are FFs GF

(
(pd)m

)
, called vector FFs.

Below there are shown constructions of the vector FFs for di�rent values
m. For the case m = 2 the construction of the vector FF GF

(
(pd)2

)
is

su�ciently close to construction with attaching the root of the irreducible
(in GF (pd)) polynomial x2 − ε to GF (pd).

Principally for all values m the FFs GF
(
(pd)m

)
can be constructed with

the well known method using irreducible polynomials in GF (pd), however
this method constructs the extension FFs GF

(
(pd)m

)
as polynomial FFs

in which the multiplication operation is more complex and suites less to
parallelized implementation than multiplication in the FFs constructed with
BVMTs.

Indeed, in the polynomial FFs the multiplication is performed as arith-
metic multiplication of two polynomials and arithmetic division of the result
by the irreducible polynomial, while the multiplication in the vector FFs is
free of such division operation.

Actually, the BVMT-based construction method is less general, however
it provides e�cient and immediate practical way to construct vector FFs
with fast multiplication for arbitrary values m.
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2.2. Vector �nite �elds GF
(
(pd)2

)
In the case m = 2 the BVMT possessing commutativity and associativity
can be described as follows

e · i = i · e = i, e · e = e, i · i = εe,

where di�erent values ε ∈ GF (pd) de�ne di�erent variants of the multipli-
cation operation. Each of these variants de�nes a �nite ring of the two-
dimension vectors. See, also, [12].

Let us consider a nonzero element of the vector ring Z = ae + bi. The
element Z−1 = xe + yi is called inverse of Z, if Z−1Z = e = (1, 0), where
1 and 0 are the identity and zero elements in GF (pd).

In accordance with the multiplication de�nition we can write

Z−1Z = (ax + εby)e + (bx + ay)i = 1e + 0i.

For given (a, b) there exists a pair (x, y) satisfying the last equation, if

a2 − εb2 6= 0.

The last condition holds for all vectors (a, b), except (0,0), if ε is a quadratic
non-residue in the �eld GF (pd). In this case the vector space is a �eld
GF

(
(pd)m

)
.

If the vector space is de�ned over a ground �eld GF (p), then we have the
vector �nite �eld GF (p2) the multiplicative group of which has the order
Ω = p2 − 1 = (p− 1)(p + 1).

If ε is a quadratic residue in the �eld GF (pd), where d = 1, then the char-
acteristic equation a2 − εb2 = 0 is satis�ed for each value b ∈ 1, 2, . . . , p− 1
at two di�erent values a. In this case we have a �nite group in the vector
space. The group order is equal to

Ω = p2 − 2(p− 1)− 1 = (p− 1)2.

Example 1. For p = 101 and ε = 32 (quadratic non-residue mod 101)
the vector 93e + 24i has the order ω = 10200 and is a primitive element
of the multiplicative group of the �eld GF (1012). For p = 101 and ε = 31
(quadratic residue mod 101) the vector 2e + 3i has the order ω = 100, the
last value being the maximum possible element order in the non-cyclic �nite
vector group having the order Ω = 10000.
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2.3. Vector �nite �elds GF
(
(pd)3

)
In the case m = 3 the general representation of the BVMT possessing
commutativity and associativity is shown in Table 1, where µ ∈ GF (pd)
and ε ∈ GF (pd) are the expansion coe�cients. In accordance with the
multiplication operation de�ned by Table 1 for vectors Z = ae + bi + ck
and X = xe + yi + zk we can write

ZX = (ax+εµcy+εµbz)e+(bx+ay+µcz)i+(cx+εby+az)j = 1e+0i+0j.

If the last equation has solution relatively unknown X for all nonzero vectors
Z, then the vector space will be a vector �nite �eld GF

(
(pd)3

)
. From the

last equation the following system of equations can be derived
ax + εµcy + εµbz = 1

bx + ay + µcz = 0
cx + εby + az = 0.

From this system the following characteristic equation can be get

a3 − (3εµbc) a +
(
ε2µb3 + εµ2c3

)
= 0 (1)

Denoting B = (ε2µb3 + εµ2c3)/2 and using the well known formulas [6]
for cubic equation roots we get the expression for the equation (1) roots a
in the following form

a = A′ + A′′, where,

A′ = 3

√
B +

√
B2 − (εµbc)3 = 3

√
−εµ2c3,

A′′ = 3

√
B −

√
B2 − (εµbc)3 = 3

√
−ε2µb3.

Thus, if both of the values εµ2 and ε2µ are not the 3rd-power elements
in the �eld GF (pd), then the characteristic equation (1) has no solutions
relatively unknown a for all possible pairs (a, b), except (a, b) = (0, 0). In
this case the vector space is a �eld GF

(
(pd)3

)
.

· −→e −→ı −→
−→e e i j
−→ı i εj µεe
−→ j µεe µi

Table 1. The BVMT in the general case for m = 3.
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In the case of the vector space de�ned over a ground �eld GF (p) the
analysis of the characteristic equation leads to the following cases.

Case 1. The value p is such that 3 does not divide p − 1. Then
each nonzero element of the �eld GF (p) is the 3rd-power element and only
for Ω = (p − 1)2(p + 1) di�erent vectors there exist inverses and we have
non-cyclic �nite vector group having order Ω. Experiment has shown the
maximum vector order is ω = (p − 1)(p + 1). In this case the �nite vector
spaces are not �elds.

Case 2. The value p is such that 3|p− 1. This case is divided into the
following two cases.

Case 2a. Each of the products ε2µ and εµ2 is not a 3rd-power element
in the �eld GF (p). Then for each nonzero vector Z there exists its inverses
and the vector space is a �eld GF (p3) multiplicative group of which has the
order Ω = p3 − 1. Selecting properly the prime value p one can get prime
q|Ω such that q = 1

3(p2 + p + 1). Thus, in the case of the �eld formation in
the �nite vector spaces it is possible to get vector subgroups of the prime
order that has the size signi�cantly larger that the size of the GF (p) �eld
order. Such cases are very interesting for designing fast DSAs.

Case 2b. Each of the products ε2µ and εµ2 is a 3rd-power element
in GF (p). In this case only for Ω = (p − 1)3 di�erent vectors there exist
inverses and we have non-cyclic �nite vector group having order Ω. The
maximum vector order is Ω = (p− 1) (experimental result).

Case 3. For ε = 0 and µ 6= 0 or for ε 6= 0 and µ = 0, or for ε = 0
and µ = 0 we have degenerative case, when the characteristic equation has
the form a3 ≡ 0 mod p and unique solution a = 0 for all pair of the values
(b, c). In this case the vector space contains a vector group of the order
Ω = p2(p − 1). This group is non-cyclic and the maximum vector order is
Ω = p(p− 1) (experiment).

Example 2. Suppose p = 67 (i.e., 3|p − 1). Then for µ = 1, and ε = 0
there is formed a vector group of the order Ω = p2(p − 1) = 296274, in
which the maximum vector order is ω = p(p − 1) = 4422. For µ = 1 and
ε = 60 (this value is not the 3rd-power element) the vector �eld is formed,
in which there exist vectors having order ω = p3 − 1 = 300762. For µ = 1
and ε = 1 (this value is the 3rd-power element) there is formed the vector
group of the order Ω = (p − 1)3 = 287496, in which the maximum vector
order is ω = p− 1 = 66.
Example 3. Suppose p = 63633348855432197 (i.e., 3 does not divide
p − 1). Then for µ = 1 and ε = 3 there is formed the vector group having
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the order Ω = (p−1)2(p+1). The maximum vector order is ω = (p−1)(p+
1) = 4049203086557134095975355664246808. For µ = 1 and ε = 0 there is
formed a vector group having the order Ω = p2(p−1), the maximum vector
order being ω = p(p− 1).
Example 4. Suppose p = 16406161737685927 (i.e., 3|p − 1). Then for
µ = 1 and ε = 3 (this value is the 3rd-power element) there is formed a
vector �eld GF (p3), containing vectors of the order equal to Ω = p3 − 1 =
4415917651114920002684537723583440985579861692982. Such vectors are
primitive elements of the vector �eld GF (p3).

2.4. Formation of the vector �nite �elds in the case m > 4

Analysis of the cases m = 2 and m = 3 shows that vector �elds are formed
in the case m|pd−1, provided some of the expansion coe�cients are not the
mth-power elements in GF (pd). In this research it has been experimentally
established that under such conditions, while using the BVMTs shown as
Table 2 the vector �elds are formed for m = 4, 5, . . . , 55, if m|pd−1 and the
equation xτ = ε has no solutions in GF (pd) for each divisor τ |m, τ > 1. It
appears that for arbitrary m there exists vector FFs de�ned over the �eld
GF (pd) such that m|pd − 1.

Our experiments have been stopped since we have estimated that the
investigated cases cover the demands of the practical cryptography. To de-
�ne formation of the m-dimension vector FF the BVMT should be properly
designed and for given m there exist a variety of di�erent BVMTs, but in
this paper the simplest variants of BVMTs have been used.

· −→e −→ı −→
j

−→
k −→u . . . −→w

−→e e i j k u . . . w
−→ı i εj εk εu ε . . . εw εe
−→
j j εk εu ε . . . εw εe i
−→
k k εu ε . . . εw εe i j
−→u u ε . . . εw εe i j k
. . . . . . εw εe i j k u
−→w w εe i j k u . . .

Table 2. The used variant of the BVMTs for the cases m = 4, 5, . . . , 55.

Let us consider some examples, where the �nite polynomial �elds GF (pd)
are de�ned with the irreducible polynomials P (x) of the degree d and the
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vector multiplication operation is de�ned with Table 2 in which the expan-
sion coe�cients are polynomials ε = ε(x), where ε(x) is not the mth-power
element in GF (pm).
Example 5. For prime p = 268675256028581 and coe�cients µ = 1 and
ε = 3048145277787 (ε is not the 5th-power element) the vector GΩ = 2e +
5i + 7j + 11k + 13u is a generator of the multiplicative group of the vector
�eld GF (p5). The vector GΩ = 88815218764680e + 238886012231841i +
157317400153847j + 21593513218048k + 204824491909450u is a generator
of the q-th order cyclic subgroup, where
q=1042175072703434265745203478134729214503105234181740193961
is a prime.
Example 6. For m = 5, p = 2, P (x) = 101111011 = x8 + x6 + x5 + x4 +
x3 + x + 1 (m|ps − 1), and ε(x) = x3 + 1 there is formed the vector �eld
GF

(
(28)5

)
. The vector G = (x4 +1)e+(x4 +x2 +1)i+(x6 +x5 +x2 +x+

1)j+(x5 +1)k+(x4 +1)u having the order ω = 1099511627775 is generator
of the multiplicative group of the �eld.
Example 7. For m = 5, p = 2,

P (x) = x32 + x31 + · · ·+ 1 = 111101010100001110001100111010111

(m|ps − 1,) and ε(x) = x + 1 there is formed the vector �eld GF
(
(232)5

)
.

The vector G = (x4 + 1)e + (x4 + x3 + x + 1)i + (x6 + x5 + x2 + 1)j + (x5 +
1)k + (x4 + 1)u having the order

ω = 1461501637330902918203684832716283019655932542975

is a generator of the multiplicative group of the �eld.
Example 8. For m = 8, p = 233, P (x) = x3+179x2+13x+81 = (m|ps−1),
and ε(x) = x + 1 there is formed the vector �eld GF

(
(232)5

)
. The vector

G = (3x2+7x+1, 3x+3, x+2, x2+2x+1, x+5, 71x+1, 17x+1, 11x2+7x+1)
having the order ω = 655453828661462718740867094804609871011228021078
182589120 is generator of the multiplicative group of the �eld (ωG = Ω =
pms − 1).

3. Comparison of the multiplication complexity

in FFs implemented in di�erent forms

Performance of the DSAs based on computations on ECs is inversely pro-
portional to the di�culty of the point addition operation that is de�ned
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mainly by several �eld multiplications and one inversion operation in the
�nite �eld over which the ECs are de�ned.

The inversion is the most contributing to the di�culty of the point ad-
dition operation. Even though there are some special techniques for com-
puting inverses in the �nite �eld, inversion is still far more expensive than
the �eld multiplication.

The inverse operation needed when adding two points can be eliminated
by resorting to projective coordinates [9]. In this way adding two points is
performed with about ten �eld multiplications. Thus, the di�culty of the
multiplication in the underlying �eld de�nes di�culty of the point addition
operation.

The vector �nite �elds GF (pm) de�ned over the ground �eld GF (p)
can be applied to design the EC-based cryptographic algorithms providing
signi�cantly higher performance. Indeed, in known EC-based algorithms
one can replace the underlying FF in usually used forms by the respective
vector FF [10]. For di�erent values m ∈ {2, 3, 4, 5 . . . } it is easy to generate
ECs the order of which contains large prime factor q such that |q| ≈ m|p|,
where |q| is the bit size of q.

While comparing the computational e�ciency of the multiplication op-
eration in di�erent FFs one should consider the case of the approximately
equal values of the FF order. Let us compare the di�culty of the multi-
plication operation in the ground �eld GF (p) and in the vector extension
�elds GF (pm

v ) for di�erent values m in the case |p| = m|pv|.
Multiplication in GF (p) is performed with arithmetic multiplication of

two |p|-bit values and arithmetic division of some 2|p|-bit value by some |p|-
bit value. Multiplication in the vector �eld GF (pm

v ) is performed with m2

arithmetic multiplications of two |pv|-bit values and m arithmetic divisions
of some 2|pv|-bit values by some |pv|-bit values (because of su�ciently low
di�culty we do not take into account the arithmetic additions and m2/2
multiplications with expansion coe�cients having usually the size of two
bits).

Taking into account that di�culty of the both arithmetic multiplication
and arithmetic division is proportional to the squared size of operands one
can easily derive the following formula

ρ =
WGF (p)

WGF (pm
v )

=
m(1 + c)
m + c

,

where WGF (p)

(
WGF (pm

v )

)
is the computational di�culty of the multipli-

cation in GF (p) (GF (pm
v )) and c is the ratio of the arithmetic division
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di�culty to the arithmetic multiplication di�culty.

The value c depends on the hardware used to perform computations.
For many types of microcontrollers and microprocessors we have c > 5. For
example, in this case for m = 5 and c = 6 (c = 12) we have ρ ≈ 3.2
(ρ ≈ 3.8).

Analogous consideration of the computational e�cacy of the multipli-
cation in polynomial and vector �elds gives the ratio ρ > 2. The lower
multiplication e�cacy in the polynomial �elds is connected with the divi-
sion operation of the (2s−2)-power polynomials by the s-power irreducible
polynomial, which is additionally required to multiplications and additions
in the ground �eld GF (p) over which the polynomial �eld is de�ned.

Thus, using elliptic curves over vector FFs one can design the DS algo-
rithms possessing signi�cantly higher performance. Besides, the multipli-
cation in the vector �eld GF (pm

v ) suites well to cheap parallelization while
being implemented in hardware. This is also a signi�cant resource for ad-
ditional acceleration of the EC-based cryptography.

4. Conclusions

A new form of the extension FFs have been proposed to accelerate the
EC-based cryptographic algorithms. The proposed vector FFs GF

(
(pd)m

)
,

d > 1, are formed in the m-dimension vector space over the ground FF
GF (p) or over the polynomial FF GF (pd) , while special types of the vector
multiplication operation is de�ned. It is proposed the BVMT possessing
simple structure and providing the associative vector multiplication.

It has been shown that the complexity of the multiplication in vector
FFs is lower than in the ground and polynomial FFs, while the size of the
�eld order is the same. This advantage and suitability of the e�cient paral-
lelization of the multiplication operation provides possibility to signi�cant
acceleration of the EC-based DSAs with application of the vector FFs as
underlying �elds.
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