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Congruences on an inverse AG∗∗-groupoid

via the natural partial order

Petar V. Proti¢

In memory of Neboj²a Stevanovi¢ (1962�2009), my colleague and
dear friend.

Abstract. In this paper we �rst describe natural partial order on an inverse AG∗∗-

groupoid. With it we introduce a notion of pseudo normal congruence pair and normal

congruence pair and describe congruences.

1. Introduction

A groupoid S on which the following is true

(∀a, b, c ∈ S) ab · c = cb · a,

is called an Abel-Grassmann's groupoid (AG-groupoid) [8] (or in some papers
Left almost semigroups (LA-semigroups)) [3]. It is easy to verify that in
every AG-groupoid medial law ab · cd = ac · bd holds. Thus, AG-groupoids
belong to the wider class of medial groupoids.

We denote the set of all idempotents of S by E(S) .
Abel-Grassmann's groupoid S satisfying

(∀a, b, c ∈ S) a · bc = b · ac

is an AG∗∗-groupoid. It is obvious that in AG∗∗-groupoid for a, b, c, d ∈ S

ab · cd = c(ab · d) = c(db · a) = db · ca.
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If AG-groupoid S has the left identity e, then

a · bc = ea · bc = eb · ac = b · ac,

so S is an AG∗∗-groupoid.

In [5] an AG-groupoid S is called an inverse AG-groupoid if for every
a ∈ S there exists a′ ∈ S such that a = aa′ · a and a′ = a′a · a′. Then a′ is
an inverse element of a, and by V (a) we shall mean the set of all inverses
of a. It is easy to prove that if a′ ∈ V (a), b′ ∈ V (b), then a′b′ ∈ V (ab) and
that aa′ or a′a are not necessarily idempotents.

Remark 1. In [1] it is proved that in an AG∗∗-groupoid S the set E(S)
is a semilattice (Remark 2). Also, in [1] it is proved that in an inverse
AG∗∗-groupoid for a ∈ S, by Remark 3, we have |V (a)| = 1. If a−1 is a
unique inverse for a, then by Lemma 1 aa−1, a−1a ∈ E(S) if and only if
aa−1 = a−1a.

The following proposition is is trivially true.

Proposition 1. Let S be an inverse AG∗∗-groupoid and ρ congruence re-

lation on S. Then S/ρ is an inverse AG∗∗-groupoid. Also, if a, b ∈ S then

aρb if and only if a−1ρb−1. �

2. Natural partial order

In this section we de�ne a natural partial relation on inverse AG∗∗-groupoid
S and prove some of its properties.

Theorem 1. If S is an inverse AG∗∗-groupoid, then the relation

a 6 b ⇐⇒ a = aa−1 · b (1)

on S is a natural partial order relation and it is compatible.

Proof. The proof that 6 is re�exive is obvious. For antisymmetry let us
suppose that a 6 b and b 6 a. Then a = aa−1 · b and b = bb−1 · a, and

a = aa−1 · b = aa−1 · (bb−1 · a) = bb−1 · (aa−1 · a) = bb−1 · a = b,

imply antisymmetry.
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Let us now suppose that a 6 b and b 6 c. Then a = aa−1 ·b, b = bb−1 ·c,
and

a = aa−1 · b = aa−1(bb−1 · c) = ((aa−1 · a)a−1)(bb−1 · c)
= (a−1a · aa−1)(bb−1 · c) = (a−1a · bb−1)(aa−1 · c)
= b(a−1a · b−1) · (aa−1 · c) = b(aa−1 · b)−1 · (aa−1 · c)
= ba−1 · (aa−1 · c) = ca−1 · (aa−1 · b) = ca−1 · a = aa−1 · c,

imply that a 6 c. Hence transitivity holds and ≤ is a partial order on S.
Let a 6 b and c ∈ S. Then

ca = c(aa−1 · b) = (cc−1 · c)(aa−1) · b = (cc−1 · aa−1) · cb
= (ca · c−1a−1) · cb = (ca · (ca)−1) · cb,

and so the relation ≤ is left compatible. Also, since

ac = (aa−1 · b)c = (aa−1 · b)(cc−1 · c) = (aa−1 · cc−1) · bc
= (ac · a−1c−1) · bc = (ac · (ac)−1) · bc,

therefore the relation ≤ is right compatible. Hence, ≤ is compatible.

Corollary 1. Let S be an inverse AG∗∗-groupoid and a, b ∈ S. Then

a 6 b ⇐⇒ aa−1 = ba−1.

Proof. If a 6 b then by (1) we have

aa−1 = (aa−1 · b)a−1 = a−1b · aa−1 = a−1a · ba−1 = b(a−1a · a−1) = ba−1.

Conversely, for a, b ∈ S, aa−1 = ba−1 implies that

a = aa−1 · a = ba−1 · a = aa−1 · b.

So, by (1), a 6 b.

3. Normal congruence pair

In this section by S we mean an inverse AG∗∗-groupoid in which for each
a ∈ S we have aa−1 = a−1a or equivalently aa−1, a−1a ∈ E(S).

First, we prove the following consequence of Theorem 1.
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Corollary 2. Let a, b ∈ S. Then

a 6 b ⇐⇒ (∃e ∈ E(S)) a = eb.

Proof. Let a, b ∈ S. Then a 6 b if and only if a = (aa−1)b. Since aa−1 ∈
E(S), therefore if e = aa−1 implies that a = eb.

Conversely, let a, b ∈ S be such that e ∈ E(S) and a = eb. Because
aa−1 = a−1a ∈ E(S) and E(S) is a semilattice, we have

aa−1 · b = (eb · eb−1)b = (bb−1 · e)b = (bb−1 · e)(bb−1 · b)
= (bb−1 · bb−1) · eb = bb−1 · eb = e(bb−1 · b) = eb = a

and so a 6 b.

Let ρ be a congruence on S. The restriction ρ|E(S) is the trace of ρ and
it is denoted by trρ. Also, kernel ρ is kerρ = {a ∈ S | (∃e ∈ E(S)) aρe}.

If ρ is a congruence relation on S, then kerρ is a subgroupoid of S and
E(S) ⊆ kerρ it is, kerρ is a full subgroupoid of S. Also, trρ is a congruence
on semillatice E(S).

De�nition 1. Let K be a full subgroupoid of S and τ a congruence on
E(S) satisfying the following condition:

(i) For all a ∈ S, b ∈ K, b 6 a and aa−1τbb−1 imply a ∈ K.

We call (K, τ) a pseudo normal congruence pair for S. If, in addition,

(ii) For every a ∈ K, there exists b ∈ S with b 6 a, aa−1τ bb−1 and
b−1 ∈ K,

then (K, τ) is called a normal congruence pair for S.
For pseudo normal congruence pair (K, τ), we de�ne a relation

aρ(K,τ)b ⇐⇒ ab−1, a−1b, ba−1, b−1a ∈ K, aa−1 · b−1b τ aa−1τ bb−1 .

Lemma 1. Let (K, τ) be a pseudo normal congruence pair of S, a, b ∈ S.
If a ρ(K,τ)b and b ∈ K, then a ∈ K.

Proof. From a ρ(K,τ)b we have ab−1 ∈ K and aa−1 · bb−1τ aa−1τ bb−1. Since
b ∈ K, it follows that ab−1 · b = bb−1 · a ∈ K.

We prove that ab−1 · b 6 a. Here

((ab−1 · b)(ab−1 · b)−1)a = ((ab−1 · b)(a−1b · b−1))a = ((bb−1 · a)(b−1b · a−1))a
= ((bb−1 · b−1b)aa−1)a = (bb−1 · aa−1)a
= (aa−1 · bb−1)a = (aa−1 · bb−1)(aa−1 · a)
= (aa−1 · aa−1)(bb−1 · a) = aa−1(bb−1 · a)
= bb−1(aa−1 · a) = bb−1 · a = ab−1 · b.
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Hence, by (1), it follows that ab−1 · b ≤ a.
Also

(ab−1 · b)(ab−1 · b)−1 = (ab−1 · b)(a−1b · b−1)
= (ab−1 · a−1b)bb−1 = (aa−1 · b−1b)bb−1

= (bb−1 · b−1b) · aa−1) = bb−1 · aa−1τaa−1,

whence by De�nition 1 (i) it follows that a ∈ K.

Theorem 2. If (K, τ) is a pseudo normal congruence pair for S, then ρ(K,τ)

is a congruene on S with

ker ρ(K,τ) = {a ∈ K | (∃b ∈ S), a > b, aa−1τ bb−1, b−1 ∈ K} (2)

and the trace is equal to τ . Moreover, if (K1, τ1) and (K2, τ2) are pseudo

congruence pairs for S with K1 ⊆ K2 and τ1 ⊆ τ2, then ρ(K1,τ1) ⊆ ρ(K2,τ2).

Proof. Let (K, τ) be a pseudo normal congruence pair for S and ρ = ρ(K,τ).
Since K is full it follows that ρ is re�exive. Obviously, ρ is symmetric. We
verify that ρ is transitive after we prove that ρ is compatible.

Assume now that aρb and let c ∈ S. Then

ac · (bc)−1 = ac · b−1c−1 = ab−1 · cc−1 ⊆ K · E(S) ⊆ K.

Similarly,
(ac)−1 · bc, bc · (ac)−1, (bc)−1 · ac ∈ K.

Next we have

(ac · (ac)−1)((bc)−1 · bc)) = (ac · (bc)−1)((ac)−1 · bc)
= (ac · b−1c−1)(a−1c−1 · bc)
= (ab−1 · cc−1)(a−1b · c−1c)
= (ab−1 · a−1b)(cc−1 · cc−1)
= (aa−1 · b−1b)cc−1τ aa−1 · cc−1

= ac · a−1c−1 = ac · (ac)−1.

By symmetry, it follows that

(ac · (ac)−1)((bc)−1 · bc) τ bc · (bc)−1,

whence ac ρbc. Thus ρ is right compatible. Analogously, ρ is left compatible.
Hence, ρ is compatible.
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Now, suppose that a ρ b and b ρ c. Then by right compatibility ac−1 ρ bc−1

and bc−1 ρ cc−1. Since cc−1 ∈ E(S) ⊆ K and bc−1ρcc−1, we have bc−1 ∈ K
by Lemma 1, and subsequently ac−1 ∈ K. Similarly, aa−1ρba−1, ba−1ρca−1

yield ca−1 ∈ K by Lemma 1.
Similarly, by left compatibility, from aρb and bρc we have a−1aρa−1b,

a−1bρa−1c, c−1aρc−1b and c−1bρc−1c. So by Lemma 1 it follows that
a−1c, c−1a ∈ K.

Also aρb, bρc yields

a−1a · bb−1τaa−1τbb−1, b−1b · cc−1τbb−1τcc−1

and by transitivity it follows that aa−1τcc−1. Moreover,

(bb−1 · cc−1)(aa−1 · cc−1) = (bb−1 · aa−1)cc−1τ aa−1 · cc−1,

(bb−1 · cc−1)(aa−1 · cc−1) = (bb−1 · aa−1)cc−1τbb−1 · cc−1τ cc−1,

whence aa−1 · cc−1τcc−1.
Now, ac−1, a−1c, ca−1, c−1a ∈ K, aa−1 · cc−1τ aa−1τ cc−1 is equivalent

to aρc. Hence, ρ is a transitive relation and so is a congruence.
It is apparent that for e, f ∈ E(S), eρf if and only if eτf whence trρ = τ .
We let

H = {a ∈ K | (∃b ∈ S) a > b, b−1 ∈ K, aa−1τbb−1}

and we show that kerρ = H.
Let a ∈ H, then there exists b ∈ K such that b 6 a, b−1 ∈ H and

aa−1 τ bb−1. By (1) b 6 a it implies that b = bb−1 · a. We next prove that
aρbb−1 that is

bb−1 · a−1, a−1 · bb−1, bb−1 · a, a · bb−1 ∈ K, bb−1 · aa−1τaa−1τ bb−1.

Now b = bb−1 · a ∈ K and b−1 = bb−1 · a−1 ∈ K. Also we have
a · bb−1 ∈ K · E(S) ⊆ K and

a−1 · bb−1 = (a−1a · a−1)bb−1 = (bb−1 · a−1)a−1a ∈ K · E(S) ⊆ K.

Conversely, let a ∈ ker ρ. Then aρe for some e ∈ E(S). If b = ea, then
b 6 a by Corollary 2 and b = ea ∈ E(S) · K ⊆ K. From aρe it follows
that aa−1 = ea−1 = b−1 and since aa−1 ∈ K we have by Lemma 1 that
b−1 ∈ K. Because b, b−1 ∈ K we have bb−1 = b−1b ∈ K and so bρb−1. Now

bb−1ρb−1b−1 = ea−1 · ea−1ρaa−1 · ea−1

= e(a−1a · a−1) = ea−1ρaa−1

Thus a ∈ H implies that kerρ ⊆ H, that is H = kerρ.
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Theorem 3. If (K, τ) is a normal congruence pair for S, then ρ(K,τ) is a

congruence on S with kernel K and trace τ . Conversely, if ρ is a congruence

on S, then (kerρ, trρ) is a normal congruence pair for S and ρ = ρ(kerρ,trρ).

Proof. Let (K, τ) be a normal congruence pair and let ρ = ρ(K,τ). Then by
Theorem 2, ρ is a congruence with trace equal to τ and kerρ as in (2). Thus
kerρ ⊆ K. Now let a ∈ K. Then by De�nition 1 (ii) there exist b ∈ S,
b 6 a, b−1 ∈ K and bb−1τaa−1 such that a ∈ kerρ due to Theorem 2. Thus
K = kerρ.

Conversely, let ρ be a congruence on S and let K = kerρ, τ = trρ. Then
K is a full subgroupoid of S and τ is a congruence on E(S).

Let a ∈ S, b ∈ K and a > b. Suppose that aa−1ρbb−1. Then b = bb−1 ·a
(by (1)). From aa−1ρ bb−1 it follows that aρ (bb−1)a and by above argument
we have aρb. Hence a ∈ bρ ⊆ kerρ = K. Thus (i) from the De�nition 1
holds for (K, τ) and that it is a pseudo congruence pair for S.

Let a ∈ K. Then there exists e ∈ E(S) with aρ e. If b = ea, then b 6 a
by Corollary 2. From aρ e it follows that eaρ e whence bρ e and so aρ b.
Now a−1ρ b−1 by Proposition 1 and so aa−1ρ bb−1. Moreover, from aρ e
follows that aa−1ρ ea−1 = (ea)−1 = b−1, that is b−1 ∈ K. Hence, (K, τ) is
a congruence pair for S.

It remains to prove that ρ = ρ(K,τ). Let aρ b. Then

ab−1ρ bb−1, b−1aρ b−1b, aa−1ρ ba−1, a−1aρ a−1b

and so ab1 , b−1a, ba−1, a−1b ∈ kerρ = K. Also

aa−1 · bb−1ρ a−1b · bb−1 = (bb−1 · b)a−1 = ba−1ρ aa−1,

aa−1 · bb−1ρ aa−1 · ba−1 = b(aa−1 · a) = ba−1ρ b−1b = bb−1,

whence it follows that aρ(K,τ)b and so ρ ⊆ aρ(K,τ).
Let aρ(K,τ)b. Then ab−1, a−1b, ba−1, b−1a ∈ K, aa−1 · bb−1τ aa−1τ bb−1,

imply that ab−1ρe, ba−1ρf for some e, f ∈ E(S). From aa−1ρbb−1, it follows
that

a ρ bb−1 · a = ab−1 · b ρ eb and bρ aa−1 · b = ba−1 · aρ fa.

Also

a ρ eb ρ e · fa ρ e(f · eb) = e(e · fb) = ee(e · fb)
= (fb · e)ee = (fb · e)e = ee · fb = e · fb = f · eb ρ fa ρ b

imply that aρb, that is ρ(K,τ) ⊆ ρ. Then ρ(K,τ) = ρ.
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