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Rigid and super rigid quasigroups
Andriy I. Deriyenko, Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract. The paper deals with quasigroups having a trivial group of automorphisms
and a trivial group of autotopisms. Examples of such quasigroups and methods of their

verification are given.

1. Introduction

Let @ = {1,2,3,...,n} be a finite set, ¢ and 1 permutations of ). The
multiplication (composition) of permutations is defined as gy (x) = p(¥(x)).
Permutations will be written in the form of cycles and cycles will be separated
by points, e.g.

/123456
Y=\l3 125 46

As it is well known, any permutation ¢ of the set @ of order n can be
decomposed into r < n cycles of the length k1, ko, ..., &k, and k1 +ko+.. . +k, =
n. We denote this fact by

Z(p) = [k1, ko, ... k.

Two permutations are conjugate if and only if they have the same number of
cycles of each length (Theorem 5.1.3 in [8]). So, for any two permutations ¢
and vy we have

) = (123.45.6.)

Z(p) = Z(¢) — BB~ = .
From the proof of Theorem 5.1.3 and Lemma 5.1.1 in [8] follows a method of
determination of #. This method is also used here, so let us recall it.

If BB~ =1 and
= (a11a12...a18,) .- (@r1 ...k, )
P = (bn bia... blkl) e (brl e kaT)
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then, according to [8], B has the form
_ ai; a2 ... Qlg; ..o Qr1r ... Qpg, 1
ﬁ <b11 b12 blkl brl brk,n)7 ()
where the first row contains all elements of ¢, the second — elements of
written in the same order as in decompositions into cycles. Replacing in ¢ the
cycle (a1 a12...a1x,) by (a12a13. .. a1k, a11) we save the permutation ¢ but

we obtain a new 3. Similarly for an arbitrary cycle of ¢ and . One can prove
that in this way we obtain all 3 satisfying the equality SpB~! = 1.

Definition 1.1. Let Q(+) be a quasigroup. Each permutation p; of @ satisfying
the identity

z - pi(r) =1, (2)

where i € Q, is called a track or a right middle translation.

Such permutations were firstly studied by V. D. Belousov [1]| in connection
with some groups associated with quasigroups. The investigations of such
permutations were continued, for example, in [5, 6] and [11].

The above condition says that in a Latin square n x n associated with
a quasigroup Q(-) of order n we select n cells, one in each row, one in each
column, containing the same fixed element i. ¢;(z) means that to find in the
row z the cell containing ¢ we must select the column @;(x). It is clear that
for a quasigroup Q(-) of order n the set {¢1,p2,...,¢,} uniquely determines
its Latin square, and conversely, any Latin square n X n uniquely determines
the set {©1,92,...,¢on}

Connections between tracks of isotopic quasigroups are described in |5] and
[6]. Namely, if {¢1,@2,...on} are tracks of Q(-), {¥1,v2,... ¥y} — tracks of
Q(o) and

V(@ oy) = alz)- B(y),
then
Py = Bhia (3)

So, tracks of isomorphic quasigroups (o« = 3 = 7y) are connected by the formula
Pai) = oo
Thus, for any automorphism « of a quasigroup Q(-) we have

Pa(i) = o (4)
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and
Z(pi) = Z(Pag))- (5)

Definition 1.2. A track ¢y of Q(-) is called special if Z(py) # Z(g;) for all
1€Q,1#k.

Example 1.3. Consider two isotopic quasigroups:

3
3
2
1

The first has the following tracks: ¢ = (1.23.), 2 = (12.3.), ¢3 = (13.2.), the
second: ¢ = (1.2.3.) = ¢, ¥ = (123.), 3 = (132.). The first has no special
tracks, the second has one.

The above examples suggest that any unipotent quasigroup has a special
track. Indeed, if x - = a for all x € @ and some fixed a € @, then, as it is
not difficult to see, ¢, = € is its special track. Moreover, ¢, = ¢ if and only if
x-x=aforall x € Q.

Lemma 1.4. If ¢y is a special track of a quasigroup Q(-), then
(a) o(k)=F,
(0) pra = apy,
(c) ¢r(k) = a(pr(k))

for any o € Aut Q(-).

Proof. Indeed, Z(pr) # Z(wi) = Z(pag)) for every i # k and a € Aut Q(")

implies «(i) # k for every i # k. Hence a(k) = k. The second statement is a
consequence of (4). (c) follows from (a) and (b). O

As a consequence of (4) and Lemma 1.4 (a) we obtain more general result.
Proposition 1.5. If ¢;, ¢; are special track of a quasigroup Q(-), then
pi(j) = alei(f))

for any a € Aut Q(+). O
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Example 1.6. The unipotent quasigroup from Example 1.3 has no special
tracks. Its prolongation

|1 2 3 4
114 2 3 1
213 1 4 2
312 4 1 3
411 3 2 4
obtained by the method proposed by Belousov (see |2] or [7]) also has no special

tracks.

Example 1.7. The idempotent quasigroup of order 3 has no special track, but
its prolongation obtained by Bruck’s method (see [3] or [7]) is an unipotent
quasigroup with one special track.

Example 1.8. The cyclic group of order 4 has no special tracks. Its prolon-
gation

-|l1 2 3 45
1({1 2 5 4 3
212 3 4 5 1
313 4 1 2 5
415 1 2 3 4
5|4 5 3 1 2
obtained according to the formula (9) from [7] has three special tracks:

02 = (12.34.5.), @4 = (145.23)), 5 = (13524.).

2. Rigid quasigroups

Autotopies of a quasigroup form a group. Isotopic quasigroups have isomorphic
groups of autotopies (see for example [2] or [4]) but groups of automorphisms
of such quasigroups may not be isomorphic. Below we give examples of such
quasigroups.

Example 2.1. Let Q(-) be a quasigroup defined by the following table:

|1 2 3 4
{1 2 3 4
213 1 4 2
314 3 2 1
412 4 1 3

It is not difficult to see that this quasigroup is isotopic to a cyclic group of
order 4 and has the following four tracks:

o1 = (1.2.34), ¢y =(124.3), 3= (1324), ¢4 = (1423.).
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Tracks ¢1 and ¢4 are special. So, according to Lemma 1.4, for any o € Aut Q(-)
we have

a(ly=1, «4)=4,

which by Proposition 1.5 implies a(3) = 3. Hence «(2) = 2, i.e., « = . This
means that this quasigroup has only one (trivial) automorphisms while a cyclic
group of order 4 has two automorphisms.

Definition 2.2. A quasigroup having only one automorphism is called rigid.

The above examples prove that a quasigroup isotopic to a rigid quasigroup
may not be rigid. Quasigroups of order two are rigid.

Proposition 2.3. No rigid quasigroups of order three.

Proof. Indeed, if a quasigroup of order 3 has an idempotent e then o = (e.xy.)
is its non-trivial automorphism. If it has no idempotents then it is commutative
and has an automorphism a = (123.). O

Each finite quasigroup containing at least 5 elements is isotopic to some
rigid quasigroup [9]. The same is true for quasigroups defined on countable
sets. So, for every k > 3 there exists at least one rigid quasigroup of order k.

There are no rigid medial quasigroups of finite order k > 2 [12], but on
the additive group of integers we can define infinitely many rigid medial quasi-
groups [13]. A simple example of such quasigroup is the quasigroup (Z, o) with
the operation x oy = —z — y + 1. Finite rigid T-quasigroups are characterized
in [12].

Note, by the way, that prolongation does not save this property. Neverthe-
less in some cases a prolongation of a rigid quasigroup is also a rigid quasigroup.
Moreover, a prolongation of a non-rigid quasigroup may be a rigid quasigroup.

Example 2.4. The cyclic group of order 4 is not a rigid quasigroup. Its
prolongation from Example 1.8 is rigid. Indeed, it has three special tracks 2,
w4 and 5. Thus, according to Lemma 1.4, for any its automorphism « we
have a(2) = 2, a(4) = 4, a(5) = 5. Since ¢2(2) = 1, p2(4) = 3, Proposition
1.5 implies a(1) = 1 and «(3) = 3. Hence o = (1.2.3.4.5.), which proves that
this quasigroup is rigid.
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Example 2.5. The loop Q(-) with the multiplication table

O U W N
O UL W N =
FNNICINS I = CY N )
U= O N W w
WO N U
N SR NS Y
[CRNS S R JO-N K=)

has the following tracks:

= (1.2.3465.), @ = (12.3.4.5.6.), ¢3 = (13.2645.),
o4 = (14.2356.), 5 = (15.24.36.), g = (16.2543.).

Since
Z(p1) =[1,1,4], Z(p2) =[1,1,1,1,2], Z(ps3) = [2,4],

Z( ) [ ) ]’ Z(SDS):P»?’Q]’ Z(@G):[Q’Lﬂa

tracks @1, s, w5 are special. So, according to Lemma 1.4, for any automor-
phism « of this quasigroup should be

By Proposition 1.5, we also have «(3) = a(y1(5 ) v1(5) = 3 and a(4) =
a(p1(3)) = ¢1(3) = 4. Thus a = (1.2.3.4.5.6.) = ¢, which means that this
loop is a rigid quasigroup.

In a similar way we can verify that the following four loops are rigid:

-1 2 3 4 5 6 ol 2 3 4 5 6
1({1 2 3 4 5 6 11 2 3 4 5 6
212 1 4 5 6 3 212 1 4 3 6 5
313 5 1 6 2 4 313 5 1 6 2 4
414 6 5 1 3 2 414 6 2 5 1 3
5|5 3 6 2 4 1 5|5 3 6 2 4 1
6|6 4 2 3 1 5 6|6 4 5 1 3 2
*|1 2 3 4 5 6 *|1 2 3 4 5 6
111 2 3 4 5 6 11 2 3 4 5 6
212 3 6 1 4 5 212 3 51 6 4
313 4 5 2 6 1 313 1 2 6 4 5
414 5 2 6 1 3 414 5 6 2 1 3
5|15 6 1 3 2 4 5|15 6 4 3 2 1
6|6 1 4 5 3 2 6|6 4 1 5 3 2



Rigid and super rigid quasigroups 23

We say that two quasigroups Q(-) and Q(x) are dual if
TRY=y-x
holds for all x,y € Q. Dual quasigroups have the same automorphisms. This
means that a quasigroup Q(+) is rigid if and only if its dual quasigroup Q(x) is
rigid.
3. Super rigid quasigroups

The next interesting class of quasigroups is a class of quasigroups having only
one (trivial) autotopism. Quasigroups with this property are called super rigid.
Clearly, a super rigid quasigroup has only one automorphism. Hence a super
rigid quasigroup is rigid. So, there are no super rigid quasigroups of order 2
and 3.

We remind some definitions and basic facts from [5] and [6].
Definition 3.1. By a spin of quasigroup Q(-) we mean the permutation
Yij = %’Sﬁ’j_l,
where ¢;, ; are tracks of Q(-). The spin ;; is called trivial.

The set ®¢ of all non-trivial spins of a quasigroup Q(-) is called a halo. It
can be divided into n disjoint parts ®1, ®s, ..., D,, where

®; = {pi1, P2, - - - » Pi(i—1)) Pi(i+1)y - - - , Pin}-

Let & = {01,02,...,01} C Sg be a collection of permutations of the set
Q. According to [6], the set

Sp(®) = [Z(01), Z(02), ..., Z(01)]

is called the spectrum of ®. The spectrum of all spins of Q(-) is called the
spin-spectrum.
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Example 3.2. The quasigroup considered in the Example 2.1 has the following
proper spins:

p12 = (1342.), @13 = (1243.), @14 = (14.23.),
po1 = (1243.), o3 = (14.23.), o4 = (1243.),
w31 = (1342.), @30 = (14.23.), 34 = (1243.),
wa1 = (14.23.), a2 = (1243.), @43 = (1342.).

Thus Sp (q)l) = [[4]7 [4]7 [27 2“7 Sp ((1)2) = [[4]7 [27 2]? [4]] = Sp (CI)3)7 Sp (@4) =
[[2,2], [4], [4]]. In the abbreviated form it will be written as Sp (®;) = 2A+ B,
where A = [4], B = [2,2].

Finite isotopic quasigroups have the same spin-spectrum ([6], Theorem 2.5).
Moreover, spins of isotopic quasigroups are pairwise conjugated. Namely, if
quasigroups Q(-) and @Q(o) are isotopic and

V(zoy) = alz) - B(y),
then spins ¢;; of Q(-) and 1 of Q(o) are connected by the equality
-1
Py(iyy() = BYigB
Hence, identifying Q(-) and Q(o), we obtain

Prir) = Bpii B (6)

This means that for any fixed ¢ € () and an arbitrary permutation v of @), we
have

Sp (®;) = Sp (P (5))-

If Sp(®;) # Sp(Py) for all k € Q, k # i, then we say that the part ®; is
special.
It is not difficult to see that the following lemma is valid.

Lemma 3.3. If ®; is a special part of ®q, then (i) =i for any autotopism
(OZ?ﬁa’Y) Of Q() O

Proposition 3.4. Dual quasigroups have the same spin-spectrum and their
special parts have the same numbers.
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Proof. Let Q(-) and Q(o) be dual quasigroups. If ¢; is a track of Q(-), then

pi(z)ox =z pi(x) =i

for every & € . From this, replacing = by ¢;1(x), we obtain x o goi*l(x) =1,
which means that ; = ¢; ! is a track of Q(-). So, spins t;; of Q(o) have the
form

bij = Yyt = 7 oy = (o5 i)

Since for any conjugate permutations o1, o2 of the same set () we have
Z(o1) = Z(o2) (cf. [8]), for any permutations «, 3, from a8 = B71(Ba)3 it
follows Z(af) = Z(fa). Thus

Z(Wig) = Z((#; ') ) = Zle; i) = Z(pi; ') = Z(ij),
fori,j =1,2,...,n. Consequently Sp (¥;) = Sp (®;) foralli =1,2,...,n. O

Proposition 3.5. A quasigroup Q(-) is super rigid if and only if its dual
quasigroup Q(o) is super rigid.

Proof. Let Q(-) be a super rigid quasigroup. If («a,f,7) is an autotopism
of a dual quasigroup Q(o), then (3, «a,) is an autotopism of Q(-). Hence
a=pF=v=c¢. 0

Now we give examples of super rigid quasigroups.

Example 3.6. Consider the following quasigroup:

1 2 3 4 5 6 7
11 2 3 4 5 6 7
212 1 7 6 4 5 3
313 6 1 2 7 4 5
414 5 2 1 3 7 6
515 7 4 3 6 2 1
66 3 5 7 2 1 4
7|7 4 6 5 1 3 2

This quasigroup has seven tracks:

01 = (1.2.3.4.57.6.), @ = (12.34.56.7.), 3= (13.276.45.),
o4 = (14.25367.), @5 = (15.26374.), g = (16.2473.5.),
o7 = (17.235.46.).
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After the calculation of all spins we can see that each spin can be decom-
posed into cycles in one of the following ways:

A=17], B = [3,4], C =223, D =12,5].
Moreover,
Sp(®1)= A +2C + 3D,
Sp(®2)= A+ B+2C+2D,
Sp(®3) = 2B +2C + 2D,
Sp(®4) =24 + C+ 3D,
Sp(®5) =24+ B+ C+2D,
Sp (®g) = 2C + 4D,
Sp(®7) = 2C + 4D.

Since parts ®1, o, P3, @4, D5 are special, from Lemma 3.3 it follows that for
any autotopism («, 3, ) of this quasigroup we have v = (1.2.3.4.5.67) or v = «.
Below we prove that the first case is impossible. For this we consider two
spins
015 = (1736245.) and @50 = (16.153.47.).

According to (6), we have
P15 = G158~ and  @5o = Bpsaf

In view of Theorem 5.1.3 from [8] any 3 satisfying the first equality has the
form ‘
B=¢l, i=1,23,...,1

The second equality is satisfied by 8 = gpéQ. So, 9035 = @%2 for some 4, j. Since
@%2(1) =6 or ng(l) = 1, we have ¢i{5(1) = 6 or p'5(1) = 1. The first case
holds for ¢ = 3, the second — for 7 = 7. The case ¢ = 3 is impossible because
©3:(6) =5 # ¢l,(6). So,i=7and 8= ¢]; =e. Thus

1z -y) = alz) -y,
which implies y(x) = y(z - 1) = a(z) for every z € Q. Consequently,
7(6)=7(3-2)=0a(3)-2=1(3)-2=3-2=6.

Hence v = a = . This proves that this quasigroup is super rigid.
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It is the smallest super rigid quasigroup. To prove this fact first we select
all rigid quasigroups of order k < 7, next we prove that these quasigroups are
not super rigid.

Example 3.7. Consider the quasigroup:

12 3 4 5 6 7 8 9
1/1 2 3 4 5 6 7 8 9
212 3 1 8 6 7 5 9 4
313 1.2 9 7 5 6 4 8
414 5 6 7 9 8 1 3 2
5/5 6 4 2 1 9 8 7 3
6|6 4 5 3 8 1 9 2 7
7TI7T 8 9 5 3 2 4 6 1
818 9 71 4 3 2 5 6
919 7 8 6 2 4 3 1 5

Using the same method as in Example 3.6 we can see that Sp(®3) =
Sp(®4) and Sp(P;) # Sp(P®;) for all ¢ # j, i # 3,4. This means that
D1, Py, P55, Pg, D7, Py and Pg are special. Thus, by Lemma 3.3, for any auto-
topism (a, 3,7) of this quasigroup should be v = (1.2.34.5.6.7.8.9.) or v = e.

We prove that v = €. For this consider two spins

wes = (197286345.) and 13 = (123.46.59.78.).

Then, similarly as in the previous example, vz = Bpes3 ! and p13 = B34~ "
imply
f= 90%8 = ¥l3

for some i =1,2,3,...,9and j =1,2,...,6. Since ¢{3(4) =4 or 90{3(4) = 6,
also pig(4) = 4 or pig(4) = 6. Thus i = 9 or i = 7. For i = 7 we have
©is(3) = 8. But ¢]5(3) # 8 for every j. So, this case is impossible. Therefore
i = 9. Consequently 8 = ¢ds = ¢, i.e., y(x -y) = a(x) -y, which implies
v(x) = y(z - 1) = az) for every x € Q). Now, using the above we obtain

¥B)=7(2-2)=a(2)-2=v(2)-2=2-2=3.

Hence v = a = . This means that this quasigroup has no nontrivial auto-
topisms. So, it is super rigid.
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