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Rigid and super rigid quasigroups

Andriy I. Deriyenko, Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract. The paper deals with quasigroups having a trivial group of automorphisms
and a trivial group of autotopisms. Examples of such quasigroups and methods of their
veri�cation are given.

1. Introduction

Let Q = {1, 2, 3, . . . , n} be a �nite set, ϕ and ψ permutations of Q. The
multiplication (composition) of permutations is de�ned as ϕψ(x) = ϕ(ψ(x)).
Permutations will be written in the form of cycles and cycles will be separated
by points, e.g.

ϕ =
(

1 2 3 4 5 6
3 1 2 5 4 6

)
= (123.45.6.)

As it is well known, any permutation ϕ of the set Q of order n can be
decomposed into r 6 n cycles of the length k1, k2, . . . , kr and k1+k2+. . .+kr =
n. We denote this fact by

Z(ϕ) = [k1, k2, . . . , kr].

Two permutations are conjugate if and only if they have the same number of
cycles of each length (Theorem 5.1.3 in [8]). So, for any two permutations ϕ
and ψ we have

Z(ϕ) = Z(ψ)←→ βϕβ−1 = ψ.

From the proof of Theorem 5.1.3 and Lemma 5.1.1 in [8] follows a method of
determination of β. This method is also used here, so let us recall it.

If βϕβ−1 = ψ and

ϕ = (a11 a12 . . . a1k1) . . . (ar1 . . . arkr)
ψ = (b11 b12 . . . b1k1) . . . (br1 . . . brkr)
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then, according to [8], β has the form

β =
(
a11 a12 . . . a1k1 . . . ar1 . . . arkr

b11 b12 . . . b1k1 . . . br1 . . . brkr

)
, (1)

where the �rst row contains all elements of ϕ, the second � elements of ψ
written in the same order as in decompositions into cycles. Replacing in ϕ the
cycle (a11 a12 . . . a1k1) by (a12 a13 . . . a1k1 a11) we save the permutation ϕ but
we obtain a new β. Similarly for an arbitrary cycle of ϕ and ψ. One can prove
that in this way we obtain all β satisfying the equality βϕβ−1 = ψ.

De�nition 1.1. LetQ(·) be a quasigroup. Each permutation ϕi ofQ satisfying
the identity

x · ϕi(x) = i, (2)

where i ∈ Q, is called a track or a right middle translation.

Such permutations were �rstly studied by V. D. Belousov [1] in connection
with some groups associated with quasigroups. The investigations of such
permutations were continued, for example, in [5, 6] and [11].

The above condition says that in a Latin square n × n associated with
a quasigroup Q(·) of order n we select n cells, one in each row, one in each
column, containing the same �xed element i. ϕi(x) means that to �nd in the
row x the cell containing i we must select the column ϕi(x). It is clear that
for a quasigroup Q(·) of order n the set {ϕ1, ϕ2, . . . , ϕn} uniquely determines
its Latin square, and conversely, any Latin square n × n uniquely determines
the set {ϕ1, ϕ2, . . . , ϕn}.

Connections between tracks of isotopic quasigroups are described in [5] and
[6]. Namely, if {ϕ1, ϕ2, . . . ϕn} are tracks of Q(·), {ψ1, ψ2, . . . ψn} � tracks of
Q(◦) and

γ(x ◦ y) = α(x) · β(y),

then
ϕγ(i) = βψiα

−1. (3)

So, tracks of isomorphic quasigroups (α = β = γ) are connected by the formula

ϕα(i) = αψiα
−1.

Thus, for any automorphism α of a quasigroup Q(·) we have

ϕα(i) = αϕiα
−1 (4)
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and

Z(ϕi) = Z(ϕα(i)). (5)

De�nition 1.2. A track ϕk of Q(·) is called special if Z(ϕk) 6= Z(ϕi) for all
i ∈ Q, i 6= k.

Example 1.3. Consider two isotopic quasigroups:

· 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

◦ 1 2 3

1 1 2 3
2 3 1 2
3 2 3 1

The �rst has the following tracks: ϕ1 = (1.23.), ϕ2 = (12.3.), ϕ3 = (13.2.), the
second: ψ1 = (1.2.3.) = ε, ψ2 = (123.), ψ3 = (132.). The �rst has no special
tracks, the second has one.

The above examples suggest that any unipotent quasigroup has a special
track. Indeed, if x · x = a for all x ∈ Q and some �xed a ∈ Q, then, as it is
not di�cult to see, ϕa = ε is its special track. Moreover, ϕa = ε if and only if
x · x = a for all x ∈ Q.

Lemma 1.4. If ϕk is a special track of a quasigroup Q(·), then
(a) α(k) = k,

(b) ϕkα = αϕk,

(c) ϕk(k) = α(ϕk(k))
for any α ∈ AutQ(·).

Proof. Indeed, Z(ϕk) 6= Z(ϕi) = Z(ϕα(i)) for every i 6= k and α ∈ AutQ(·)
implies α(i) 6= k for every i 6= k. Hence α(k) = k. The second statement is a
consequence of (4). (c) follows from (a) and (b).

As a consequence of (4) and Lemma 1.4 (a) we obtain more general result.

Proposition 1.5. If ϕi, ϕj are special track of a quasigroup Q(·), then

ϕi(j) = α(ϕi(j))

for any α ∈ AutQ(·). �



20 A. I. Deriyenko, I. I. Deriyenko and W. A. Dudek

Example 1.6. The unipotent quasigroup from Example 1.3 has no special
tracks. Its prolongation

· 1 2 3 4

1 4 2 3 1
2 3 1 4 2
3 2 4 1 3
4 1 3 2 4

obtained by the method proposed by Belousov (see [2] or [7]) also has no special
tracks.

Example 1.7. The idempotent quasigroup of order 3 has no special track, but
its prolongation obtained by Bruck's method (see [3] or [7]) is an unipotent
quasigroup with one special track.

Example 1.8. The cyclic group of order 4 has no special tracks. Its prolon-
gation

· 1 2 3 4 5

1 1 2 5 4 3
2 2 3 4 5 1
3 3 4 1 2 5
4 5 1 2 3 4
5 4 5 3 1 2

obtained according to the formula (9) from [7] has three special tracks:

ϕ2 = (12.34.5.) , ϕ4 = (145.23.) , ϕ5 = (13524.) .

2. Rigid quasigroups

Autotopies of a quasigroup form a group. Isotopic quasigroups have isomorphic
groups of autotopies (see for example [2] or [4]) but groups of automorphisms
of such quasigroups may not be isomorphic. Below we give examples of such
quasigroups.

Example 2.1. Let Q(·) be a quasigroup de�ned by the following table:

· 1 2 3 4

1 1 2 3 4
2 3 1 4 2
3 4 3 2 1
4 2 4 1 3

It is not di�cult to see that this quasigroup is isotopic to a cyclic group of
order 4 and has the following four tracks:

ϕ1 = (1.2.34.) , ϕ2 = (124.3.) , ϕ3 = (132.4.) , ϕ4 = (1423.) .
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Tracks ϕ1 and ϕ4 are special. So, according to Lemma 1.4, for any α ∈ AutQ(·)
we have

α(1) = 1 , α(4) = 4 ,

which by Proposition 1.5 implies α(3) = 3. Hence α(2) = 2, i.e., α = ε. This
means that this quasigroup has only one (trivial) automorphisms while a cyclic
group of order 4 has two automorphisms.

De�nition 2.2. A quasigroup having only one automorphism is called rigid.

The above examples prove that a quasigroup isotopic to a rigid quasigroup
may not be rigid. Quasigroups of order two are rigid.

Proposition 2.3. No rigid quasigroups of order three.

Proof. Indeed, if a quasigroup of order 3 has an idempotent e then α = (e.xy.)
is its non-trivial automorphism. If it has no idempotents then it is commutative
and has an automorphism α = (123.).

Each �nite quasigroup containing at least 5 elements is isotopic to some
rigid quasigroup [9]. The same is true for quasigroups de�ned on countable
sets. So, for every k > 3 there exists at least one rigid quasigroup of order k.

There are no rigid medial quasigroups of �nite order k > 2 [12], but on
the additive group of integers we can de�ne in�nitely many rigid medial quasi-
groups [13]. A simple example of such quasigroup is the quasigroup (Z, ◦) with
the operation x ◦ y = −x− y+ 1. Finite rigid T-quasigroups are characterized
in [12].

Note, by the way, that prolongation does not save this property. Neverthe-
less in some cases a prolongation of a rigid quasigroup is also a rigid quasigroup.
Moreover, a prolongation of a non-rigid quasigroup may be a rigid quasigroup.

Example 2.4. The cyclic group of order 4 is not a rigid quasigroup. Its
prolongation from Example 1.8 is rigid. Indeed, it has three special tracks ϕ2,
ϕ4 and ϕ5. Thus, according to Lemma 1.4, for any its automorphism α we
have α(2) = 2, α(4) = 4, α(5) = 5. Since ϕ2(2) = 1, ϕ2(4) = 3, Proposition
1.5 implies α(1) = 1 and α(3) = 3. Hence α = (1.2.3.4.5.), which proves that
this quasigroup is rigid.
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Example 2.5. The loop Q(·) with the multiplication table

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 5 6 3
3 3 6 2 1 4 5
4 4 5 6 2 3 1
5 5 3 1 6 2 4
6 6 4 5 3 1 2

has the following tracks:

ϕ1 = (1.2.3465.), ϕ2 = (12.3.4.5.6.), ϕ3 = (13.2645.),
ϕ4 = (14.2356.), ϕ5 = (15.24.36.), ϕ6 = (16.2543.) .

Since
Z(ϕ1) = [1, 1, 4], Z(ϕ2) = [1, 1, 1, 1, 2], Z(ϕ3) = [2, 4],
Z(ϕ4) = [2, 4], Z(ϕ5) = [2, 2, 2], Z(ϕ6) = [2, 4],

tracks ϕ1, ϕ2, ϕ5 are special. So, according to Lemma 1.4, for any automor-
phism α of this quasigroup should be

α(1) = 1, α(2) = 2, α(5) = 5.

By Proposition 1.5, we also have α(3) = α(ϕ1(5)) = ϕ1(5) = 3 and α(4) =
α(ϕ1(3)) = ϕ1(3) = 4. Thus α = (1.2.3.4.5.6.) = ε, which means that this
loop is a rigid quasigroup.

In a similar way we can verify that the following four loops are rigid:

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 5 6 3
3 3 5 1 6 2 4
4 4 6 5 1 3 2
5 5 3 6 2 4 1
6 6 4 2 3 1 5

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 2 4
4 4 6 2 5 1 3
5 5 3 6 2 4 1
6 6 4 5 1 3 2

∗ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 6 1 4 5
3 3 4 5 2 6 1
4 4 5 2 6 1 3
5 5 6 1 3 2 4
6 6 1 4 5 3 2

? 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 5 1 6 4
3 3 1 2 6 4 5
4 4 5 6 2 1 3
5 5 6 4 3 2 1
6 6 4 1 5 3 2
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We say that two quasigroups Q(·) and Q(∗) are dual if

x ∗ y = y · x

holds for all x, y ∈ Q. Dual quasigroups have the same automorphisms. This
means that a quasigroup Q(·) is rigid if and only if its dual quasigroup Q(∗) is

rigid.

3. Super rigid quasigroups

The next interesting class of quasigroups is a class of quasigroups having only
one (trivial) autotopism. Quasigroups with this property are called super rigid.
Clearly, a super rigid quasigroup has only one automorphism. Hence a super
rigid quasigroup is rigid. So, there are no super rigid quasigroups of order 2
and 3.

We remind some de�nitions and basic facts from [5] and [6].

De�nition 3.1. By a spin of quasigroup Q(·) we mean the permutation

ϕij = ϕiϕ
−1
j ,

where ϕi, ϕj are tracks of Q(·). The spin ϕii is called trivial.

The set ΦQ of all non-trivial spins of a quasigroup Q(·) is called a halo. It
can be divided into n disjoint parts Φ1,Φ2, . . . ,Φn, where

Φi = {ϕi1, ϕi2, . . . , ϕi(i−1), ϕi(i+1), . . . , ϕin}.

Let Φ = {σ1, σ2, . . . , σk} ⊆ SQ be a collection of permutations of the set
Q. According to [6], the set

Sp (Φ) = [Z(σ1), Z(σ2), . . . , Z(σk)]

is called the spectrum of Φ. The spectrum of all spins of Q(·) is called the
spin-spectrum.



24 A. I. Deriyenko, I. I. Deriyenko and W. A. Dudek

Example 3.2. The quasigroup considered in the Example 2.1 has the following
proper spins:

ϕ12 = (1342.), ϕ13 = (1243.), ϕ14 = (14.23.),
ϕ21 = (1243.), ϕ23 = (14.23.), ϕ24 = (1243.),
ϕ31 = (1342.), ϕ32 = (14.23.), ϕ34 = (1243.),
ϕ41 = (14.23.), ϕ42 = (1243.), ϕ43 = (1342.).

Thus Sp (Φ1) = [[4], [4], [2, 2]], Sp (Φ2) = [[4], [2, 2], [4]] = Sp (Φ3), Sp (Φ4) =
[[2, 2], [4], [4]]. In the abbreviated form it will be written as Sp (Φi) = 2A+B,
where A = [4], B = [2, 2].

Finite isotopic quasigroups have the same spin-spectrum ([6], Theorem 2.5).
Moreover, spins of isotopic quasigroups are pairwise conjugated. Namely, if
quasigroups Q(·) and Q(◦) are isotopic and

γ(x ◦ y) = α(x) · β(y),

then spins ϕij of Q(·) and ψij of Q(◦) are connected by the equality

ϕγ(i)γ(j) = βψijβ
−1.

Hence, identifying Q(·) and Q(◦), we obtain

ϕγ(i)γ(j) = βϕijβ
−1. (6)

This means that for any �xed i ∈ Q and an arbitrary permutation γ of Q, we
have

Sp (Φi) = Sp (Φγ(i)).

If Sp (Φi) 6= Sp (Φk) for all k ∈ Q, k 6= i, then we say that the part Φi is
special.

It is not di�cult to see that the following lemma is valid.

Lemma 3.3. If Φi is a special part of ΦQ, then γ(i) = i for any autotopism

(α, β, γ) of Q(·). �

Proposition 3.4. Dual quasigroups have the same spin-spectrum and their

special parts have the same numbers.
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Proof. Let Q(·) and Q(◦) be dual quasigroups. If ϕi is a track of Q(·), then

ϕi(x) ◦ x = x · ϕi(x) = i

for every x ∈ Q. From this, replacing x by ϕ−1
i (x), we obtain x ◦ ϕ−1

i (x) = i,
which means that ψi = ϕ−1

i is a track of Q(·). So, spins ψij of Q(◦) have the
form

ψij = ψiψ
−1
j = ϕ−1

i ϕj = (ϕ−1
j ϕi)−1.

Since for any conjugate permutations σ1, σ2 of the same set Q we have
Z(σ1) = Z(σ2) (cf. [8]), for any permutations α, β, from αβ = β−1(βα)β it
follows Z(αβ) = Z(βα). Thus

Z(ψij) = Z((ϕ−1
j ϕi)−1) = Z(ϕ−1

j ϕi) = Z(ϕiϕ
−1
j ) = Z(ϕij),

for i, j = 1, 2, . . . , n. Consequently Sp (Ψi) = Sp (Φi) for all i = 1, 2, . . . , n.

Proposition 3.5. A quasigroup Q(·) is super rigid if and only if its dual

quasigroup Q(◦) is super rigid.

Proof. Let Q(·) be a super rigid quasigroup. If (α, β, γ) is an autotopism
of a dual quasigroup Q(◦), then (β, α, γ) is an autotopism of Q(·). Hence
α = β = γ = ε.

Now we give examples of super rigid quasigroups.

Example 3.6. Consider the following quasigroup:

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 1 7 6 4 5 3
3 3 6 1 2 7 4 5
4 4 5 2 1 3 7 6
5 5 7 4 3 6 2 1
6 6 3 5 7 2 1 4
7 7 4 6 5 1 3 2

This quasigroup has seven tracks:

ϕ1 = (1.2.3.4.57.6.), ϕ2 = (12.34.56.7.), ϕ3 = (13.276.45.),
ϕ4 = (14.25367.), ϕ5 = (15.26374.), ϕ6 = (16.2473.5.),
ϕ7 = (17.235.46.).
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After the calculation of all spins we can see that each spin can be decom-
posed into cycles in one of the following ways:

A = [7], B = [3, 4], C = [2, 2, 3], D = [2, 5].

Moreover,
Sp (Φ1) = A + 2C + 3D,
Sp (Φ2) = A + B + 2C + 2D,
Sp (Φ3) = 2B + 2C + 2D,
Sp (Φ4) = 2A + C + 3D,
Sp (Φ5) = 2A + B + C + 2D,
Sp (Φ6) = 2C + 4D,
Sp (Φ7) = 2C + 4D.

Since parts Φ1,Φ2,Φ3,Φ4,Φ5 are special, from Lemma 3.3 it follows that for
any autotopism (α, β, γ) of this quasigroup we have γ = (1.2.3.4.5.67) or γ = ε.

Below we prove that the �rst case is impossible. For this we consider two
spins

ϕ15 = (1736245.) and ϕ52 = (16.153.47.).

According to (6), we have

ϕ15 = βϕ15β
−1 and ϕ52 = βϕ52β

−1.

In view of Theorem 5.1.3 from [8] any β satisfying the �rst equality has the
form

β = ϕi
15, i = 1, 2, 3, . . . , 7.

The second equality is satis�ed by β = ϕj
52. So, ϕ

i
15 = ϕj

52 for some i, j. Since

ϕj
52(1) = 6 or ϕj

52(1) = 1, we have ϕi
15(1) = 6 or ϕi

15(1) = 1. The �rst case
holds for i = 3, the second � for i = 7. The case i = 3 is impossible because
ϕ3

15(6) = 5 6= ϕj
52(6). So, i = 7 and β = ϕ7

15 = ε. Thus

γ(x · y) = α(x) · y,

which implies γ(x) = γ(x · 1) = α(x) for every x ∈ Q. Consequently,

γ(6) = γ(3 · 2) = α(3) · 2 = γ(3) · 2 = 3 · 2 = 6.

Hence γ = α = ε. This proves that this quasigroup is super rigid.
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It is the smallest super rigid quasigroup. To prove this fact �rst we select
all rigid quasigroups of order k < 7, next we prove that these quasigroups are
not super rigid.

Example 3.7. Consider the quasigroup:

· 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 3 1 8 6 7 5 9 4
3 3 1 2 9 7 5 6 4 8
4 4 5 6 7 9 8 1 3 2
5 5 6 4 2 1 9 8 7 3
6 6 4 5 3 8 1 9 2 7
7 7 8 9 5 3 2 4 6 1
8 8 9 7 1 4 3 2 5 6
9 9 7 8 6 2 4 3 1 5

Using the same method as in Example 3.6 we can see that Sp (Φ3) =
Sp (Φ4) and Sp (Φi) 6= Sp (Φj) for all i 6= j, i 6= 3, 4. This means that
Φ1,Φ2,Φ5,Φ6,Φ7,Φ8 and Φ9 are special. Thus, by Lemma 3.3, for any auto-
topism (α, β, γ) of this quasigroup should be γ = (1.2.34.5.6.7.8.9.) or γ = ε.

We prove that γ = ε. For this consider two spins

ϕ68 = (197286345.) and ϕ13 = (123.46.59.78.).

Then, similarly as in the previous example, ϕ68 = βϕ68β
−1 and ϕ13 = βϕ13β

−1

imply

β = ϕi
68 = ϕj

13

for some i = 1, 2, 3, . . . , 9 and j = 1, 2, . . . , 6. Since ϕj
13(4) = 4 or ϕj

13(4) = 6,
also ϕi

68(4) = 4 or ϕi
68(4) = 6. Thus i = 9 or i = 7. For i = 7 we have

ϕ7
68(3) = 8. But ϕj

13(3) 6= 8 for every j. So, this case is impossible. Therefore
i = 9. Consequently β = ϕ9

68 = ε, i.e., γ(x · y) = α(x) · y, which implies
γ(x) = γ(x · 1) = α(x) for every x ∈ Q. Now, using the above we obtain

γ(3) = γ(2 · 2) = α(2) · 2 = γ(2) · 2 = 2 · 2 = 3.

Hence γ = α = ε. This means that this quasigroup has no nontrivial auto-
topisms. So, it is super rigid.
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