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N -quasigroups

Wiesªaw A. Dudek and Young Bae Jun

Abstract. The notion of N -quasigroups is introduced, and several properties are in-
vestigated. A characterization of an N -quasigroup is given. The notion of translation of
N -quasigroups is introduced, and related properties are discussed. Using a class of sub-
quasigroups of a quasigroup, we establish an N -quasigroup.

1. Preliminaries
A quasigroup (G, ·) is a set G with a binary operation �·� such that for each
a and b in G there exist unique elements x and y in G such that a · x = b
and y · a = b. The unique solutions to these equations are written x = a\b
and y = b/a. The operations �\� and �/� denote the de�ned binary opersations
of left and right division, respectively. This axiomatization of quasigroups
requires existential quanti�cation and hence �rst order logic. The second def-
inition of a quasigroup is grounded in universal algebra, which prefers that
algebraic structures be varieties, i.e., that structures be axiomatized solely by
identities. An identity is an equation in which all variables are tacitly univer-
sally quanti�ed, and the only operations are the primitive operations proper
to the structure. Quasigroups can be axiomatized in this manner if left and
right division are taken as primitive.

A quasigroup (G, ·, \, /) is a type (2, 2, 2) algebra satisfying the identities:

(x · y)/y = x, x\ (x · y) = y, (x/y) · y = x, x · (x\y) = y

(cf. [1] or [4]). Hence if (G, ·) is a quasigroup according to the �rst def-
inition, then (G, ·, \, /) is an equivalent quasigroup in the universal algebra
sense. We say also that (G, ·, \, /) is an equasigroup (i.e., equationally de�n-
able quasigroup) [4] or a primitive quasigroup [1]. The equasigroup (G, ·, \, /)
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corresponds to quasigroup (G, ·) where
x\ y = z ←→ x · z = y, x/y = z ←→ z · y = x.

Unipotent quasigroups, i.e., quasigroups with the identity x · x = y · y, are
connected with Latin squares which have one �xed element in the diagonal
(cf. [2]). Such quasigroups may be de�ned as quasigroups G with the special
element θ satisfying the identity x ·x = θ. Obviously, θ is uniquely determined
and it is an idempotent, but, in general, it is not the (left, right) neutral
element. A non-empty subset S of a quasigroup G = (G, ·, \, /) is called a
subquasigroup if it is closed with respect to these three operations, i.e., x∗y ∈ S
for all x, y ∈ S and ∗ ∈ {·, \, /}.

Denote by N(G, [−1, 0]) the collection of functions from a set G to [−1, 0].
We say that an element of N(G, [−1, 0]) is a negative-valued function from G
to [−1, 0] (brie�y, N -function on G). By an N -structure we mean an ordered
pair (G,ϕ) of G and an N -function ϕ on G. In what follows, let G denote a
quasigroup and ϕ an N -function on G unless otherwise speci�ed.

For any ϕ and t ∈ [−1, 0), the set
C(ϕ; t) := {x ∈ G | ϕ(x) 6 t}

is called a closed (ϕ, t)-cut of ϕ, and the set
O(ϕ; t) := {x ∈ G | ϕ(x) < t}

is called an open (ϕ, t)-cut of ϕ.
The investigation of such algebraic structures is motivated by bipolar-

valued fuzzy sets introduced in [3] as a common generalization of intuitionistic
fuzzy sets, vague sets and soft sets. Bipolar-valued fuzzy sets are fuzzy sets
whose membership degree range is enlarged from the interval [0, 1] to the in-
terval [−1, 1]. In a bipolar-valued fuzzy sets, the membership degree 0 means
that elements are irrelevant to the corresponding property, the membership
degree (0, 1] indicates that elements somewhat satisfy the property, and the
membership degree [−1, 0) indicates that elements somewhat satisfy the im-
plicit counter-property. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets
look similar, but they are di�erent (see [3]).

2. N -quasigroups
In what follows, let G denote a quasigroup and ϕ an N -function on G unless
otherwise speci�ed.
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De�nition 2.1. By a quasigroup of G based on ϕ (brie�y, N -quasigroup of
G), we mean anN -structure (G,ϕ) such that every non-empty closed (ϕ, t)-cut
C(ϕ; t), where t ∈ [−1, 0), of ϕ is a subquasigroup of G.

Example 2.2. Let G = {1, 2, 3, 4} be a set with the following Cayley table:
· 1 2 3 4
1 2 1 3 4
2 1 2 4 3
3 4 3 1 2
4 3 4 2 1

Then (G, ·) is a quasigroup. The \-operation and the /-operation on G are
given by the following Cayley tables respectively:

\ 1 2 3 4
1 2 1 3 4
2 1 2 4 3
3 3 4 2 1
4 4 3 1 2

/ 1 2 3 4
1 2 1 3 4
2 1 2 4 3
3 4 3 1 2
4 3 4 2 1

De�ne an N -function ϕ on G by

G 1 2 3 4

ϕ −0.7 −0.7 −0.4 −0.4

It is routine to check that (G, ϕ) is an N -quasigroup of G.

Example 2.3. Consider a quasigroup (Z,−) where Z is the set of all integers.
Let ϕ be an N -function on Z de�ned by

ϕ(x) =
{ −0.6 if x ∈ 2Z,
−0.3 otherwise

for all x ∈ Z. Then (Z, ϕ) is an N -quasigroup of Z.

We �rst give a characterization of an N -quasigroup of G.

Theorem 2.4. Let (G, ϕ) be an N -structure of G and ϕ. Then (G,ϕ) is an
N -quasigroup of G if and only if it satis�es:

ϕ(x ∗ y) 6 max{ϕ(x), ϕ(y)} (1)

for all x, y ∈ G and ∗ ∈ {·, \, /}.
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Proof. Assume that (G,ϕ) is an N -quasigroup of G, that is, C(ϕ; t) is a non-
empty subquasigroup of G for all t ∈ [−1, 0). If the inequality (1) is not valid for
some ∗ ∈ {·, \, /}, then there exist a, b ∈ G and t0 ∈ [−1, 0) such that ϕ(a∗b) >
t0 > max{ϕ(a), ϕ(b)}. It follows that a, b ∈ C(ϕ; t0) and a∗b /∈ C(ϕ; t0). This is
a contradiction since C(ϕ; t0) is a subquasigroup of G. Therefore the inequality
(1) is valid for all ∗ ∈ {·, \, /}.

Conversely, suppose that the inequality (1) is true for all ∗ ∈ {·, \, /} and
x, y ∈ G. Let t ∈ [−1, 0) be such that C(ϕ; t) 6= ∅. Let x, y ∈ C(ϕ; t). Then
ϕ(x) 6 t and ϕ(y) 6 t. It follows from (1) that

ϕ(x ∗ y) 6 max{ϕ(x), ϕ(y)} 6 t

so that x ∗ y ∈ C(ϕ; t) for all ∗ ∈ {·, \, /}. Hence C(ϕ; t) is a subquasigroup of
G, and so (G,ϕ) is an N -quasigroup of G.

Corollary 2.5. If (G,ϕ) is an N -quasigroup of G, then every non-empty open
(ϕ, t)-cut of G is a subquasigroup of G for all t ∈ [−1, 0).

Proof. Straightforward.

Let ϕ and ψ be N -functions on G. The union ϕ ∪ ψ and the intersection
ϕ ∩ ψ of ϕ and ψ are de�ned by

(∀x ∈ G)((ϕ ∪ ψ)(x) = max{ϕ(x), ψ(x)}),

(∀x ∈ G)((ϕ ∩ ψ)(x) = min{ϕ(x), ψ(x)}),
respectively.

Theorem 2.6. If (G,ϕ) and (G,ψ) are N -quasigroups of G, then (G,ϕ ∪ ψ)
is also an N -quasigroup of G.

Proof. Let x, y ∈ G and ∗ ∈ {·, \, /}. Then

(ϕ ∪ ψ)(x ∗ y) = max{ϕ(x ∗ y), ψ(x ∗ y)}
6 max{max{ϕ(x), ϕ(y)}, max{ψ(x), ψ(x)}}
= max{max{ϕ(x), ψ(x)}, max{ϕ(y), ψ(y)}}
= max{(ϕ ∪ ψ)(x), (ϕ ∪ ψ)(y)}.

Therefore (G,ϕ ∪ ψ) is an N -quasigroup of G.
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The following example shows that (G, ϕ∩ ψ) is not an N -quasigroup of G
although (G,ϕ) and (G, ψ) are N -quasigroups of G.

Example 2.7. Let G = {1, 2, 3, 4, 5, 6} be a set with the following Cayley
table:

· 1 2 3 4 5 6

1 1 2 3 6 5 4
2 4 6 1 5 2 3
3 6 5 4 1 3 2
4 5 4 2 3 6 1
5 3 1 6 2 4 5
6 2 3 5 4 1 6

Then (G, ·) is a quasigroup. De�ne two N -functions ϕ and ψ on G by

G 1 2 3 4 5 6

ϕ −0.7 −0.4 −0.4 −0.4 −0.4 −0.4

ψ −0.3 −0.3 −0.3 −0.3 −0.3 −0.8

Then (G,ϕ) and (G,ψ) are N -quasigroups of G. Note that if t ∈ [−0.7,−0.4),
then C(ϕ∩ ψ; t) = {1, 6} is not a subquasigroup of G. Hence (G,ϕ∩ ψ) is not
an N -quasigroup of G.

Proposition 2.8. Let G be a unipotent quasigroup. If (G,ϕ) is an N -quasigroup
of G, then ϕ(θ) 6 ϕ(x) for all x ∈ G.

Proof. Since x · x = θ for all x ∈ G, we have

ϕ(θ) = ϕ(x · x) 6 max{ϕ(x), ϕ(x)} = ϕ(x)

for all x ∈ G by (1).

Proposition 2.9. Let (G,ϕ) be an N -quasigroup of G. For any ∗ ∈ {·, \, /}
and x, y ∈ G, we have

max{ϕ(x ∗ y), ϕ(x)} = max{ϕ(x ∗ y), ϕ(y)} = max{ϕ(x), ϕ(y)}. (2)

Proof. We �rst consider the case when ∗ is the quasigroup multiplication. Since
(x · y)/y = x for all x, y ∈ G, we get
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max{ϕ(x · y), ϕ(y)} 6 max{max{ϕ(x), ϕ(y)}, ϕ(y)}
= max{ϕ(x), ϕ(y)}
= max{ϕ((x · y)/y), ϕ(y)}
6 max{max{ϕ(x · y), ϕ(y)}, ϕ(y)}
= max{ϕ(x · y), ϕ(y)}

and so

max{ϕ(x · y), ϕ(y)} = max{ϕ(x), ϕ(y)} (3)

for all x, y ∈ G. Note that x\ (x · y) = y for all x, y ∈ G. Using (1), we have

max{ϕ(x · y), ϕ(x)} 6 max{max{ϕ(x), ϕ(y)}, ϕ(x)}
= max{ϕ(x), ϕ(y)}
= max{ϕ(x), ϕ(x\ (x · y))}
6 max{ϕ(x), max{ϕ(x), ϕ(x · y)}}
= max{ϕ(x · y), ϕ(x)}

which implies that

max{ϕ(x · y), ϕ(x)} = max{ϕ(x), ϕ(y)} (4)

for all x, y ∈ G.

We now discuss the case when ∗ is the left division. Then for any x, y ∈ X,
we obtain

max{ϕ(x\ y), ϕ(x)} 6 max{max{ϕ(x), ϕ(y)}, ϕ(x) = max{ϕ(x), ϕ(y)}

by using (1). Since x · (x\ y) = y for all x, y ∈ G, we have

max{ϕ(x), ϕ(y)} = max{ϕ(x), ϕ(x · (x\ y))}
6 max{ϕ(x), max{ϕ(x), ϕ(x\ y)}}
= max{ϕ(x), ϕ(x\y)}.

Hence max{ϕ(x\y), ϕ(x) = ϕ(ϕ(x), ϕ(y)} for all x, y ∈ G. Since

x\ y = z ←→ x · z = y
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for all x, y, z ∈ G, we know, by using (3), that

max{ϕ(x\ y), ϕ(y)} = max{ϕ(z), ϕ(x · z)}
= max{ϕ(z), ϕ(x)}
= max{ϕ(x\ y), ϕ(x)}
= max{ϕ(x), ϕ(y)}.

We �nally consider the case when ∗ is the right division. Then

max{ϕ(x/y), ϕ(y)} 6 max{max{ϕ(x), ϕ(y)}, ϕ(y)} = max{ϕ(x), ϕ(y)}.

Using (1) and the identity x = (x/y) · y, we obtain

max{ϕ(x), ϕ(y)} = max{ϕ((x/y) · y), ϕ(y)}
6 max{max{ϕ(x/y), ϕ(y)}, ϕ(y)}
= max{ϕ(x/y), ϕ(y)}.

Therefore

max{ϕ(x/y), ϕ(y)} = max{ϕ(x), ϕ(y)} (5)

for all x, y ∈ G. Note that x/y = u implies u · y = x for all u, x, y ∈ G. Then

max{ϕ(x/y), ϕ(x)} = max{ϕ(u), ϕ(u · y)}
= max{ϕ(u), ϕ(y)}
= max{ϕ(x/y), ϕ(y)}
= max{ϕ(x), ϕ(y)}

by (4) and (5). This completes the proof.

Corollary 2.10. Let (G,ϕ) be an N -quasigroup of G. For any x, y ∈ G, if
ϕ(x) < ϕ(y) then ϕ(x ∗ y) = ϕ(x) = ϕ(y ∗ x) for all ∗ ∈ {·, \, /}.
Proof. Straightforward.

For any element w of G, we consider the set

Gw := {x ∈ G | ϕ(x) 6 ϕ(w)}.

Obviously, w ∈ Gw, and so Gw is non-empty.
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Theorem 2.11. Let w be an element of G. If (G,ϕ) is an N -quasigroup of G,
then Gw is a subquasigroup of G.

Proof. Let x, y ∈ Gw. Then ϕ(x) 6 ϕ(w) and ϕ(y) 6 ϕ(w). It follows from (1)
that

ϕ(x ∗ y) 6 max{ϕ(x), ϕ(y)} 6 ϕ(w)

so that x ∗ y ∈ Gw for all ∗ ∈ {·, \, /}. Hence Gw is a subquasigroup of G.

Theorem 2.12. Let ϕ be an N -function on G with

Im(ϕ) = {t0, t1, t2, . . . , tn},

where t0 < t1 < t2 < . . . < tn. Let {Qk | k = 0, 1, 2, . . . , n} be a class of
subquasigroups of G such that

(i) Q0 ⊂ Q1 ⊂ Q2 ⊂ . . . ⊂ Qn = G,

(ii) ϕ(Q+
k ) = tk where Q+

k = Qk \Qk−1 and Q−1 = ∅ for k = 0, 1, 2, . . . , n.

Then (G,ϕ) is an N -quasigroup of G.

Proof. Let x, y ∈ G. Then x ∈ Q+
k and y ∈ Q+

r for some k, r ∈ {0, 1, 2, . . . , n}.
We may assume that k > r without loss of generality. Then x, y ∈ Qk since
Q+

r ⊂ Qr ⊆ Qk and Q+
k ⊂ Qk. Since Qk is a subquasigroup of G, we have

x ∗ y ∈ Qk for all ∗ ∈ {·, \, /}. Hence

ϕ(x ∗ y) 6 tk = max{tk, tr} = max{ϕ(x), ϕ(y)}

for all ∗ ∈ {·, \, /}. Therefore (G,ϕ) is an N -quasigroup of G.

For any N -function ϕ on G, we denote

φ := −1− inf{ϕ(x) | x ∈ X}.

For any α ∈ [φ, 0], we de�ne ϕT
α(x) = ϕ(x) + α for all x ∈ G. Obviously, ϕT

α is
a mapping from G to [−1, 0], that is, ϕT

α is an N -function on G. We say that
(G,ϕT

α) is an α-translation of (G,ϕ).

Theorem 2.13. For any α ∈ [φ, 0], the α-translation (G,ϕT
α) of an N -quasi-

group (G,ϕ) is an N -quasigroup of G.
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Proof. For any x, y ∈ G and ∗ ∈ {·, \, /}, we have

ϕT
α(x ∗ y) = ϕ(x ∗ y) + α

6 max{ϕ(x), ϕ(y)}+ α

= max{ϕ(x) + α, ϕ(y) + α}
= max{ϕT

α(x), ϕT
α(y)}.

Therefore (G,ϕT
α) is an N -quasigroup of G.

Theorem 2.14. If there exists α ∈ [φ, 0] such that α-translation (G,ϕT
α) of

(G,ϕ) is an N -quasigroup of G, then (G,ϕ) is an N -quasigroup of G.

Proof. Assume that (G,ϕT
α) is an N -quasigroup of G for some α ∈ [φ, 0]. Let

x, y ∈ G and ∗ ∈ {·, \, /}. Then

ϕ(x ∗ y) + α = ϕT
α(x ∗ y)

6 max{ϕT
α(x), ϕT

α(y)}
= max{ϕ(x) + α,ϕ(y) + α}
= max{ϕ(x), ϕ(y)}+ α,

which implies that ϕ(x∗y) 6 max{ϕ(x), ϕ(y)}. Thus (G,ϕ) is anN -quasigroup
of G.

For any N -function ϕ on G, α ∈ [φ, 0] and t ∈ [−1, α], let

Lα(ϕ; t) := {x ∈ G | ϕ(x) 6 t− α}.

Proposition 2.15. Let (G, ϕ) be an N -structure of G and ϕ, and let α ∈
[φ, 0]. If (G,ϕ) is an N -quasigroup of G, then each non-empty Lα(ϕ; t), where
t ∈ [−1, α], is a subquasigroup of G.

Proof. Assume that (G,ϕ) is an N -quasigroup of G and let t ∈ [−1, α] such
that Lα(ϕ; t) 6= ∅. Let x, y ∈ Lα(ϕ; t). Then ϕ(x) 6 t− α and ϕ(y) 6 t− α. It
follows from (1) that

ϕ(x ∗ y) 6 max{ϕ(x), ϕ(y)} 6 t− α

so that x ∗ y ∈ Lα(ϕ; t) for all ∗ ∈ {·, \, /}. Hence Lα(ϕ; t) is a subquasigroup
of G.
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Theorem 2.16. Let (G,ϕ) be an N -structure and α ∈ [φ, 0]. Then the α-
translation (G,ϕT

α) of (G,ϕ) is an N -quasigroup of G if and only if for all
t ∈ [−1, α] each non-empty Lα(ϕ; t) is a subquasigroup of G.
Proof. Assume that (G,ϕT

α) is an N -quasigroup of G and let t ∈ [−1, α] such
that Lα(ϕ; t) 6= ∅. Let x, y ∈ Lα(ϕ; t). Then ϕ(x) 6 t − α and ϕ(y) 6 t − α.
Hence

ϕ(x ∗ y) + α = ϕT
α(x ∗ y) 6 max{ϕT

α(x), ϕT
α(y)}

= max{ϕ(x) + α, ϕ(y) + α}
= max{ϕ(x), ϕ(y)}+ α 6 t

for all ∗ ∈ {·, \, /}. It follow that ϕ(x ∗ y) 6 t− α so that x ∗ y ∈ Lα(ϕ; t) for
all ∗ ∈ {·, \, /}. Therefore Lα(ϕ; t) is a subquasigroup of G.

Conversely, let ∗ ∈ {·, \, /}. We claim that
ϕT

α(x ∗ y) 6 max{ϕT
α(x), ϕT

α(y)} (6)
for all x, y ∈ G. If (6) is false, then ϕT

α(a ∗ b) > s > max{ϕT
α(a), ϕT

α(b)}
for some a, b ∈ G and s ∈ [−1, α]. Hence ϕ(a) 6 s − α and ϕ(b) 6 s − α,
but ϕ(a ∗ b) > s − α. Thus a, b ∈ Lα(ϕ; s) and a ∗ b /∈ Lα(ϕ; s). This is a
contradiction, and so (G,ϕT

α) is an N -quasigroup of G.
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