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Uniform topology and spectral topology
on hyper MV-algebras

Shokoofeh Ghorbani, Esfandiar Eslami and Abbas Hasankhani

Abstract. S-re�exive hyper MV-�lters of a hyper MV-algebra, uniform structure and
uniform topology are introduced, and it is proved that the uniform topology on an MV-
algebra is discrete. Next, a (strong) prime hyper MV-�lter and spectral topology are studied.

1. Introduction

MV-algebras are introduced by C. C. Chang in 1958 [1] to provide an algebraic
proof of completeness theorem of in�nite valued �ukasewicz propositional cal-
culus. The hyper structure theory was introduced by Marty at 8th Congress
of Scandinavian Mathematicians in 1934. Since then many researchers have
worked on this area. Recently in [2] we applied the hyper structure to MV-
algebras and introduced the notion of a hyper MV-algebra which is a general-
ization of MV-algebra and investigated some related results.

In the next section some preliminary theorems are stated from [2] and [3].
In section 3, we de�ne the S-re�exive hyper MV-�lter of a hyper MV-algebra
and obtain some results. Then we de�ne a uniform structure and a uniform
topology. We show that each S-re�exive hyper MV-�lter is a clopen subset
and a uniform topology is discrete topology if and only if {1} is a S-re�exive
hyper MV-�lter. In section 4, we de�ne (strong) prime hyper MV-�lters and
prove some theorems. Then we de�ne spectral topology and we show that it
is a T0 topology.
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2. Preliminaries
De�nition 2.1. A hyper MV-algebra is a non-empty set M endowed with a
hyper operation � ⊕ �, a unary operation � ∗ � and a constant 0 satisfying the
following axioms:

(hMV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(hMV2) x⊕ y = y ⊕ x,
(hMV3) (x∗)∗ = x,
(hMV4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,
(hMV5) 0∗ ∈ x⊕ 0∗,
(hMV6) 0∗ ∈ x⊕ x∗,
(hMV7) if x ¿ y and y ¿ x , then x = y, for all x, y, z ∈ M,

where x ¿ y is de�ned by 0∗ ∈ x∗ ⊕ y.

For every A,B ⊆ M , we de�ne A ¿ B if and only if there exist a ∈ A and
b ∈ B such that a ¿ b. Also, we de�ne 0∗ := 1 and A∗ = {a∗ : a ∈ A}.
Proposition 2.2. Let < M,⊕, ∗, 0 > be a hyper MV-algebra. Then for all
x, y, z ∈ M and for all non-empty subset A,B and C of M the following hold:

(1) (A⊕B)⊕ C = A⊕ (B ⊕ C), 0⊕ 0 = 0,
(2) 0 ¿ x, x ¿ x, x ¿ 1, x ¿ x⊕ y,
(3) x ¿ y implies y∗ ¿ x∗, A ¿ B implies B∗ ¿ A∗,
(4) A ¿ A, A ¿ A⊕B, (A∗)∗ = A,
(5) A ⊆ B implies A ¿ B,
(6) x ∈ x⊕ 0,
(7) y ∈ x⊕ 0 implies y ¿ x, x⊕ 0 = y ⊕ 0 implies y = x. ¤

In this paper a hyper MV-algebra < M,⊕, ∗, 0 > will be denoted by M .
We will consider only non-trivial hyper MV-algebras, i.e., hyper MV-algebras
such that M 6= {0}.
De�nition 2.3. A non-empty subset F of a hyper MV-algebra M is called a
weak hyper MV-�lter of M, if

(whF1) 1 ∈ F,

(whF2) if F ⊆ x∗ ⊕ y and x ∈ F , then y ∈ F for all x, y ∈ M .

De�nition 2.4. A non-empty subset F of a hyper MV-algebra M is called a
hyper MV-�lter of M, if

(hF1) 1 ∈ F,

(hF2) if F ¿ x∗ ⊕ y and x ∈ F, then y ∈ F for all x, y ∈ M.
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The smallest hyper MV -�lter containing a non-empty subset S of M is
denoted by 〈S〉.
Proposition 2.5. {1} is a hyper MV-�lter of any hyper MV-algebra. ¤
Proposition 2.6. Let F be a hyper MV-�lter of a hyper MV-algebra M . If
x ¿ y and x ∈ F, then y ∈ F. ¤
Proposition 2.7. Let F be a hyper MV-�lter of a hyper MV-algebra M . Then
F is a weak hyper MV-�lter of M. ¤
Proposition 2.8. Let {Fα}α∈Γ be a family of hyper MV-�lters of a hyper
MV-algebra M. Then

⋂
α∈Γ

Fα is a hyper MV-�lter of M. ¤

De�nition 2.9. Let M1 and M2 be two hyper MV-algebras. A mapping
f : M1 → M2 is said to be a homomorphism, if f(0) = 0, f(x⊕y) = f(x)⊕f(y)
and f(x∗) = (f(x))∗.
Clearly if f is a homomorphism, then f(1) = 1.
Theorem 2.10. Let f : M1 → M2 be a homomorphism of hyper MV-algebras.
Then

(1) if F is a (weak) hyper MV-�lter of M2, then f−1(F ) is a (weak) hyper
MV-�lter of M1,

(2) ker f = {x ∈ M1 : f(x) = 1} is a hyper MV-�lter of M1, consequently
ker f is a weak hyper MV-�lter of M1,

(3) f is one-to-one if and only if ker f = {1},
(4) if f is onto and F is a hyper MV-�lter of M1 which contains ker f ,

then f(F ) is a hyper MV-�lter of M2. ¤

3. Uniform topology on hyper MV-algebras
Proposition 3.1. Let A,B ⊆ M. If F is a hyper MV-�lter of M such that
F ¿ A∗ ⊕B. Then

(a) F ∩ (A∗ ⊕B) 6= ∅,
(b) if A ⊆ F , then F ¿ B.

Proof. Since F ¿ A∗⊕B =
⋃

a∈A, b∈B

a∗⊕ b, then there exist a1 ∈ A and b1 ∈ B

such that F ¿ a∗1⊕ b1. So, there exist r ∈ F and t ∈ a∗1⊕ b1 such that r ¿ t.
Thus t ∈ F by Proposition 2.6. Therefore F ∩ (A∗ ⊕B) 6= ∅. Moreover, since
F is a hyper MV-�lter of M and A ⊆ F , we have also F ¿ B.
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De�nition 3.2. A hyper MV-�lter F of M is called S-re�exive if for all
x, y ∈ M (x∗ ⊕ y) ∩ F 6= ∅ implies (x∗ ⊕ y) ⊆ F .
Example 3.3. Let M = {0, a, b, 1}. Consider the following tables:

⊕ 0 a b 1
0 {0} {0, a} {b} {b, 1}
a {0, a} {0, a} {b, 1} {b, 1}
b {b} {b, 1} {b, 1} {b, 1}
1 {b, 1} {b, 1} {b, 1} {b, 1}

∗ 0 a b 1
1 b a 0

Then < M,⊕, ∗, 0 > is a hyper MV-algebra and F = {b, 1} is a S-re�exive
hyper MV-�lter of M. But J = {1} is not a S-re�exive hyper MV-�lter because
(b∗ ⊕ b) ∩ J 6= ∅ and (b∗ ⊕ b) 6⊆ F .
Proposition 3.4. The intersection of a family of S-re�exive hyper MV-�lters
is a S-re�exive hyper MV-�lter.

Proof. Use Proposition 2.8.

Lemma 3.5. Let x, y ∈ M. Then (y∗ ⊕ z) ¿ (x∗ ⊕ y)∗ ⊕ (x∗ ⊕ z).

Proof. Use (hMV1), (hMV4) and Proposition 2.2.

De�nition 3.6. Let F be a S-re�exive hyper MV-�lter of M. Then we de�ne
UF := {(x, y) ∈ X ×X : x ∼F y}, where

x ∼F y ←→ (F ¿ x∗ ⊕ y and F ¿ y∗ ⊕ x).

Theorem 3.7. ∼F is an equivalence relation on M.

Proof. Since 1 ∈ x∗⊕x, F << x∗⊕x. Hence x ∼F x. Clearly ∼F is symmetric.
Let x ∼F y and y ∼F z. Then F ¿ x∗ ⊕ y, F ¿ y∗ ⊕ x, F ¿ y∗ ⊕ z

and F ¿ z∗ ⊕ y. Since F is a S-re�exive hyper MV-�lter of M, then we have
x∗⊕y ⊆ F, y∗⊕x ⊆ F, y∗⊕z ⊆ F and z∗⊕y ⊆ F. On the other hand by Lemma
3.5, we have (y∗⊕z) ¿ (x∗⊕y)∗⊕(x∗⊕z). Hence F ¿ (x∗⊕y)∗⊕(x∗⊕z). Since
F ⊆ x∗ ⊕ y , by Proposition 3.1, we have F ¿ x∗ ⊕ z. Similarly F ¿ z∗ ⊕ x.
Therefore x ∼F z.

Let X be a non-empty set, U and V be subsets of X ×X. Then we de�ne
U ◦ V = {(x, y) ∈ X ×X : (x, z) ∈ U and (z, y) ∈ V for some z ∈ X},

U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U},
∆ = {(x, x) ∈ X ×X : x ∈ X}.
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De�nition 3.8. [4] A uniformity on X is a non-empty collection K of subsets
of X ×X satisfying the following conditions:

(U1) ∆ ⊆ U for any U ∈ K,

(U2) if U ∈ K, then U−1 ∈ K,

(U3) if U ∈ K, then there exists a V ∈ K such that V ◦ V ⊆ U,

(U4) if U, V ∈ K, then U ∩ V ∈ K,

(U5) if U ∈ K and U ⊆ V ⊆ X ×X, then V ∈ K.
Then pair (X, K) is called a uniform structure.

Proposition 3.9. Let {Fi}n
i=1 be a �nite family of S-re�exive hyper MV-�lters

of M. Then UF1 ∩ . . . ∩ UFn = UF1∩...∩Fn .

Proof. Using induction and Proposition 3.1.

Theorem 3.10. Let F be a S-re�exive hyper MV-�lter of M. If

K∗ = {UF : F is a S − reflexive hyper MV − filter of M},

then K∗ satis�es conditions (U1)− (U4).

Proof. Since x ∼F x for all S-re�exive hyper MV-�lter F of M and for all
x ∈ M, then ∆ ⊆ UF for all UF ∈ K∗. Clearly U−1

F = UF . Let UF ∈ K∗.
Then the transitivity of ∼F implies that UF ◦UF ⊆ UF . Let UF , UJ ∈ K∗. By
Proposition 3.10 we have UF ∩ UJ = UF∩J .

Corollary 3.11. K = {U ⊆ M ×M : UF ⊆ U for some UF ∈ K∗} satis�es
the uniformity conditions on M and the pair (M, K) is a uniform structure.

Proof. The proof easily follows from Theorem 3.10.

Let U [x] := {y ∈ M : (x, y) ∈ U}, where x ∈ M and U ∈ K.

Theorem 3.12. τ = {A ⊆ M : ∀x ∈ A, ∃U ∈ K (U [x] ⊆ A)} is a topology
on M called the uniform topology on M induced by K.

Proof. Clearly ∅,M ∈ τ and τ is closed under an arbitrary union. LetA,B ∈ τ.
Then there exist U, V ∈ K such that U [x] ⊆ A and V [x] ⊆ B. Let W = U ∩V.
Then W ∈ K by (U4) and W [x] = U [x] ∩ V [x]. Hence W [x] ⊆ A ∩ B and
A ∩B ∈ τ. Thus τ is a topology on M.
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Remark 3.13. U [x] is an open neighborhood of x.
Lemma 3.14. If U{1} ∈ K∗, then U{1}[x] = {x}.
Proof. U{1}[x] = {y ∈ M : x ∼{1} y} = {y ∈ M : {1} ¿ x∗⊕y, {1} ¿ y∗⊕x}
= {y ∈ M : x∗ ⊕ y ⊆ {1}, y∗ ⊕ x ⊆ {1}} = {y ∈ M : x = y} = {x}.
Proposition 3.15. If F and {1} are two S-re�exive hyper MV-�lters of M
and U{1} = UF , then F = {1}.
Proof. Let F 6= {1}, then there exists 1 6= z ∈ F. We have z ∈ 1∗ ⊕ z and
1 ∈ z∗ ⊕ 1 by Proposition 2.2 and (hMV5). Thus F ¿ 1∗ ⊕ z and F ¿ z∗ ⊕ 1
then (z, 1) ∈ UF . On the other hand since we have {1} 6¿ 1∗ ⊕ z, then
(z, 1) /∈ U{1}. Hence U{1} 6= UF .

Lemma 3.16. Let F be a S-re�exive hyper MV-�lter of M. If ∆ = UF , then
F = {1}.
Proof. Let F 6= {1}, then there exists 1 6= z ∈ F. Similar to Proposition 3.13,
we can show that (z, 1) ∈ UF but (z, 1) /∈ ∆. Hence ∆ 6= UF .

Theorem 3.17. U{1} ∈ K∗ if and only if τ is a discrete topology.

Proof. Let U{1} ∈ K∗. By using Lemma 3.14, we have {x} = U{1}[x] ∈ τ for
all x ∈ M. Hence τ is a discrete topology.

Conversely, let τ be a discrete topology. Hence {x} is open for all x ∈
M. By de�nition there exists a S-re�exive hyper MV-�lter F of M such that
UF [x] ⊆ {x}. Therefore UF [x] = {x} for all x ∈ M. Hence ∆ = UF and then
we have F = {1} by Lemma 3.16.

Remark 3.18. Let < M,+, ∗, 0 > be an MV-algebra. Then < M,⊕, ∗, 0 > is
a hyper MV-algebra where x⊕ y = {x+ y} for all x, y ∈ M. We can show that
every �lter of < M, +, ∗, 0 > is a S-re�exive hyper MV-�lter of < M,⊕, ∗, 0 >.
So, by the above theorem, uniform topology on M is a discrete topology.
Theorem 3.19. Let F be a S-re�exive hyper MV-�lter of M. Then UF [x] is
clopen set in the topological space (M, τ).

Proof. Let F be an arbitrary S-re�exive hyper MV-�lter of M and x be an
element of M. It is clear that UF [x] is an open set in (M, τ). We will show
that (UF [x])c is an open set in (M, τ). Let y ∈ (UF [x])c. We claim that
UF [y] ⊆ (UF [x])c. Suppose that z ∈ UF [y]. Then we have F ¿ y∗ ⊕ z and
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F ¿ z∗ ⊕ y. Since F is a S-re�exive hyper MV-�lter of M, then y∗ ⊕ z ⊆ F
and z∗ ⊕ y ⊆ F. If we have x ∼F z, then x∗ ⊕ z ⊆ F and z∗ ⊕ x ⊆ F . By
Lemma 3.5, we have z∗ ⊕ y ¿ (x∗ ⊕ z)∗ ⊕ (x∗ ⊕ y). Using Proposition 3.1, we
have F ¿ x∗ ⊕ y. Similarly F ¿ y∗ ⊕ x. Therefore x ∼F y, i.e., y ∈ UF [x]
which is a contradiction. Hence z ∈ (UF [x])c. Thus UF [y] ⊆ (UF [x])c and then
UF [x] is closed.

Theorem 3.20. [7] If (X, τ) a is uniform space, then the corresponding
topological space is completely regular. ¤
Corollary 3.21. The topological space (M, τ) is completely regular. ¤
Example 3.22. Consider Example 3.3 and S-re�exive hyper MV-�lter F =
{b, 1}. We have

K∗ = {UF } = {(0 , 0), (a, a), (b, b), (1, 1), (0, a), (a, 0)}.
We can show that (M,K) is a uniform structure, where

K = {U ⊆ M ×M : UF ⊆ U}.
Moreover the open neighborhoods are

UF [0] = {0, a} = UF [a], UF [b] = {b, 1} = UF [1].

We have τ = {∅, {b}, {1}, {0, a}, {0, a, b, 1}}. Then (M, τ) is a uniform topol-
ogy space which is not discrete. Also, we can show that (M, τ) is not Hausdor�.
Remember that a topological space X is connected if and only if the only
subsets of X that are both open and closed in X are empty set and X itself.
Corollary 3.23. The topological space (M, τ) is connected if and only if M is
the only S-re�exive hyper MV-�lter of M. ¤
Notation: UF [A] =

⋃
a∈A

UF [a].

Theorem 3.24. Let A ⊆ M. Then A =
⋂{UF [A] : UF ∈ K∗}, where A is

closure of A in the topological space (M, τ).

Proof. Let b ∈ A and UF ∈ K∗. Since UF [b] is an open neighborhood of b, then
UF [b] ∩A 6= ∅. Hence there exists a ∈ A such that a ∈ UF [b], i.e., F ¿ a∗ ⊕ b
and F ¿ b∗⊕a. Thus b ∈ UF [a] ⊆ UF [A]. Therefore b ∈ ⋂{UF [A] : UF ∈ K∗}.

Conversely, let b ∈ ⋂{UF [A] : UF ∈ K∗}, then b ∈ UF [A] for each UF ∈ K∗.
Hence there exists a ∈ A such that a ∈ UF [b] and then UF [b] ∩A 6= ∅ for each
UF ∈ K∗. Therefore b ∈ A.
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Corollary 3.25. Each S-re�exive hyper MV-�lter F of M is clopen in the
topological space (M, τ).

Proof. Let F be a S-re�exive hyper MV-�lter of M. First we will show that
UF [F ] = F . Let x ∈ UF [F ]. Then there exists a ∈ F such that F ¿ a∗ ⊕ x
and F ¿ x∗ ⊕ a. Hence x ∈ F and then UF [F ] ⊆ F.

Conversely, let x ∈ F then x ∈ UF [x] ⊆ UF [F ]. Hence F ⊆ UF [F ]. By the
above theorem, we get that F ⊆ F ⊆ UF [F ] = F and then F = F. It is clear
that F is an open subset of M.

Theorem 3.26. Let A be a compact subset of M and O be an open set
containing A. Then there exists a S-re�exive hyper MV-�lterF of M such that
A ⊆ UF [A] ⊆ O.

Proof. Since O is an open set containing A, for a ∈ A there exists a S-re�exive
hyper MV-�lter Fa of M such that UFa [a] ⊆ O. Hence A ⊆ ⋃

a∈A

UFa [a]. Since
A is a compact subset of M , then there exist a1, a2, . . . , an ∈ A such that

A ⊆ UF1 [a1] ∪ . . . ∪ UFn [an].

Put F =
n⋂

i=1
Fi. Then by Proposition 3.9, we have UF = UF1 ∩ . . . ∩ UFn .

We claim that UF [a] ⊆ O for any a ∈ A. Let a ∈ A. Then there exists
1 6 i 6 n such that a ∈ UFi [ai] and hence a ∼Fi ai. Let y ∈ UF [a], then
y ∼F a. Therefore we have y ∼Fi ai and hence y ∈ UFi [ai] ⊆ O. It shows that
UF [a] ⊆ O for any a ∈ A. Thus A ⊆ UF [A] ⊆ O.

Theorem 3.27. Let K be a compact subset of M and C be a closed subset of
M. If K ∩ C = ∅, then there exists a S-re�exive hyper MV-�lter F of M such
that UF [K] ∩ UF [C] = ∅.

Proof. Since K ∩ C = ∅ and C is closed, M\C is an open set containing K.
Then there exists a S-re�exive hyper MV-�lter F of M such that K ⊆ UF [K] ⊆
M\C by the above theorem. We claim that UF [K]∩UF [C] = ∅. Suppose that
UF [K] ∩ UF [C] 6= ∅ , then there exists y ∈ M such that y ∈ UF [a] and
y ∈ UF [b] for some a ∈ K and b ∈ C, respectively. Hence a ∼F b and then
b ∈ UF [a] ⊆ UF [K]. This contradicts to the fact that UF [K] ⊆ M\C. Hence
UF [K] ∩ UF [C] = ∅.
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Let F0 be the intersection of all S-re�exive hyper MV-�lters of M. Then F0

is a S-re�exive hyper MV-�lter of M by Proposition 3.4. De�ne K∗
F0

= {UF0}
and KF0 = {U ⊆ M ×M : UF0 ⊆ U }. Then we can show that (M,KF0) is a
uniform structure. The uniform topology induced by KF0 is denoted by τF0 .

Theorem 3.28. τ = τF0 .

Proof. Let A ∈ τ . Then for all x ∈ A, there exists U ∈ K such that U [x] ⊆ A.
So there exists a S-re�exive hyper MV-�lter F of M such that UF ⊆ U . Since
F0 ⊆ F , we have UF0 ⊆ UF ⊆ U and U [x] ⊆ A. Hence A ∈ τF0 and then
τ ⊆ τF0 .

Conversely, let O ∈ τF0 . Then for all x ∈ O, there exists U ∈ KF0 such
that U [x] ⊆ O and UF0 ⊆ U . Since F0 is a S-re�exive hyper MV-�lter of M,
we have U ∈ K and hence O ∈ τ . Therefore τF0 ⊆ τ .

Theorem 3.29. F0 and UF0 [x] are compact sets in the topological space (M, τ).

Proof. Let F0 ⊆
⋃

α∈Γ

Oα, where Oα is an open set in M for each α ∈ Γ. Since
1 ∈ F0, there exists α ∈ Γ such that 1 ∈ Oα. Since Oα is an open set, there
exists U ∈ KF0 such that U [1] ⊆ Oα and UF0 ⊆ U . We show that F0 = UF0 [1].
Let x ∈ F0. Since x ∈ 1∗ ⊕ x and 1 ∈ x∗ ⊕ 1, we have F0 ¿ x∗ ⊕ 1 and
F0 ¿ 1∗ ⊕ x. Hence x ∈ UF0 [1]. So F0 ⊆ UF0 [1]. Conversely, let x ∈ UF0 [1].
Then F0 ¿ x∗ ⊕ 1 and F0 ¿ 1∗ ⊕ x. Since F0 ¿ 1∗ ⊕ x, 1 ∈ F0 and F0 is a
hyper MV-�lter of M , we get x ∈ F0. So UF0 [1] ⊆ F0. Hence F0 ⊆ Oα and
then F0 is compact.

Let UF0 [x] =
⋃

α∈Γ

Oα, where Oα is an open set in M for each α ∈ Γ. Since

x ∈ UF0 [x], there exists α ∈ Γ such that x ∈ Oα. Since Oα is an open set,
there exists U ∈ KF0 such that U [x] ⊆ Oα and UF0 ⊆ U . Hence UF0 [x] ⊆ Oα

and then UF0 [x] is compact set.

Corollary 3.30. The topological space (M, τ) is locally compact.

Proof. It follows from Theorem 3.19, Theorem 3.28 and Theorem 3.29.

Theorem 3.31. The topological space (M, τ) is compact if and only if There
exists X = {x1, x2, . . . , xn} ⊆ M such that for each a ∈ M there exists xi ∈ X
which F0 ¿ x∗i ⊕ a and F0 ¿ a∗ ⊕ xi.
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Proof. Let the topological space (M, τ) be compact. Then M ⊆ ⋃
x∈M

UF0 [x],

where UF0 [x] is an open set for each x ∈ M by Theorem 3.19. Therefore
there exist x1, x2, . . . , xn ∈ M such that M ⊆

n⋃
i=1

UF0 [xi]. Now, let a ∈ M be
arbitrary, then there exists xi for some 1 6 i 6 n such that a ∈ UF0 [xi]. Hence
F0 ¿ x∗i ⊕ a and F0 ¿ a∗ ⊕ xi.

Conversely, let M ⊆ ⋃
α∈Γ

Oα, where Oα is an open set in for each α ∈ Γ and
a ∈ M be arbitrary. By assumption there exists xi ∈ X which F0 ¿ x∗i ⊕ a

and F0 ¿ a∗ ⊕ xi. Thus a ∈ UF0 [xi]. Hence M ⊆
n⋃

i=1
UF0 [xi]. On the other

hand M ⊆ ⋃
α∈Γ

Oα, then for each xi ∈ X there exists Oαi such that xi ∈ Oαi .

Therefore UF0 [x] ⊆ Oαi . Hence M ⊆
n⋃

i=1
Oαi and the topological space(M, τ)

is compact.

Theorem 3.32. If F c
0 is �nite, then the topological space (M, τ) is compact.

Proof. Let M ⊆ ⋃
α∈Γ

Oα, where Oα is an open set in M for each α ∈ Γ and

F c
0 = {x1, x2, . . . , xn}. Since 1 ∈ F0, there exists α0 ∈ Γ such that 1 ∈ Oα0 .

Hence F0 = UF0 [1] ⊆ Oα0 . Also there exist α1, α2, . . . , αn ∈ Γ such that
x1 ∈ Oα1 , x2 ∈ Oα2 , . . ., xn ∈ Oαn . Hence M ⊆

n⋃
i=0

Oαi and the topological
space (M, τ) is compact.

Theorem 3.33. (M, τ) is a Hausdor� topological space if and only if F0 = {1}.
Proof. Let the topological space (M, τ) be Hausdor�. Then there exist open
set O1 and O2 such that x ∈ O1, 1 ∈ O2, O1 ∩ O2 = ∅, UF0 [x] ⊆ O1 and
UF0 [1] ⊆ O2. Hence we have UF0 [x] ∩ UF0 [1] = ∅ for each 1 6= x ∈ M. So
x /∈ UF0 [1] and then F0 6¿ x∗ ⊕ 1 or F0 6¿ 1∗ ⊕ x. Since F0 ¿ x∗ ⊕ 1, we have
F0 6¿ 1∗ ⊕ x. Thus y /∈ F0 for each y ∈ 0 ⊕ x. Since x ∈ 0 ⊕ x, then x /∈ F0.
Hence for each 1 6= x ∈ M we have x /∈ F0 and then F0 = {1}.

Conversely, let F0 = {1}. Then {1} is a S-re�exive hyper MV-�lter of M.
Thus τ is a discrete topology by Theorem 3.17. Hence the topological space
(M, τ) is Hausdor�.

Theorem 3.34. The following are equivalent:
(1) M is T0,
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(2) M is T1,
(3) M is Hausdor�.

Proof. (1) → (2) Suppose that x 6= y. If there exists an open set O such that
x ∈ O and y /∈ O, then we have UF0 [x] ⊆ O and y /∈ UF0 [x]. Hence x /∈ UF0 [y].
Similarly, we can show that if there exists an open set O such that y ∈ O and
x /∈ O, there exist open neighborhoods V of x and W of y such that y /∈ V
and x /∈ W .
(2) → (3) Suppose that x 6= y. Then there exist open set O1 and O2 such that
x ∈ O1, y /∈ O1, y ∈ O2 and x /∈ O2. Hence UF0 [x] ⊆ O1, y /∈ UF0 [x], UF0 [y] ⊆
O2 and x /∈ UF0 [y]. We claim UF0 [x]∩UF0 [y] = ∅. Let z ∈ UF0 [x]∩UF0 [y]. Then
x ∼F0 z and z ∼F0 y. Hence x ∼F0 y. So y ∈ UF0 [x] which is contradiction.
Hence M is Hausdor�.
(2) → (3) It is clear.

4. Spectral topology on hyper MV-algebras
De�nition 4.1. A proper hyper MV-�lter P of M is called a strong prime
hyper MV-�lter of M , if P ⊆ x∗ ⊕ y or P ⊆ y∗ ⊕ x for all x, y ∈ M.

Remark 4.2. We note that if P is a strong prime hyper MV-�lter of M and
x, y ∈ M such that x 6= y, then P can not be a subset of both x∗ ⊕ y and
y∗ ⊕ x.
Example 4.3. Consider Example 3.3 and hyper MV-�lters P1 = {1} and
P2 = {1, b}. We can show that P1 and P2 are strong prime hyper MV-�lters
of M.

Proposition 4.4. The intersection of any family of strong prime hyper MV-
�lters of a hyper MV-algebra M is a strong prime hyper MV-�lter of M.

Proof.
⋂

α∈Γ

Pα is a hyper MV-�lter of M by Proposition 2.8. Let x, y ∈ M. If

x = y, then it is clear that
⋂

α∈Γ

Pα ⊆ x∗ ⊕ y and
⋂

α∈Γ

Pα ⊆ y∗ ⊕ x. Now let
x 6= y and let there exist α, β ∈ Γ such that Pα ⊆ x∗ ⊕ y and Pβ ⊆ y∗ ⊕ x.
Since 1 ∈ Pα and 1 ∈ Pβ , then x ¿ y and y ¿ x. By (hMV5) x = y which is
a contradiction. Hence

⋂
α∈Γ

Pα ⊆ x∗ ⊕ y or
⋂

α∈Γ

Pα ⊆ y∗ ⊕ x.

De�nition 4.5. A proper hyper MV-�lter P of M is called a prime hyper
MV-�lter of M if P ¿ x∗ ⊕ y or P ¿ y∗ ⊕ x for all x, y ∈ M.



50 Sh. Ghorbani, E. Eslami and A. Hasankhani

Proposition 4.6. A strong prime hyper MV-�lter is prime.

Proof. Use Proposition 2.2.

Remark 4.7. The converse of Proposition 4.6 may not be true. Also the
intersection of prime hyper MV-�lters may not be a prime hyper MV-�lter of
a hyper MV-algebra M. Consider the following example.
Example 4.8. Let M = {0, a, b, 1}. Consider the following tables:
⊕ 0 a b 1
0 {0} {0, a} {0, b} {0, a, b, 1}
a {0, a} {0, a} {0, a, b, 1} {0, a, b, 1}
b {0, b} {0, a, b, 1} {0, b} {0, a, b, 1}
1 {0, a, b, 1} {0, a, b, 1} {0, a, b, 1} {0, a, b, 1}

∗ 0 a b 1
1 b a 0

Then < M,⊕, ∗, 0 > is a hyper MV-algebra, P1 = {a, 1} and P2 = {1, b} are
prime hyper MV-�lters of M but are not strong prime hyper MV-�lters M
because P1, P2 6⊆ a∗ ⊕ b and P1, P2 6⊆ b∗ ⊕ a. Also P1 ∩ P2 = {1} is neither a
prime hyper MV-�lter nor a strong prime hyper MV-�lter of M. Thus M has
no strong prime hyper MV-�lter.
Theorem 4.9. Let f : M1 → M2 be an epimorphism of hyper MV-algebras.
Then

(1) if P is a (strong) prime hyper MV-�lter of M1 which contains ker f ,
then f(P ) is a (strong) prime hyper MV-�lter of M2,

(2) if P is a (strong) prime hyper MV-�lter of M2, then f−1(P ) is a
(strong) prime hyper MV-�lter of M1,

(3) the map P 7−→ f(P ) is one to one corresponding between (strong)
prime hyper MV-�lters of M1 which contain ker f and (strong) prime
hyper MV-�lter of M2.

Proof. (1) Let f(P ) = M2. Since P 6= M1, there exists some x ∈ M1 such
that x /∈ P. So f(x) ∈ M2 = f(P ). Thus there exists some a ∈ P such that
f(x) = f(a) and then 1 ∈ f(x) ⊕ f(a)∗ = f(x ⊕ a∗). So there exists some
t ∈ a∗ ⊕ x such that f(t) = 1, i.e., t ∈ ker f ⊆ P. Then P ¿ a∗ ⊕ x. Thus
x ∈ P which is a contradiction. Hence f(P ) 6= M2. By Theorem 2.10 f(P ) is
a hyper MV-�lter of M2.

Let x, y ∈ M2. Then there exist a, b ∈ M1 such tat f(a) = x and f(b) = y.
Since P is a strong prime hyper MV-�lter of M1, then we have P ⊆ a∗ ⊕ b or
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P ⊆ b∗ ⊕ a. Let P ⊆ a∗ ⊕ b then f(P ) ⊆ f(a∗ ⊕ b) = f(a)∗ ⊕ f(b) = x∗ ⊕ y.
Hence f(P ) is a strong prime hyper MV-�lter of M2.

Similarly, we can show that if P is a prime hyper MV-�lter of M1 which
contains ker f , then f(P ) is a prime hyper MV-�lter of M2.
(2) Let f−1(P ) = M1. Since P 6= M2, there exists y ∈ M2 such that y /∈ P.
So f−1(y) ∈ M1 = f−1(P ). Thus there exists some x ∈ M1 such that y =
f(x) ∈ P which is a contradiction. Hence f−1(P ) 6= M1. By Theorem 2.10,
f−1(P ) is a hyper MV-�lter of M1. Let a, b ∈ f−1(P ). Then f(a), f(b) ∈ P .
Hence P ⊆ f(a)∗ ⊕ f(b) = f(a∗ ⊕ b) or P ⊆ f(b)∗ ⊕ f(a) = f(b∗ ⊕ a). Let
P ⊆ f(a∗ ⊕ b). Then we can show that f−1(P ) ⊆ a∗ ⊕ b. Similarly, we can
show that if P is a prime hyper MV-�lter of M2, then f−1(P ) is a prime hyper
MV-�lter of M1.
(3) The proof is straightforward by (1), (2).

De�nition 4.10. The set of all strong prime hyper MV-�lters of M is called
the hyper MV-spectrum and is denoted by HSpec(M).
Theorem 4.11. Let C(F ) = {P ∈ HSpec (M) : F ⊆ P} for each hyper MV-
�lter F of M. Then C= {C(F ) : F is a hyper MV − filter of M} de�nes
a closed sets family for a topology over HSpec( M). This topology is called
spectral topology or Zarisky topology on HSpec( M).

Proof. (1) Since C(M) = ∅ and C({1}) = HSpec (M), then ∅,HSpec(M) ∈ C.
(2) Let {Fα}α∈Γ be a family of hyper MV-�lters of M. We claim that

⋂
α∈Γ

C(Fα) =

C(〈 ⋃
α∈Γ

Fα〉). Let P be any strong prime hyper MV-�lter of M. Then

P ∈
⋂

α∈Γ

C(Fα) ←→ ∀α ∈ Γ P ∈ C(Fα) ←→ ∀α ∈ Γ Fα ⊆ P

←→ 〈
⋃

α∈Γ

Fα〉 ⊆ P ←→ P ∈ C(〈
⋃

α∈Γ

Fα〉).

Hence
⋂

α∈Γ

C(Fα) ∈ C.
(3) Let F1 and F2 be two hyper MV-�lters of M. Then we show that C(F1)∪
C(F2) = C(F1 ∩ F2). If P is a strong prime hyper MV-�lter of M , then

P ∈ C(F1) ∪ C(F2) → F1 ⊆ P or F2 ⊆ P → F1 ∩ F2 ⊆ P → P ∈ C(F1 ∩ F2).

Conversely, let P ∈ C(F1 ∩ F2). Then F1 ∩ F2 ⊆ P . Let F1 6⊆ P , then
there exists x ∈ F1\P . Suppose that y ∈ F2 be arbitrary element. Then
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P ⊆ x∗ ⊕ y or P ⊆ y∗ ⊕ x. If P ⊆ y∗ ⊕ x, then F2 ¿ y∗ ⊕ x. Hence x ∈ F2

which is a contradiction. Thus P ⊆ x∗ ⊕ y. So F1 ¿ x∗ ⊕ y. It conclude that
y ∈ F1 ∩ F2 ⊆ P. Hence F2 ⊆ P , i.e., P ∈ C(F1) ∪ C(F2).

Remark 4.12. Let V (F ) = HSpec(M)\C(F ) then

V = {V (F ) : F is a hyper MV − filter of M}

is open sets family in the spectral topological space on HSpec( M).
Notation: For any x ∈ M , we de�ne

B(x) = V (〈x〉) = {P ∈ HSpec(M) : 〈x〉 6⊆ P} = {P ∈ HSpec(M) : x 6∈ P}.

Proposition 4.13. The family B = {B(x) : x ∈ M} is a basis for the spectral
topology on HSpec(M).

Proof. Let V (F ) ∈ V for some hyper MV-�lter F of M and P ∈ V (F ) be
arbitrary. Then

P ∈ V (F ) → F 6⊆P → ∃x ∈ F (x /∈ P ) → P ∈ V (〈x〉) = B(x).

Hence P ∈ B(x). Moreover

K ∈ B(x) = V (〈x〉) → 〈x〉 6⊆ K → F 6⊆ K → K ∈ V (F ).

Therefore there exists B(x) ∈ B such that P ∈ B(x) and B(x) ⊆ V (F ). Hence
B = {B(x) : x ∈ M} is a basis for spectral topology on HSpec(M).

Proposition 4.14. (HSpec((M),V) is T1 if and only if there are no two
strongly prime hyper MV-�lters P1, P2 ⊆ M such that P1 ⊆ P2.

Proof. Let (HSpec (M),V) be T1 and there exist two strongly prime hyper MV-
�lters P1, P2 ⊆ M such that P1 ⊆ P2. Then there exists an open set V (F )
such that P1 ∈ V (F ) and P2 /∈ V (F ). Since F 6⊆ P1, then F 6⊆ P2. Thus
P2 ∈ V (F ) which is a contradiction.

Conversely, let P1, P2 be two di�erent element in M. Then by assumption
we have P1 6⊆ P2 and P2 6⊆ P1. Hence there exists x ∈ P1 such that x /∈ P2.
Thus P1 /∈ V (〈x〉) and P2 ∈ V (〈x〉). Also since P2 6⊆ P1, then there exists
y ∈ P2 such that y /∈ P1. Thus P2 /∈ V (〈y〉) and P1 ∈ V (〈y〉). Hence
(HSpec (M),V) is T1.
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Proposition 4.15. (HSpec (M),V) is a T0 topological space.

Proof. The proof is similar to Proposition 4.14.

Example 4.16. Consider Example 3.3. Then HSpec (M) = {P1, P2}. We
can show that C = {∅, {P1}, HSpec(M)}, C(P1) = {P1} and C(P2) = {P1, P2}.
This topology is not T1.

5. Conclusion
We introduced the notion of a S-re�exive hyper MV-�lter to de�ne an equiva-
lence relation on a hyper MV-algebra M. We used this equivalence relation to
de�ne a uniform structure and a uniform topology τ on a hyper MV-algebra.
Then we investigated some topological properties of uniform topological space.
We proved that this topological space is completely regular and locally com-
pact. We showed (1) this topology is discrete if and only if {1} is a S-re�exive
hyper MV-�lter, (2) (M, τ) is connected if and only if M is the only S-re�exive
hyper MV-�lter of M, (3) (M, τ) is Hausdor� if and only {1} is the the inter-
section of all S-re�exive hyper MV-�lters of M and (4) T0, T1 and Hausdor�
properties are equivalent on the topological space (M, τ). Furthermore, we
investigated conditions under which (M, τ) is compact and we proved each S-
re�exive hyper MV-�lter of M is clopen. We introduced the notions of (strong)
prime hyper MV-�lter and hyper MV- spectrum on hyper MV-algebras and
proved some related results. Then we de�ned spectral topology on MV- spec-
trum and obtained a basis for this topology. We proved this topological space
is T0 and is T1 if and only if there are no two strongly prime �lters P1, P2 ⊆ M
such that P1 ⊆ P2. In our future research we will consider the notions such as
compactness, connectedness and some other properties.
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