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New identities in universal Osborn loops

T�em�it�o. p�e. Gb�o. l�ah�an Jaiy�eo. l�a and John Ol�uso. l�a Ad�en�iran

Abstract. A question associated with the 2005 open problem of Michael Kinyon (Is every
Osborn loop universal?), is answered. Two nice identities that characterize universal (left
and right universal) Osborn loops are established. Numerous new identities are established
for universal (left and right universal) Osborn loops like CC-loops, VD-loops and universal
weak inverse property loops. Particularly, Moufang loops are discovered to obey the new
identity [y(x−1u) · u−1](xu) = [y(xu) · u−1](x−1u) surprisingly. For the first time, new
loop properties that are weaker forms of well known loop properties like inverse property,
power associativity and diassociativity are introduced and studied in universal (left and right
universal) Osborn loops. Some of them are found to be necessary and sufficient conditions
for a universal Osborn to be 3 power associative. For instance, four of them are found to be
new necessary and sufficient conditions for a CC-loop to be power associative. A conjugacy
closed loop is shown to be diassociative if and only if it is power associative and has a weak
form of diassociativity.

1. Introduction
The isotopic invariance of varieties of quasigroups and loops described by one
or more equivalent identities, especially those that fall in the class of Bol-
Moufang type loops have been of interest to researchers in loop theory in the
recent past. These types of identities were first named by Fenyves [18] and [17]
in the 1960s and later on in this 21st century by Phillips and Vojt�echovsk�y [32],
[33] and [25]. Among such are Etta Falconer [15] and [16] which investigated
isotopy invariants in quasigroups. Loops such as Bol loops, Moufang loops,
central loops and extra loops are the most popular loops of Bol-Moufang type
whose isotopic invariance have been considered. For an overview of the theory
of loops, readers may check [30, 8, 10, 12, 19, 34].

Consider (G, ·) and (H, ◦) been two distinct groupoids (quasigroups, loops).
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Let A, B and C be three bijective mappings, that map G onto H. The triple
α = (A, B,C) is called an isotopism of (G, ·) onto (H, ◦) if and only if

xA ◦ yB = (x · y)C ∀ x, y ∈ G.

So, (H, ◦) is called a groupoid (quasigroup, loop) isotope of (G, ·).
If C = I is the identity map on G so that H = G, then the triple α =

(A,B, I) is called a principal isotopism of (G, ·) onto (G, ◦) and (G, ◦) is called
a principal isotope of (G, ·). Eventually, the equation of relationship now
becomes

x · y = xA ◦ yB ∀ x, y ∈ G

which is easier to work with. But if A = Rg and B = Lf where Rx : G → G,
the right translation is defined by yRx = y · x and Lx : G → G, the left
translation is defined by yLx = x · y for all x, y ∈ G, for some f, g ∈ G, the
relationship now becomes

x · y = xRg ◦ yLf ∀ x, y ∈ G

or
x ◦ y = xR−1

g · yL−1
f ∀ x, y ∈ G.

With this new form, the triple α = (Rg, Lf , I) is called an f, g-principal iso-
topism of (G, ·) onto (G, ◦), f and g are called translation elements of G or
at times written in the pair form (g, f), while (G, ◦) is called an f, g-principal
isotope of (G, ·).

The last form of α above gives rise to an important result in the study of
loop isotopes of loops.

Theorem 1.1. [8] Let (G, ·) and (H, ◦) be two distinct isotopic loops. For
some f, g ∈ G, there exists an f, g-principal isotope (G, ∗) of (G, ·) such that
(H, ◦) ∼= (G, ∗). ¤

With this result, to investigate the isotopic invariance of an isomorphic
invariant property in loops, one simply needs only to check if the property in
consideration is true in all f, g-principal isotopes of the loop. A property is
isotopic invariant if whenever it holds in the domain loop i.e., (G, ·) then it
must hold in the co-domain loop i.e., (H, ◦) which is an isotope of the formal.
In such a situation, the property in consideration is said to be a universal
property hence the loop is called a universal loop relative to the property in
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consideration as often used by Nagy and Strambach [28] in their algebraic and
geometric study of the universality of some types of loops. For instance, if
every isotope of a "certain" loop is a "certain" loop, then the formal is called
a universal "certain" loop. So, we can now restate Theorem 1.1 as:
Theorem 1.2. Let (G, ·) be a "certain" loop where "certain" is an isomorphic
invariant property. (G, ·) is a universal "certain" loop if and only if every f, g-
principal isotope (G, ∗) of (G, ·) has the "certain" loop property. ¤

From the earlier discussions, if (H, ◦) = (G, ·) then the triple α = (A,B, C)
is called an autotopism where A,B, C ∈ Sym(G, ·), the set of all bijections on
(G, ·) called the symmetric group of (G, ·). Such triples form a group Aut(G, ·)
called the autotopism group of (G, ·).

Bol-Moufang type of quasigroups (loops) are not the only quasigroups
(loops) that are isomorphic invariant and whose universality have been consid-
ered. Some others are weak inverse property loops (WIPLs) and cross inverse
property loops (CIPLs). The universality of WIPLs and CIPLs have been ad-
dressed by Osborn [29] and Artzy [1] respectively. In 1970, Basarab [3] later
continued the work of Osborn of 1961 on universal WIPLs by studying isotopes
of WIPLs that are also WIPLs after he had studied a class of WIPLs ([2]) in
1967. Osborn [29], while investigating the universality of WIPLs discovered
that a universal WIPL (G, ·) satisfies the identity

yx · (zEy · y) = (y · xz) · y ∀ x, y, z ∈ G (1.1)

where Ey = LyLyλ = R−1
yρ R−1

y = LyRyL
−1
y R−1

y and yλ and yρ are respectively
the left and right inverse elements of y.

Eight years after Osborn's [29] 1960 work on WIPL, in 1968, Huthnance
Jr. [20] studied the theory of generalized Moufang loops. He named a loop
satysfying (1.1) a generalized Moufang loop and later on in the same thesis,
he called them M-loops. On the other hand, he called a universal WIPL an
Osborn loop and this same definition was adopted by Chiboka [11]. Basarab
dubbed a loop (G, ·) satisfying the identity:

x(yz · x) = (x · yEx) · zx ∀ x, y, z ∈ G (1.2)

an Osborn loop where Ex = RxRxρ = (LxLxλ)−1 = RxLxR−1
x L−1

x .
It will look confusing if both Basarab's and Huthnance's definitions of an

Osborn loop are both adopted because an Osborn loop of Basarab is not nec-
essarily a universal WIPL (Osborn loop of Huthnance). So in this work, Huth-
nance's definition of an Osborn loop will be dropped while we shall stick to
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that of Basarab which was actually adopted by Kinyon [21] and the open prob-
lem we intend to solve is relative to Basarab's definition of an Osborn loop
and not that of Huthnance. Huthnance [20] was able to deduce some proper-
ties of Ex relative to (1.1). Ex = Exλ = Exρ . So, since Ex = RxRxρ , then
Ex = Exλ = RxλRx and Ex = (LxρLx)−1. So, we now have two identities
equivalent to identities (1.1) and (1.2) defining an Osborn loop.

OS0 : x(yz · x) = x(yxλ · x) · zx (1.3)

OS1 : x(yz · x) = x(yx · xρ) · zx (1.4)

Although Basarab [4] and [7] considered universal Osborn loops but the uni-
versality of Osborn loops was raised as an open problem by Kinyon in 2005
at a conference tagged Milehigh Conference on Loops, Quasigroups and Non-
associative Systems held at the University of Denver, where he presented a
talk titled A survey of Osborn loops. The present authors have been able to
find a counter example to prove that not every Osborn loop is universal (in a
different paper, submitted for publication) thereby putting the open problem
to rest. Kinyon [21] further raised the question concerning the problem by
asking if there exists a 'nice' identity that characterizes a universal Osborn
loop.

In this study, a question associated with the 2005 open problem of Kinyon
(Is every Osborn loop universal?), is answered. Two nice identities that
characterize universal (left and right universal) Osborn loops are established.
Numerous new identities are established for universal Osborn loops like CC-
loops, VD-loops and universal weak inverse property loops. Particularly, Mo-
ufang loops are discovered to obey the new identity [y(x−1u) · u−1](xu) =
[y(xu) · u−1](x−1u) surprisingly. For the first time, new loop properties that
are weaker forms of well known loop properties like inverse property, power
associativity and diassociativity are introduced and studied in universal (left
and right universal) Osborn loops. Some of them are found to be necessary
and sufficient conditions for a universal Osborn to be 3 power associative. For
instance, four of them are found to be new necessary and sufficient conditions
for a CC-loop to be power associative. A conjugacy closed loop is shown to
be diassociative if and only if it is power associative and has a weak form of
diassociativity.
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2. Preliminaries
Let G be a non-empty set. Define a binary operation (·) on G. If each of the
equations:

a · x = b and y · a = b

has unique solutions in G for x and y respectively, then (G, ·) is called a
quasigroup.

If there exists a unique element e ∈ G called the identity element such that
for all x ∈ G, x · e = e · x = x, (G, ·) is called a loop. We write xy instead of
x · y, and stipulate that · has lower priority than juxtaposition among factors
to be multiplied. For instance, x · yz stands for x(yz).

It can now be seen that a groupoid (G, ·) is a quasigroup if it's left and
right translation mappings are bijections or permutations. Since the left and
right translation mappings of a loop are bijective, then the inverse mappings
L−1

x and R−1
x exist. Let

x\y = yL−1
x = yLx and x/y = xR−1

y = xRy

and note that x\y = z ←→ x · z = y and x/y = z ←→ z · y = x. Hence,
(G, \) and (G, /) are also quasigroups. Using the operations (\) and (/), the
definition of a loop can be stated as follows.

Definition 2.3. A loop (G, ·, /, \, e) is a set G together with three binary
operations (·), (/), (\) and one nullary operation e such that

(i) x · (x\y) = y, (y/x) · x = y for all x, y ∈ G,

(ii) x\(x · y) = y, (y · x)/x = y for all x, y ∈ G and

(iii) x\x = y/y or e · x = x for all x, y ∈ G.

We also stipulate that (/) and (\) have higher priority than (·) among
factors to be multiplied. For instance, x · y/z and x · y\z stand for x(y/z) and
x · (y\z) respectively.

In a loop (G, ·) with identity element e, the left inverse element of x ∈ G is
the element xJλ = xλ ∈ G such that xλ · x = e while the right inverse element
of x ∈ G is the element xJρ = xρ ∈ G such that x · xρ = e.

Definition 2.4. A loop (Q, ·) is called
• a 3 power associative property loop (3-PAPL) if xx · x = x · xx,
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• a left self inverse property loop (LSIPL) if xλ · xx = x,
• a right self inverse property loop (RSIPL) if xx · xρ = x,
• a self automorphic inverse property loop (SFAIPL) if (xx)ρ = xρxρ,
• a self weak inverse property loop (SWIPL) if x · (xx)ρ = xρ,
• a left1 bi-self inverse property loop (L1BSIPL) if xλ(xx · x) = xx,
• a left2 bi-self inverse property loop (L2BSIPL) if xλ(x · xx) = xx

for all x ∈ Q.

Definition 2.5. Let w1(q1, q2, · · · , qn) and w2(q1, q2, · · · , qn) be words in terms
of variables q1, q2, · · · , qn of the loop Q with equal lengths N(N ∈ N, N > 1)
such that the variables q1, q2, · · · , qn appear in them in equal number of times.
Q is called a Nm1,m2,··· ,mn

w1(r1,r2,··· ,rn)=w2(r1,r2,··· ,rn) loop if it satisfies the identity

w1(q1, q2, · · · , qn) = w2(q1, q2, · · · , qn),

where m1,m2,m3, · · · ,mn ∈ N represent the number of times the variables
q1, q2, · · · , qn ∈ Q respectively appear in the word w1 or w2 such that the
mappings q1 7→ r1, q1 7→ r1, · · · , qn 7→ rn are assumed, r1, r2, · · · rn ∈ N.

In this study, we shall concentrate on when N = 4.
The identities describing the most popularly known varieties of Osborn

loops are given below.

Definition 2.6. A loop (Q, ·) is called:
• a VD-loop if (·)x = (·)L−1

x Rx and x(·) = (·)R−1
x Lx i.e., R−1

x Lx ∈ PSλ(Q, ·)
with companion c = x and L−1

x Rx ∈ PSρ(Q, ·) with companion c = x
for all x ∈ Q, where PSλ(Q, ·) and PSρ(Q, ·) are respectively the left
and right pseudo-automorphism groups of Q,

• a Moufang loop if the identity (xy) · (zx) = (x · yz)x holds in Q,
• a conjugacy closed loop (CC-loop) if the identities x · yz = (xy)/x · xz

and zy · x = zx · x\(yx) hold in Q,
• a universal WIPL if the identity x(yx)ρ = yρ or (xy)λx = yλ holds in Q

and all its isotopes.

All these four varieties of Osborn loops are universal. CC-loops, and VD-
loops are G-loops. i.e., are isomorphic to all their loop isotopes.

Definition 2.7. Let α = (A,B, C) be an isotopism of (G, ·) onto (H, ◦). For
C = B it is called a left isotopism; for C = A � a right isotopism; for B = C = I
� a left principal isotopism; for A = C = I � a right principal isotopism.
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A loop is a left (right) universal "certain" loop if and only if all its left
(right) isotopes are "certain" loops.

Theorem 2.8. Let (G, ·) and (H, ◦) be two distinct left (right) isotopic loops
with the former having an identity element e. For some g (f) ∈ G, there exists
an e, g (f, e)-principal isotope (G, ∗) of (G, ·) such that (H, ◦) ∼= (G, ∗).
Proof. The proof of this is similar to that of Theorem III.2.1 of [30].

Theorem 2.9. Let (G, ·) be a "certain" loop where "certain" is an isomorphic
invariant property. (G, ·) is a left (right) universal "certain" loop if and only
if every left (right) principal isotope (G, ∗) of (G, ·) has the "certain" loop
property.

Proof. Use Theorem 2.8.

3. Main results
Theorem 3.1. A loop (Q, ·, \, /) is a universal Osborn loop if and only if it
satisfies the identity

OS′0 :

{
x ·u\{(yz)/v · [u\(xv)]} =

(x · u\{[y(u\([(uv)/(u\(xv))]v))]/v · [u\(xv)]})/v · u\[((uz)/v)(u\(xv))]

or
OS′1 :

{
x · x · u\{(yz)/v · [u\(xv)]} =
{x · u\{[y(u\(xv))]/v · [x\(uv)]}}/v · u\[((uz)/v)(u\(xv))].

Proof. Let Q = (Q, ·, \, /) be an Osborn loop with any arbitrary principal
isotope Q = (Q,M,↖,↗) such that

x M y = xR−1
v · yL−1

u = (x/v) · (u\y) ∀ u, v ∈ Q.

If Q is a universal Osborn loop then, Q is an Osborn loop. Then OS0 implies

x M [(y M z) M x] = {x M [(y M xλ′) M x]} M (z M x) (3.1)

where xλ′ = xJλ′ is the left inverse of x in Q. The identity element of the
loop Q is uv. So, x M y = xR−1

v · yL−1
u implies yλ′ M y = yλ′R−1

v · yL−1
u = uv,

whence we obtain yλ′R−1
v RyL−1

u
= uv, consequently yJλ′ = (uv)R−1

yL−1
u

Rv =
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(uv)R−1
(u\y)Rv = [(uv)/(u\y)]v. Thus, using the fact that x M y = (x/v) ·(u\y),

Q is an Osborn loop if and only if
(x/v) · u\{[(y/v) · (u\z)]/v · (u\x)} =

((x/v) · u\{[(y/v)(u\([(uv)/(u\x)]v))]/v · (u\x)})/v · u\[(z/v)(u\x)].
Do the following replacements:

x′ = x/v → x = x′v, z′ = u\z → z = uz′, y′ = y/v → y = y′v

we have
x′ · u\{(y′z′)/v · [u\(x′v)]} =

(x′ · u\{[y′(u\([(uv)/(u\(x′v))]v))]/v · [u\(x′v)]})/v · u\[((uz′)/v)(u\(x′v))].
This is precisely 0S′0 by replacing x′, y′ and z′ by x, y and z respectively.

Conversely, let Q = (Q, ·, \, /) be an Osborn loop satisfying OS′0. Doing
the reverse process of the proof of the necessary part, it will be observed that
equation (3.1) is true for any arbitrary u, v-principal isotope Q = (Q,M,↖,↗)
of Q. So, every f, g-principal isotope Q of Q is an Osborn loop. Following
Theorem 1.2, Q is a universal Osborn loop if and only if Q is an Osborn loop.

The proof for the second identity is similar.

Lemma 3.2. A loop Q with the multiplication group Mult(Q) is a univer-
sal Osborn loop if and only if

(
α(x, u, v), β(x, u, v), γ(x, u, v)

) ∈ Aut(Q) or(
R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv, β(x, u, v), γ(x, u, v)

)
∈ Aut(Q) for

all x, u, v ∈ Q, where α(x, u, v) = R(u\([(uv)/(u\(xv))]v))RvR[u\(xv)]LuLxRv,
β(x, u, v) = LuRvR[u\(xv)]Lu and γ(x, u, v) = RvR[u\(xv)]LuLx are elements
of Mult(Q).

Proof. This is obtained from identity OS′0 or OS′1 of Theorem 3.1.

Theorem 3.3. If Q is a universal Osborn loop with the multiplication group
Mult(Q), then

(
γ(x, u, v)R(u\[(u/v)(u\(xv))]), β(x, u, v), γ(x, u, v)

) ∈ Aut(Q) for
all elements x, u, v ∈ Q, where β(x, u, v) = LuRvR[u\(xv)]Lu and γ(x, u, v) =
RvR[u\(xv)]LuLx are from Mult(Q).

Proof. Theorem 3.1 will be employed. Let z = e in identity OS′0, then
x · u\{y/v · [u\(xv)]} =

(x · u\{[y(u\([(uv)/(u\(xv))]v))]/v · [u\(xv)]})/v · u\[(u/v)(u\(xv))].
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So, identity OS′0 can now be written as
x · u\{(yz)/v · [u\(xv)]} ={

{x · u\[y/v · (u\(xv))]}/{u\[(u/v)(u\(xv))]}
}
· u\[((uz)/v)(u\(xv))].

Thus
(
γ(x, u, v)R(u\[(u/v)(u\(xv))]), β(x, u, v), γ(x, u, v)

)
∈ Aut(Q).

Lemma 3.4. In a universal Osborn loop (Q, ·, \, /) the following identities are
satisfied:

OSI01 : y{u\([(uv)/(u\(xv))]v)} = {(y[u\(xv)])/v · [x\(uv)]}/[u\(xv)] · v,

OSI01.1 :
{ {(uz)/v · u\({(yv)(u\([(uv)/z]v))}/v · z)}/v · (u\[(u/v)z])

= (uz)/v · u\(yz),

OSI01.2 :
{

(uz)/v · u\{(yv · z)/v · [((uz)/v)\(uv)]}
= [(uz)/v · u\(yz)]/{u\[(u/v)z]} · v,

OSI01.1.1 : {u\({(uy · u)(u\(uu · u))}/u)}/u · uρ = y,

uu · u\(uu · u) = (u · uu)u,

OSI01.2.1 : vλ · u\{(yv · uρ)/v · [vλ\(uv)]} = [vλ · u\(yuρ)]/{u\[(u/v)uρ]} · v,

OSI01.2.2 : vλ(y · vλ\v) = (vλy)/vλ · v,

vλ · (v · vλ\v) = vλ2 · v = (vλ · vv)v

v(vρ · v\vρ) = vλ · vρ.

Proof. To prove these identities, we shall make use of the three autotopisms
in Lemma 3.2 and Theorem 3.3. In a quasigroup, any two components of an
autotopism uniquely determine the third. So equating the first components of
the three autotopisms, it is easy to see that

α(x, u, v) = γ(x, u, v)R(u\[(u/v)(u\(xv))])

= R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv.

The establishment of the identities OSI01, OSI01.1 and OSI01.2 follows by using
the bijections appropriately to map an arbitrary element y ∈ Q as follows:
OSI01 : α(x, u, v) = R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv implies that
R(u\([(uv)/(u\(xv))]v))RvR[u\(xv)]LuLxRv = R(u\([(uv)/(u\(xv))]v))γ(x, u, v)Rv =
R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv which gives R(u\([(uv)/(u\(xv))]v)) =
R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rv. So, for any y ∈ Q, yR(u\([(uv)/(u\(xv))]v)) =
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yR[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rv implies

y{u\([(uv)/(u\(xv))]v)} = {(y[u\(xv)])/v · [x\(uv)]}/[u\(xv)] · v.

OSI01.1 : Let α(x, u, v) = γ(x, u, v)R(u\[(u/v)(u\(xv))]). Then for all y ∈ Q

yα(x, u, v) = yR(u\([(uv)/(u\(xv))]v))RvR[u\(xv)]LuLxRv

= yγ(x, u, v)R(u\[(u/v)(u\(xv))]) = yRvR[u\(xv)]LuLxR(u\[(u/v)(u\(xv))]).
Consequently,
{x · u\({y(u\([(uv)/(u\(xv))]v))}/v · [u\(xv)])}/v

= {x · u\(y/v · [u\(xv)])}/(u\[(u/v)(u\(xv))]).
Now, replacing y/v by y and multiplying both sides by (u\[(u/v)(u\(xv))])

we get
{x · u\({(yv)(u\([(uv)/(u\(xv))]v))}/v · [u\(xv)])}/v · (u\[(u/v)(u\(xv))])

= x · u\(y · [u\(xv)]),
whence, for z = u\(xv), i.e., x = (uz)/v, we deduce

{(uz)/v · u\({(yv)(u\([(uv)/z]v))}/v · z)}/v · (u\[(u/v)z]) = (uz)/v · u\(yz).

OSI01.2 : Let

R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv = γ(x, u, v)R(u\[(u/v)(u\(xv))]).

Then for all y ∈ Q, we obtain yR[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv =
yγ(x, u, v)R(u\[(u/v)(u\(xv))]). Whence, as a simple consequence we obtain that

({[(y[u\(xv)])/v · [x\(uv)]
]
/[u\(xv)] · v}γ(x, u, v))/v =(

yγ(x, u, v)
)
/(u\[(u/v)(u\(xv))]),

which implies
x · u\({[(y[u\(xv)])/v · [x\(uv)]

]
/[u\(xv)] · v}/v · [u\(xv)])

= [x · u\(y/v · [u\(xv)]
)
]/(u\[(u/v)(u\(xv))]) · v.

Since z = u\(xv) means that x = (uz)/v, from the above we have

(uz)/v · u\[(yz)/v · [(uz)/v\(uv)]
]

= [(uz)/v · u\(y/v · z)]/(u\[(u/v)z]) · v.

Now, replacing y by yv we get

(uz)/v · u\[(yv · z)/v · [(uz)/v\(uv)]
]

= [(uz)/v · u\(yz)]/(u\[(u/v)z]) · v.
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OSI01.1.1 : For u = v the identity OSI01.1 has the form

{(uz)/u · u\({(yu)(u\([(uu)/z]u))}/u · z)}/u · (u\z) = (uz)/u · u\(yz),

whence replacing z by uz we get

{(u ·uz)/u ·u\({(yu)(u\([(uu)/(uz)]u))}/u ·uz)}/u · z = (u ·uz)/u ·u\(y ·uz),

which for z = uρ gives {u\({(yu)(u\(uu·u))}/u)}/u·uρ = u\y. Now, replacing
y by uy, we obtain {u\({(uy · u)(u\(uu · u))}/u)}/u · uρ = y.
OSI01.2.1 : Putting z = uρ in OSI01.2 we get

vλ · u\[(yv · uρ)/v · [vλ\(uv)]
]

= [vλ · u\(yuρ)]/(u\[(u/v)uρ]) · v.

OSI01.2.2 : Putting u = e in OSI01.2.1 we get vλ(y · vλ\v) = (vλy)/vλ · v.
By putting y = e in OSI01.1.1, we have uu · u\(uu · u) = (u · uu)u. Also,

substituting y = v into OSI01.2.2 and using the fact that xλ2
= xλ · xx we get

vλ · (v · vλ\v) = vλ2 · v = (vλ · vv)v and v(vρ · v\vρ) = vλ · vρ.

Lemma 3.5. A universal Osborn loop is a 3-PAPL if and only if it is a
41

11·11=(1·11)1 and a 41
11·11=(11·1)1 loop.

Proof. In Lemma 3.4, it was shown that uu·u\(uu·u) = (u·uu)u in a universal
Osborn loop. The necessary and sufficient parts are easy to prove using this
identity.

Lemma 3.6. In a universal Osborn loop Q, the following are equivalent.
1. Q is a 3-PAPL.
2. Q is a 41

11·11=(1·11)1 loop and a 41
11·11=(11·1)1 loop.

3. Q is a LSIPL.
4. Q satisfies the identity v[vλ · (v · vλ\v)] = vλ\v · v.
5. Q is a 41,3

12·22=(1·22)2 loop.
6. Q is a 41

11·11=(1·11)1 loop.

Proof. By using the identities uu · u\(uu · u) = (u · uu)u and vλ · (v · vλ\v) =
(vλ · vv)v and applying Lemmas 3.13, 3.16, 3.17.

Corollary 3.7. In a universal Osborn loop, the 41
11·11=(1·11)1 and 41

11·11=(11·1)1
loop properties are equivalent.

Proof. This follows from Lemma 3.6.
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Corollary 3.8. A universal Osborn loop that is a LSIPL or RSIPL or 3-PAPL
or 41,3

12·22=(1·22)2 or 41
11·11=(1·11)1 loop is a L2BSIPL and a L1BSIPL.

Proof. It is a consequence of Corollary 3.21, Lemma 3.14 and Lemma 3.6.

Theorem 3.9. A loop (Q, ·, \, /) is a left universal Osborn loop if and only if
it satisfies the identity

OSλ
0 : x · [(y · zv)/v · (xv)] = (x · {[y([v/(xv)]v)]/v · (xv)})/v · [z · xv] or

OSλ
1 : x · [(y · zv)/v · (xv)] = {x · [(y · xv)/v · (x\v)]}/v · [z(xv)].

Proof. The procedure of the proof of this theorem is similar to the procedure
used to prove Theorem 3.1 by just using the arbitrary left principal isotope
Q = (Q,M,↖,↗) such that x M y = xR−1

v · y = (x/v) · y ∀ v ∈ Q.

Lemma 3.10. A loop Q with the multiplication group Mult(Q) is a left uni-
versal Osborn loop if and only if the triple

(
α(x, v), β(x, v), γ(x, v)

) ∈ Aut(Q)
or

(
R[xv]RvR[x\v]R[xv]Rvγ(x, v)Rv, β(x, v), γ(x, v)

) ∈ Aut(Q) for all x, v ∈ Q,
where α(x, v) = R([v/(xv)]v)RvR[xv]LxRv, β(x, v) = RvR[xv] and γ(x, v) =
RvR[xv]Lx are elements of Mult(Q).

Proof. From OSλ
0 or OSλ

1 of Theorem 3.9.

Theorem 3.11. If a loop Q with the multiplication group Mult(Q) is a left
universal Osborn loop, then

(
γ(x, v)R[vλ·xv], β(x, v), γ(x, v)

) ∈ Aut(Q) for all
x, v ∈ Q, where β(x, v) = RvR(xv) and γ(x, v) = RvR(xv)Lx are elements of
Mult(Q).

Proof. This follows from OSλ
0 or OSλ

1 of Theorem 3.9.

Lemma 3.12. Let (Q, ·, \, /) be a left universal Osborn loop. The following
identities are satisfied:

OSIλ
01 : y{[v/(xv)]v} = {[y(xv)]/v · (x\v)}/(xv) · v,

OSIλ
01.2 : z{(yv · zv)/v · z\v} = [z(y · zv)]/(vλ · zv) · v,

OSIλ
01.1 : {z · {[(yv)(v/(zv) · v)]/v · zv}}/v · vλ(zv) = z · y(vz),

OSIλ
01.1.1 : {vλ{[(yv)(vv)]/v}}/v · vλ = vλy,
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OSIλ
01.1.2 : {z{[v(v/(zv) · v)]z}}/v · vλ(zv) = z · zv,

OSIλ
01.2.1 : v{(yv · vv)/v} = [v(y · vv)]/(vλ · vv) · v,

OSIλ
01.2.2 : v[(v · vv)/v] = (v · vv)/(vλ · vv) · v,

OSIλ
01.2.3 : v[(vv · vv)/v] = [v(v · vv)]/(vλ · vv) · v,

OSIλ
01.2.4 : vλ[y · vλ\v] = (vλy)/vλ · v,

v · vv = vλ\v · v, vv · vv = vλ\(vλ2
v) · v.

Proof. To prove these identities, we shall make use of the three autotopisms
in Lemma 3.10 and Theorem 3.11. In a quasigroup, any two components of an
autotopism uniquely determine the third. So equating the first components of
the three autotopisms, it is easy to see that

α(x, v) = γ(x, v)R[vλ·xv] = R[xv]RvR[x\v]R[xv]Rvγ(x, v)Rv.

This implies

R([v/(xv)]v)RvR[xv]LxRv = R([v/(xv)]v)γ(x, v)Rv = R[xv]RvR[x\v]R[xv]Rvγ(x, v)Rv,

which gives R([v/(xv)]v) = R[xv]RvR[x\v]R[xv]Rv. So, for any y ∈ Q, yR([v/(xv)]v) =
yR[xv]RvR[x\v]R[xv]Rv implies OSIλ01.

Let α(x, v) = γ(x, v)R[vλ·xv]. Then for all y ∈ Q,

yα(x, v) = yR([v/(xv)]v)RvR[xv]LxRv = yγ(x, v)R[vλ·xv] = yRvR(xv)LxR[vλ·xv].

Consequently, {x · ({y([v/(xv)]v)}/v · xv)}/v = {x · (y/v · xv)}/[vλ · xv].
Replacing y/v by y and multiplying both sides by [vλ·xv] we obtain OSIλ01.1.
Now, consider R[xv]RvR[x\v]R[xv]Rvγ(x, v)Rv = γ(x, v)R[vλ·xv]. Then for

all y ∈ Q, we have yR[xv]RvR[x\v]R[xv]Rvγ(x, v)Rv = yγ(x, v)R[vλ·xv], i.e.,

({[[y(xv)]/v · (x\v)
]
/(xv) · v}γ(x, v))/v =

(
yγ(x, v)

)
/[vλ · xv]

which gives x{[y(xv)]/v ·(x\v)} = (x·[y/v ·(xv)])/[vλ ·xv]·v, whence, replacing
y by yv, we obtain OSIλ01.2.

OSIλ01.1.1 and OSIλ01.1.2 can be deduced from OSIλ01.1; OSIλ01.2.1 and OSIλ01.2.4

are consequence of OSIλ01.2 while identities OSIλ01.2.2 and OSIλ01.2.3 are deduced
from OSIλ01.2.1.

Putting z = vλ in OSIλ01.1 we get OSIλ01.1.1. Putting y = e in OSIλ01.1

we obtain OSIλ01.1.2. Putting z = v in OSIλ01.2 we get OSIλ01.2.1. Replacing
in OSIλ01.2.1 y by e we get OSIλ01.2.2. Similarly, OSIλ01.2.1 for y = v gives
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OSIλ01.2.3; OSIλ01.2 for z = vλ gives OSIλ01.2.4. From OSIλ01.1.1 for y = e it follows
{vλ{[v(vv)]/v}}/v · vλ = vλ which implies vλ{[v(vv)]/v} = v, hence, v(vv) =
(vλ\v) · v. Again, OSIλ01.1.1 for y = v proves {vλ{[(vv)(vv)]/v}}/v · vλ = e
which implies vλ{[(vv)(vv)]/v} = vλ2

v, hence, vv · vv = vλ\(vλ2
v) · v.

Lemma 3.13. A left universal Osborn loop is a LSIPL if and only if it is a 3
PAPL.

Proof. This is proved by using v · vv = vλ\v · v in Lemma 3.12.

Lemma 3.14. A left universal Osborn loop (Q, ·, \, /) is a 41
11·11=(11·1)1 loop

if and only if it obeys the identity vλ(vv · v) = vλ2
v.

Proof. This is proved by using vv · vv = vλ\(vλ2
v) · v in Lemma 3.12.

Corollary 3.15. A left universal Osborn loop (Q, ·, \, /) that is a 41
11·11=(11·1)1

loop is a L1BSIPL if and only if it is a LSIPL. Hence, it is a L2BSIPL.

Proof. This follows from Lemma 3.14 by using the fact that in an Osborn loop,
xλ2

= x 7→ xλ · xx.

Lemma 3.16. A left universal Osborn loop is a LSIPL if and only if it is a
41,3

12·22=(1·22)2 loop.

Proof. This is proved by using the identity OSIλ01.2.1 of Lemma 3.12.

Lemma 3.17. A left universal Osborn loop is a LSIPL if and only if it is a
41

11·11=(1·11)1 loop.

Proof. This is proved by using the identity OSIλ01.2.3 of Lemma 3.12.

Lemma 3.18. Let G be a left universal Osborn loop. The following are equiv-
alent:

1. G is a LSIPL and a 41,3
12·22=(12·2)2 loop.

2. G is a left alternative property loop.
3. G is a Moufang loop.

Proof. This is proved by using the identity OSIλ01.2.1 of Lemma 3.12.

Lemma 3.19. In a left universal Osborn loop [y(yy · yρ)]y = y · yy.

Proof. This is proved by using the identity OSIλ01.2 of Lemma 3.12.
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Lemma 3.20. In an Osborn loop, the following properties are equivalent.
LSIP, RSIP, |Jλ| = 2, |Jρ| = 2 and Jρ = Jλ.

Proof. This can be proved by using the facts that in an Osborn loop, J2
ρ : x 7→

xx · xρ and J2
λ : x 7→ xλ · xx.

Corollary 3.21. In a left universal Osborn loop, the following properties are
equivalent. LSIP, RSIP, 3-PAP, Jρ = Jλ, 41,3

12·22=(1·22)2 and 41
11·11=(1·11)1 prop-

erties.

Proof. Use Lemma 3.20, Lemma 3.13, Lemma 3.16 and Lemma 3.17.

Corollary 3.22. For a CC-loop L the following are equivalent:
1. L is a power associativity loop.
2. L is a 3-PAPL.
3. L obeys xρ = xλ for all x ∈ L.
4. L is a LSIPL.
5. L is a RSIPL.
6. L is a 41,3

12·22=(1·22)2 loop.
7. L is a 41

11·11=(1·11)1 loop.

Proof. The proof of the equivalence of the first three is shown in Lemma 3.20
of [26] and mentioned in Lemma 1.2 of [31]. The proof of the equivalence
of the last four and the first three can be deduced from the last result of
Corollary 3.21.

Corollary 3.23. A CC-loop is a diassociative loop if and only if it is a power
associative loop and a 41,3

12·22=(12·2)2 loop.

Proof. The proof of this follows from Corollary 3.22 and Lemma 3.18.

Theorem 3.24. A loop (Q, ·, \, /) is a right universal Osborn loop if and only
if it satisfies the identity

OSρ
0 : (ux) · u\{yz · x} = ((ux) · u\{[y(u\[u/x])] · x}) · u\[(uz)x] or

OSρ
1 : (ux) · u\{(yz) · x} = {(ux) · u\[yx · (ux)\u]} · u\[(uz)x].

Proof. The proof is similar to the proof of Theorem 3.1 but now use the
arbitrary right principal isotope Q = (Q,M,↖,↗) such that

x M y = x · yL−1
u = x · (u\y) ∀ u ∈ Q. ¤
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Lemma 3.25. A loop Q with the multiplication group Mult(Q) is a right
universal Osborn loop if and only if

(
α(x, u), β(x, u), γ(x, u)

) ∈ Aut(Q) or(
R[u\x]R[x\u]R[u\x]γ(x, u), β(x, u), γ(x, u)

) ∈ Aut(Q) for all x, u ∈ Q, where
α(x, u) = R(u\[u/(u\x)])R[u\x]LuLx, β(x, u) = LuR[u\x]Lu and γ(x, u) =
R[u\x]LuLx are elements of Mult(Q).

Proof. This is obtained by using identity OSρ
0 or OSρ

1 of Theorem 3.24.

Theorem 3.26. Let Q is a right universal Osborn loop with the multiplication
group Mult(Q), then the triple

(
γ(x, u)R(u\x), β(x, u), γ(x, u)

) ∈ Aut(Q) for all
x, u ∈ Q, where β(x, u) = LuR[u\x)]Lu and γ(x, u) = R[u\x]LuLx are elements
of Mult(Q).

Proof. It is a consequence of OSρ
0 or OSρ

1 and the method used in the proof of
Theorem 3.1.

Theorem 3.27. In a right universal Osborn loop (Q, ·, \, /) the following iden-
tities are satisfied:

OSIρ
01 : y{u\(u/x)} = {(yx) · [(ux)\u]}/x,

OSIρ
01.2 : {(uz) · u\[(yz)[(uz)\u]]}z = (uz) · u\(yz),

OSIρ
01.1 : {(uz) · u\({y(u\(u/z))} · z)}z = (uz) · u\(yz),

OSIρ
01.1.1 : {(uz) · u\({zλ(u\(u/z))} · z)}z = (uz) · uρ,

OSIρ
01.1.2 : {(uu) · u\(uλuρ · u)}u = uu · uρ,

OSIρ
01.1.3 : {(uz) · u\({z(u\(u/z))} · z)}z = (uz) · u\(zz),

OSIρ
01.1.4 : {u\({uρ(u\(u/uρ))} · uρ)}z = u\(uρuρ),

OSIρ
01.1.5 : {(uz) · u\({zρ(u\(u/z))} · z)}z = (uz) · u\(zρz),

OSIρ
01.1.6 : zλ\[{zρ(zλ\(zλ/z))} · z] · z = zλ\(zρz),

OSIρ
01.1.7 : {(zz) · z\(zρzρ · z)}z = (zz) · z\(zρz),

OSIρ
01.2.1 : {(uz) · u\[(uz)\u]}z = (uz) · uρ,

OSIρ
01.2.2 : {(uu) · u\[(uu)\u]}u = (uu) · uρ,

OSIρ
01.2.3 : {(uuλ) · u\[(uuλ)\u]}uλ = (uuλ) · uρ,

OSIρ
01.2.4 : {(uz) · u\[z[(uz)\u]]}z = (uz) · u\z,

OSIρ
01.2.5 : {(uuλ) · u\[uλ[(uuλ)\u]]}uλ = (uuλ) · u\(uuλ),
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OSIρ
01.2.6 : {(uz) · u\[(zz)[(uz)\u]]}z = (uz) · u\(zz),

OSIρ
01.2.7 : {(uz) · u\[(zρz)[(uz)\u]]}z = (uz) · u\(zρz),

OSIρ
01.2.8 : {(uu) · u\[(uρu)[(uu)\u]]}u = (uu) · u\(uρu),

OSIρ
01.2.9 : (uu · uρ)uρ = u{u\[(uu · uρ)uρ · u] · uρ},

OSIρ
01.2.10 : {(uuλ) · u\[(uuλ)[(uuλ)\u]]}uλ = (uuλ) · u\(uuλ),

u · [u\(uρu)]uρ = uρ.

Proof. To prove these identities, we shall make use of the three autotopisms
in Lemma 3.25 and Theorem 3.26. Identifying the first components of these
three autotopisms, we obtain

α(x, u) = γ(x, u)R(u\x) = R[u\x]R[x\u]R[u\x]γ(x, u),

which we can deduce that R(u\[u/(u\x)])R[u\x]LuLx = R[u\x]R[x\u]R[u\x]γ(x, u)
= R[u\x]R[x\u]R[u\x]R[u\x]LuLx. So, R(u\[u/(u\x)]) = R[u\x]R[x\u]R[u\x]. Thus
for any y ∈ Q, yR(u\[u/(u\x)]) = yR[u\x]R[x\u]R[u\x] implies y(u\[u/z]) =
{(yz)[(uz)\u]}/z. This for z = u\x, i.e., x = uz gives y(u\[u/(u\x)]) =
{[y(u\x)][x\u]}/[u\x], which is equivalent to OSIρ01.

Now let α(x, u) = γ(x, u)R(u\x). Then yα(x, u) = yR(u\[u/(u\x)])R[u\x]LuLx

= yγ(x, u)R(u\x) = yR[u\x]LuLxR(u\x) for all y ∈ Q, which implies the identity
x · u\{[y(u\[u/(u\x)])][u\x]} = {x · u\[y(u\x)]}/(u\x). Multiplying this iden-
tity by (u\x) to obtain {x · u\{[y(u\[u/(u\x)])][u\x]}}(u\x) = x · u\[y(u\x)],
whence, for z = u\x, i.e., x = uz we deduce {(uz) · u\{[y(u\[u/z])]z}}z =
(uz) · u\(yz). This proves OSIρ01.1.

If R[u\x]R[x\u]R[u\x]γ(x, u) = γ(x, u)R(u\x), then yR[u\x]R[x\u]R[u\x]γ(x, u)
= yγ(x, u)R(u\x) for all y ∈ Q. Hence {{[y(u\x)](x\u)}/[u\x]}γ(x, u) =
[yγ(x, u)]/(u\x), which after substitution of the value of γ(x, u) and multi-
plication by (u\x) gives:

x · u\({{[y(u\x)](x\u)}/[u\x]}[u\x]) = {x · u\(y[u\x])}/(u\x).

from this, for z = u\x, i.e., x = uz, we obtain OSIρ01.2.
OSIρ01.1.1, OSIρ01.1.3 and OSIρ01.1.5 can be deduced from OSIρ01.1; OSIρ01.1.2 is

a consequence of OSIρ01.1.1; OSIρ01.1.4 is deduced from OSIρ01.1.3.
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Putting y = zλ in OSIρ01.1 we obtain OSIρ01.1.1. Substituting in OSIρ01.1.1 z
by u we get OSIρ01.1.2. Putting y = z in OSIρ01.1 we obtain OSIρ01.1.3. From
this z = uρ we conclude OSIρ01.1.4. Putting y = zρ in OSIρ01.1 we obtain
OSIρ01.1.5. The last for u = zλ gives OSIρ01.1.6. From this for u = z we deduce
OSIρ01.1.7. Similarly, OSIρ01.2 for y = zλ gives OSIρ01.2.1. This for z = u implies
OSIρ01.2.2. Putting z = uλ in OSIρ01.2.1 we obtain OSIρ01.2.3. OSIρ01.2 for y = e
gives OSIρ01.2.4, whence for z = uλ we obtain OSIρ01.2.5. Putting y = z in
OSIρ01.2 we get OSIρ01.2.6. OSIρ01.2 for y = zρ gives OSIρ01.2.7. The last for z = u
implies OSIρ01.2.8, for z = uρ � OSIρ01.2.9. Putting z = uλ in OSIρ01.2.7 we obtain
OSIρ01.2.10. OSIρ01.2.4 for z = uρ proves u · [u\(uρu)]uρ = uρ.

Corollary 3.28. A right universal Osborn loop (Q, ·, \, /) is a RSIPL if and
only if it satisfies the identity uλuρ · u = u(uu)ρ.

Proof. By OSIρ01.1.2.

Corollary 3.29. A right universal Osborn loop (Q, ·, \, /) is a RSIPL if and
only if it satisfies the identity uρuρ = u[u\(uρu · uρ) · uρ].

Proof. By OSIρ01.1.4.

Corollary 3.30. A right universal Osborn loop (Q, ·, \, /) is a RSIPL if and
only if it satisfies zλ\[zρzλ · z] · z = zλ\(zρz).

Proof. By OSIρ01.1.6.

Corollary 3.31. A right universal Osborn loop (Q, ·, \, /) satisfies the identity
zz · zλ = z if and only if holds [zz · z\zρ]z = zz · z\(zρz).

Proof. By OSIρ01.1.8.

Corollary 3.32. A right universal Osborn loop (Q, ·, \, /) satisfying the iden-
tity [zz · z\zρ]z = zz · z\(zρz) is a SFAIPL if and only if it is a SWIPL.

Proof. By OSIρ01.1.8.

Corollary 3.33. A right universal Osborn loop (Q, ·, \, /) with the RSIP is a
SFAIPL if and only if it satisfies the identity u · u[u\uρ · uρ] = uρ.

Proof. By Corollary 3.28, Corollary 3.29 and Corollary 3.20.

Corollary 3.34. A right universal Osborn loop (Q, ·, \, /) with the RSIP sat-
isfies the identity u\uρ = (uu)ρ.
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Proof. By OSIρ01.2.2.

Corollary 3.35. A right universal Osborn loop (Q, ·, \, /) with the RSIP is a
SFAIPL and |Jρ| = 6.

Proof. The first part follows from Corollary 3.34 and Corollary 3.20, the second
can be deduced from the fact that SFAIPL implies xρρρρρρ = x (sf. [21], p.
18).

Corollary 3.36. A right universal Osborn loop (Q, ·, \, /) satisfies the identity
uuλ · uρ = uλ if and only if it satisfies the identity u = (uuλ) · u(uuλ)ρ.

Proof. By OSIρ01.2.3.

Corollary 3.37. A right universal Osborn loop (Q, ·, \, /) satisfies the identity
uρu = uuλ if and only if it satisfies the identity u · uλuρ = uρ.

Proof. By using the identity u · [u\(uρu)]uρ = uρ.

Corollary 3.38. A right universal Osborn loop (Q, ·, \, /) satisfies the identity
uρu = uuλ if and only if it satisfies the identity {(uu) ·u\[(uρu)[(uu)\u]]}u =
uu · uλ.

Proof. By OSIρ01.2.8.

Corollary 3.39. A right universal Osborn loop (Q, ·, \, /) satisfying the iden-
tity uρu = uuλ and the RSIP is a SWIPL.

Proof. By Corollary 3.38.

4. Concluding remarks and future studies
OSI01, OSI01....; OSIρ01, OSIρ01.... and OSIλ01, OSIλ01.... are all newly discovered
identities that are true in universal, right universal and left universal Osborn
loops respectively. So, all these identities are satisfied by any Moufang loop,
extra loop, CC-loop, universal WIPL and VD-loop. This is a good news for
CC-loop which has just received a tremendious growth increase by the works
of Kinyon, Kunen, Drapal, Phillips e.t.c and especially for VD-loops which is
yet to grow in study compared to CC-loops. We hope VD-loops will catch the
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attention of researchers with the newly found identities. A trilling observation
in this study is the fact that identities OSIλ01 and OSI01 are of the forms

[y(x−1v) · v−1](xv) = [y(xv) · v−1](x−1v) and

y{u−1([(uv)(v−1x−1 · u)]v)} = {(y[u−1(xv)])v−1 · x−1(uv)}[v−1x−1 · u] · v,

respectively, in a Moufang loop or extra loop. If a Moufang or extra loop is
of exponent 2 then, the first identity will be obviously true. Basarab [5] has
shown that an Osborn loop of exponent 2 is an abelian group. So it is not
wise to study identity OSIλ01 for a loop of exponent 2 e.g. Steiner loops, but
identity OSI01 can be studied for such a loop.

According to Phillips [31], a chain of five prominent varieties of CC-loops
are: (1) groups, (2) extra loops, (3) WIP PACC-loops, (4) PACC-loops and (5)
CC-loops. He was able to axiomatize the variety of WIP PACC-loops. With
our new loop properties that are weaker forms of well known loop properties
like inverse property, power associativity and diassociativity, we now have
subvarieties of varieties of CC-loops mentioned above. It will be interesting
to axiomatize some of them e.g. SWIP PACC-loops. These new algebraic
properties give more insight into the algebraic properties of universal Osborn
loops. Particularly, it can be used to fine tune some recent equations on CC-
loop as shown in works of Kunen, Kinyon, Phillips and Drapal; [24, 22, 23],
[13, 14], [26].

The continuation of this study will switch to the notations of Bryant and
Schneider [9] for principal isotopes of quasigroups (loops) and use their results
to deduce more algebraic equations for universal Osborn loops.
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