
Quasigroups and Related Systems 17 (2009), 77 − 90LGS�quasigroupsZdenka Kolar�Begovi¢ and Vladimir VoleneAbstrat. The onept of a LGS�quasigroup is de�ned and investigated in this paper.The geometri onepts of parallelograms and midpoints are introdued in a general LGS�quasigroup and the geometrial interpretation in the LGS�quasigroup C( 1

2
(3+

√

5)) is given.The theorem about the haraterization of LGS�quasigroup by means of a ommutativegroup is proved. RGS�quasigroup is introdued and the onnetion with LGS�qusigroup isinvestigated.1. De�nition and examples of LGS�quasigroupsWe say that the quasigroup (Q, ·) is the left quasigroup of the golden setionor shorter LGS�quasigroup, if the identity of idempoteny
aa = a, (1)and besides that the identity

ab · c = cb · a (2)is valid.Example 1. Let (G, +) be a ommutative group in whih there is an auto-morphism ϕ whih satis�es the identity
ϕ2(a) − 3ϕ(a) + a = 0. (3)If the binary operation · on the set G is de�ned by the identity

ab = a + ϕ(b − a), (4)then (G, ·) is a LGS�quasigroup. We shall prove it here.2000 Mathematis Subjet Classi�ation: 20N05Keywords: LGS�quasigroup, RGS�quasigroup, ommutative group



78 Z. Kolar�Begovi¢ and V. VoleneFor eah a, b ∈ G the equations ax = b, ya = b are equivalent beause of(4) with the equations
a + ϕ(x − a) = b,

y + ϕ(a) − ϕ(y) = b, (5)of whih the �rst one has the unique solution x = a + ϕ−1(b − a), and theseond one an be written in the form
ϕ2(y) − ϕ(y) − ϕ2(a) = −ϕ(b). (6)By addition of the equations (5) and (6) beause of (3) we get the identity

ϕ(y) − ϕ2(a) + ϕ(a) = −ϕ(b) + bwith the unique solution
y = ϕ−1[ϕ2(a) − ϕ(a) − ϕ(b) + b] = ϕ(a) − a − b + ϕ−1(b),whih learly shows that it satis�es the identity (5). The idempoteny of thequasigroup (G, ·) is obvious. Beause of (4) and after making some arrange-ments we get

ab · c = ϕ2(a) − 2ϕ(a) + a + ϕ(b) − ϕ2(b) + ϕ(c),namely, beause of (3) �nally we get
ab · c = ϕ(a) + ϕ(b) − ϕ2(b) + ϕ(c). (7)The symmetry of the identity (7) with respet to a and c proves the identity (2).Later we shall prove that the Example 1 is a harateristi example ofLGS�quasigroup, namely we an get eah LGS�quasigroup from a ertain om-mutative group in the way given in Example 1.Example 2. Let (F, +, ·) be a �eld in whih the equation

q2 − 3q + 1 = 0 (8)has a solution q, and the operation ∗ on the set F is de�ned by the formula
a ∗ b = (1 − q)a + qb. (9)



LGS�quasigroups 79Then by means of ϕ(a) = qa an automorphism of the ommutative group
(F, +) is obviously de�ned, and as the identity (8) is valid, for eah a ∈ F theidentity (3) is valid. However, the equality (9) an be written in the form

a ∗ b = a + ϕ(b − a),so based on the Example 1 it follows that (F, ∗) is a LGS�quasigroup.Example 3. Let in the �eld (C,+, ·) of omplex numbers the operation ∗ bede�ned by the formula (9), where q = 1
2(3 +

√
5) or q = 1

2(3 −
√

5). Thenthe identity (8) is valid thus, based on Example 2, it follows that (C, ∗) isLGS�quasigroup. This quasigroup has a nie geometri interpretation whihan serve as a motivation for the study of LGS�quasigroups.Let us onsider the omplex numbers as the points of the Eulidean plane.For any two di�erent points a, b the formula (9) an also be written in the form
a ∗ b − a

b − a
= qwhih means that the point a∗ b divides the pair of points a, b in the ratio q. If

q = 1
2(3 +

√
5) namely q = 1

2(3−
√

5), then the point b divides the pair a, a ∗ brespetively the point a ∗ b divides the pair a, b in the ratio of golden setion,whih justi�es the name (left) quasigroup of the golden setion.
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Figure 1.



80 Z. Kolar�Begovi¢ and V. VoleneEah identity in LGS�quasigroup (C, ∗) interprets a ertain geometri the-orem, whih ould naturally also be proved diretly, but the theory of LGS�quasigroup gives a better insight in the mutual relations of suh theorems.So, for example on the Figure 1 the identity (2) is illustrated in the ase ofLGS�quasigroup (C, ∗) with q = 1
2(3 +

√
5), while instead of the symbol �∗�the symbol · is used. (We are going to use this way of marking in the following�gures.) All the �gures will be presented in the mentioned quasigroup with

q = 1
2(3+

√
5), but if in all the produts of the form x ∗ y = z we exhange theroles of the elements y, z, on the same pitures, we shall get the illustrationfor the quasigroup (C, ∗) with q = 1

2(3 −
√

5).2. The basi properties of LGS�quasigroupsFurther, let (Q, ·) be a LGS�quasigroup. The elements of the set Q are alledthe points. The relationship of two quasigroups from Example 3 suggests thatthe next theorem is valid.Theorem 1. If (Q, ·) is a LGS�quasigroup and if the operation • on the set
Q is de�ned by the equivaleny

a • b = c ←→ ac = b, (10)then (Q, •) is the LGS�quasigroup, too.Proof. As the groupoid (Q, •) is onjugated (in the terminology of S.K. Stein[1℄) to the quasigroup (Q, ·), then (Q, •) is also a quasigroup. The idempotenyof that quasigroup is obvious. We have to prove the identity
(a • b) • c = (c • b) • a,i.e., the impliation

a • b = d, c • b = e, d • c = f −→ e • a = f.However, beause of (10), that impliation is equivalent to the impliation
ad = b, ce = b, df = c −→ ef = a,whih should be proved. Beause of (2) the assumptions of that impliationimply suessively

ef · d = df · e = ce = b = ad,wherefrom ef = a follows.



LGS�quasigroups 81In [3℄ the onept of GS�quasigroup is de�ned. A quasigroup (Q, ·) issaid to be GS�quasigroup if it is idempotent and if it satis�es the (mutuallyequivalent) identities
a(ab · c) · c = b, a · (a · bc)c = b.Let us prove nowTheorem 2. If the operations ·, • on the set Q are suh that the equivaleny

ab = c ←→ c • b = a (11)is valid, then (Q, ·) is a LGS�quasigroup if and only if (Q, •) is a GS�quasigroup.Proof. It is obvious that (Q, ·) is a quasigroup if and only if (Q, •) is a quasi-group, and the operation · is idempotent if and only if the operation • isidempotent too. The identity (2) an be written in the equivalent form as theimpliation
ab = d, cb = e, dc = f −→ ea = f,i.e., beause of (11) as the impliation

d • b = a, e • b = c, f • c = d −→ f • a = eor, after some eliminations, as the identity
f • ((f • (e • b)) • b) = e.However, the last identity together with the idempoteny haraterizes GS�quasigroup (Q, •).Theorem 2 justi�es the name LGS�quasigroup. Based on that theoremand on the properties of GS�quasigroup using (11) the properties of LGS�quasigroup an be dedued. Beause it is not always simple, we will furtherdedue the properties of LGS�quasigroup (Q, ·) independently from the theoryof GS�quasigroup.Theorem 3. LGS�quasigroups are medial, i.e., the identity

ab · cd = ac · bd (12)is valid.



82 Z. Kolar�Begovi¢ and V. VoleneProof. Beause of (2) we have suessively
ab · cd = (cd · b)a = (bd · c)a = ac · bd.Therefore (Q, ·) is an IM�quasigroup, and it satis�es all the results from[2℄ and [4℄ with the geometri onepts of translation, paralellogram, midpointand addition of points, de�ned in [2℄.The identities of elastiity, right and left distributivity, as a onsequeneof the identities of idempoteny and mediality, are valid in LGS�quasigroup,namely we have the following identities

ab · a = a · ba, (13)
ab · c = ac · bc, (14)
a · bc = ab · ac. (15)Besides that, out of (2) beause of idempoteny we get the identity

ab · b = ba, (16)whih is also valid in LGS�quasigroup (Q, ·).Theorem 4. Any three of the four equalities
ab = d, (17)
cb = e, (18)
dc = f, (19)
ea = f, (20)imply the remaining equalities (Figure 1).Proof. The substitutions a ←→ c and d ←→ e give the substitutions (17) ←→

(18) and (19) ←→ (20), so it is enough to prove the impliations
(17) & (18) & (20) −→ (19)

(17) & (19) & (20) −→ (18),



LGS�quasigroups 83i.e., that with the presumable equalities (17) and (20) the equalities (18) and(19) are mutually equivalent. We get suessively
cb · a

(2)
= ab · c

(17)
= dc,whih together with (20) results in an equivaleny of the equalities cb · a = eaand dc = f , i.e., the equalities (18) i (19).Theorem 5. Any two of the four equalities

ab = d, (21)
dc = a, (22)
bc = d, (23)
cb = a, (24)imply the remaining equality (Figure 2) .

dcba Figure 2.Proof. The substitutions a ←→ d, b ←→ c give the substitutions (21) ←→
(22) and (23) ←→ (24). Beause of that, for the proof of the impliations
(21) & (22) −→ (23) & (24) and (23) & (24) −→ (21) & (22) it is su�ientto prove the impliations

(21) & (22) −→ (23) (25)
(23) & (24) −→ (22), (26)and from other impliations

(21) & (23) −→ (22) & (24), (27)
(21) & (24) −→ (22) & (23), (28)
(22) & (24) −→ (21) & (23),

(22) & (23) −→ (21) & (24)



84 Z. Kolar�Begovi¢ and V. Voleneit is su�ient to prove the impliations (27) and (28). We have suessively
bc · d

(2)
= dc · b

(22)
= ab

(21)
= d

(1)
= dd,

d · dc
(23)
= bc · dc

(14)
= bd · c

(2)
= cd · b

(23)
= (c · bc)b

(13)
= (cb · c)b

(24)
= ac · b

(2)
= bc · a

(23)
= da,wherefrom the equalities (23) and (22) follow, whih proves the impliations(25) and (26). Further we get

bc
(16)
= cb · b

(24)
= ab

(21)
= d,

cb · b
(16)
= bc

(23)
= d

(21)
= ab,wherefrom the equalities (23) and (24) follow whih proves the impliations

(21) & (24) −→ (23) and (21) & (23) −→ (24). The �rst one of the twoimpliations together with (26) prove the impliation (28), and the seond oneof these impliations together with (26) prove the impliation (27).3. Parallelograms and midpoints in LGS�quasigroupsEqually, as in eah medial quasigroup, based on the results from [2℄ we shallsay that (a, b, c, d) is a parallelogram and we shall write Par(a, b, c, d) if thereare two points p, q so that pa = qb and pd = qc are valid, respetively, as anequivalent to this, if there are two points u, v so that au = bv and du = cv arevalid. From the two points p, q respetively u, v one an be hosen arbitrary,and then the seond one is uniquely determined so that the mentioned equali-ties are valid. In [2℄ it was proved that (Q,Par) is a parallelogram spae, i.e.,the quaternary relation Par ⊂ Q4 has the following properties:(P1) For any three points a, b, c there is one and only one point d suh thatPar(a, b, c, d),(P2) If (e, f, g, h) is any yli permutation of (a, b, c, d) or of (d, c, b, a) thenPar(a, b, c, d) implies Par(e, f, g, h),(P3) From Par(a, b, c, d) and Par(c, d, e, f) it follows Par(a, b, f, e).Let us prove:



LGS�quasigroups 85Theorem 6. In the assumptions of the Theorem 5 the statement Par(a, b, d, c)is valid.Proof. We have the equalities ab = bc, cb = dc.Theorem 7. The statement Par(a, d, e, f) is valid, if and only if there are twopoints b, c so that d = ab, e = bc, f = ab · c (Figure 3).
ab c=f

ab=d

bc=e

a b

c

Figure 3.Proof. Let a, b, c be any points and d = ab, e = bc, f = ab · c. Then beauseof (1) respetively (2) we have ab = ab · ab, (ab · c)b = bc · ab, so the statementPar(a, ab, bc, ab · c), i.e., Par(a, d, e, f) is valid.Conversely, let Par(a, d, e, f) be valid. There is the point b so that ab = d, andthen the point c so that bc = e. Based on the �rst part of the theorem thestatement Par(a, ab, bc, ab · c), i.e., Par(a, d, e, ab · c) is valid, whih togetherwith Par(a, d, e, f), aording to (P1), gives the equality f = ab · c.Theorem 8. If o, a, b are any points, ab = c′, and the point c so that c′c = o,and bc = d′, and the point d so that d′d = o, then the statements Par(o, a, c′, d′),Par(a, b, d′, d), Par(o, b, c′, d) are valid (Figure 4).
d''do d'

c'

c

ba Figure 4.



86 Z. Kolar�Begovi¢ and V. VoleneProof. We have Par(a, ab, bc, ab · c), i.e., Par(a, c′, d′, o) or Par(o, a, c′, d′) a-ording to Theorem 7. Let d′′ = ac. Then we get equalities
d′′d′ = ac · bc

(14)
= ab · c = c′c = o,

d′d = o, wherefrom aording to Theorem 5 the equality dd′ = d′′ follows.From the equalities ac = dd′, bc = d′d′ the statement Par(a, d, d′, b), i.e.,Par(a, b, d′, d) follows. Finally, from Par(0, a, c′, d′) and Par(a, d, d′, b) beauseof Theorem 24 from [2℄ follows Par(d, c′, b, o), i.e., Par(o, b, c′, d) follows.We shall say that the point c is the midpoint of the pair of points a, b andwe write M(a, c, b) if the statement Par(a, c, b, c) is valid.Besides the results listed and proved in [2℄ and [4℄ the following statementis validTheorem 9. From ab = c and bc = d follows M(a, c, d) (Figure 5).
dce a b Figure 5.Proof. There is the point e so that ba = e. From ab = c, ba = e, aordingto Theorem 5 follows cb = e, and from bc = d, cb = e, aording to thesame theorem, follows dc = e. So we have ba = dc, bc = dd, whih provesPar(a, c, d, c), i.e., M(a, c, d).4. The haraterization of the LGS�quasigroupLet 0 be a given point. For any two points a, b we de�ne the sum a + b by theequivaleny

a + b = c ←→ Par(0, a, c, b). (29)In [4℄ it is proved that (Q,+) is a ommutative group with the neutralelement 0, and the identity
ab = a0 + 0b (30)is also proved, whih an be proved diretly. Really, beause of (16) and (2)we get

0a = a0 · 0, 0b · a = ab · 0,



LGS�quasigroups 87so Par(0, a0, ab, 0b) is valid, whih gives the identity (30), beause of (29). In[2℄ it is proved that from (30) the identity
ab = a + λo(b − a) (31)follows, where λo : x → 0x is left translation of the quasigroup (Q, ·) whih isalso the automorphism of the group (Q,+). Let us prove nowTheorem 10. For eah point a the identity

λ2
o
(a) − 3λo(a) + a = 0 (32)is valid.

d cb0a-a 0 a Figure 6.Proof. Let �rst be b = 2λo(a) = 0a + 0a, i.e., beause of (29) Par(0, 0a, b, 0a).As beause of (13) 0 · a0 = 0a · 0 is valid, so with u = a0, v = 0 from thede�nition of the parallelogram the identity
0a · a0 = b0 (33)follows. If now c = 3λo(a) = 0a+b, then beause of (29) we have Par(0, 0a, c, b),thus there is the point p so that 00 = 0a · p and

b0 = cp (34)is valid.The �rst of these two statements gets the form pa · 0 = 00 beause of (2),wherefrom
pa = 0 (35)follows.From the equality a + (−a) = 0 follows Par(0, a, 0,−a), and as beause of(16) a0 = 0a · a is valid, the identity

a(−a) = 0a · 0 (36)follows. Let
d = 3λo(a) − a, (37)



88 Z. Kolar�Begovi¢ and V. Volenei.e., d = −a + c, so Par(0,−a, d, c) is valid, and as beause of (36) we have
0a · 0 = a(−a), so the identity

0a · c = ad (38)is valid. Now, we have suessively
ad

(38)
= 0a · c

(2)
= ca · 0

(35)
= ca · pa

(14)
= cp · a

(34)
= b0 · a

(33)
= (0a · a0)a

(14)
= (0a · a)(a0 · a)

(16),(13)
= a0 · (a · 0a)

(15)
= a(0 · 0a),wherefrom follows

d = 0 · 0a = λ2
o
(a),whih together with (37) proves the identity (32).Comparing formulas (3) and (32), then the formulas (4) and (31) it followsthat eah LGS�quasigroup an be got in the way as in the Example 1, i.e.,that it is validTheorem 11. LGS�quasigroup (Q, ·) exists if and only if there exists a om-mutative group (Q,+) and its automorphism ϕ so that the identity (3) is valid.If the ommutative group (Q,+) is given and its automorphism ϕ, then theoperation · is de�ned by the formula (4), and if the LGS�quasigroup (Q, ·) isgiven and the element 0 ∈ Q, then the operation + is de�ned by the formula

a + b = ρ−1
o

(a) · λ−1
o

(b) (39)and 0 is the neutral element of the group (Q,+), where ϕ = λo and ρo are theleft and the right translations of the quasigroup (Q, ·) de�ned by the element 0.In fat, the formula (39) follows from (30) by the substitution of the vari-ables a, b with the variables ρ−1
o

(a), λ−1
o

(b).5. RGS�quasigroupsWe say that the quasigroup (Q, ·) is the right quasigroup of the golden setionor shorter RGS�quasigroup, if the identity of idempoteny
aa = a, (40)



LGS�quasigroups 89and besides that the identity
a · bc = c · ba. (41)is valid.Example 4. Let (G, +) be a ommutative group in whih there is an auto-morphism ϕ whih satis�es the identity

ϕ2(a) + ϕ(a) − a = 0. (42)If the binary operation · on the set G is de�ned by the identity
ab = a + ϕ(b − a), (43)then it an be proved that (G, ·) is a RGS�quasigroup.Example 5. Let (F, +, ·) be a �eld in whih the equation

q2 + q − 1 = 0 (44)has the solution q, and the operation ∗ on the set F is de�ned by the formula
a ∗ b = (1 − q)a + qb. (45)Then it an be proved that (F, ∗) is a RGS�quasigroup.Example 6. Let in the �eld (C,+, ·) of omplex numbers the operation ∗ bede�ned by the formula (45), where q = 1

2(−1 +
√

5) or q = 1
2(−1−

√
5). Thenthe identity (44) is valid thus, based on Example 5, it follows that (C, ∗) isRGS�quasigroup. This quasigroup has a nie geometri interpretation whihan serve as a motivation for the study of RGS�quasigroups.If we onsider the omplex numbers as the points of the Eulidean planethen for any two di�erent points a, b the formula (45) an also be written inthe form

a ∗ b − a

b − a
= qwhih means that the point a ∗ b divides the pair of points a, b in the ratio q.If q = 1

2(−1 −
√

5) namely q = 1
2(−1 +

√
5), then the point a divides the pair

a ∗ b, a respetively the point a ∗ b divides the pair b, a in the ratio of golden



90 Z. Kolar�Begovi¢ and V. Volenesetion, whih justi�es the name (right) quasigroup of the golden setion.We an introdue the same geometri onepts in any RGS�quasigroupanalogously as in a LGS�quasigroup, and in fat in a RGS�quasigroup thereexists the same (indeed dual) theory beause the following theorem is validTheorem 12. If the operations ·, • on the set Q are suh that the equivaleny
ab = c ←→ b • a = cis valid, then (Q, ·) is a LGS�quasigroup if and only if (Q, •) is a RGS�quasigroup.Referenes[1℄ S. K. Stein, On the foundation of quasigroups, Trans. Amer. Math. So. 85(1957), 228 − 256.[2℄ V. Volene, Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Um-jetn. 421 (1986), 79 − 91.[3℄ V. Volene, GS�quasigroups, �as. p�est. mat. 115 (1990), 307 − 318.[4℄ V. Volene, Geometry of IM�quasigroups, Rad Hrvatske Akad. Znan. Umj. 456(1991), 139 − 146. Reeived January 20, 2009Z. Kolar-Begovi¢:Department of Mathematis, University of Osijek, Gajev trg 6, 31 000 Osijek, CroatiaE-mail: zkolar�mathos.hrV. Volene:Department of Mathematis, University of Zagreb, Bijeni£ka . 30, 10 000 Zagreb, CroatiaE-mail: volene�math.hr


