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Abstra
t. The 
on
ept of a LGS�quasigroup is de�ned and investigated in this paper.The geometri
 
on
epts of parallelograms and midpoints are introdu
ed in a general LGS�quasigroup and the geometri
al interpretation in the LGS�quasigroup C( 1

2
(3+

√

5)) is given.The theorem about the 
hara
terization of LGS�quasigroup by means of a 
ommutativegroup is proved. RGS�quasigroup is introdu
ed and the 
onne
tion with LGS�qusigroup isinvestigated.1. De�nition and examples of LGS�quasigroupsWe say that the quasigroup (Q, ·) is the left quasigroup of the golden se
tionor shorter LGS�quasigroup, if the identity of idempoten
y
aa = a, (1)and besides that the identity

ab · c = cb · a (2)is valid.Example 1. Let (G, +) be a 
ommutative group in whi
h there is an auto-morphism ϕ whi
h satis�es the identity
ϕ2(a) − 3ϕ(a) + a = 0. (3)If the binary operation · on the set G is de�ned by the identity

ab = a + ϕ(b − a), (4)then (G, ·) is a LGS�quasigroup. We shall prove it here.2000 Mathemati
s Subje
t Classi�
ation: 20N05Keywords: LGS�quasigroup, RGS�quasigroup, 
ommutative group
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For ea
h a, b ∈ G the equations ax = b, ya = b are equivalent be
ause of(4) with the equations
a + ϕ(x − a) = b,

y + ϕ(a) − ϕ(y) = b, (5)of whi
h the �rst one has the unique solution x = a + ϕ−1(b − a), and these
ond one 
an be written in the form
ϕ2(y) − ϕ(y) − ϕ2(a) = −ϕ(b). (6)By addition of the equations (5) and (6) be
ause of (3) we get the identity

ϕ(y) − ϕ2(a) + ϕ(a) = −ϕ(b) + bwith the unique solution
y = ϕ−1[ϕ2(a) − ϕ(a) − ϕ(b) + b] = ϕ(a) − a − b + ϕ−1(b),whi
h 
learly shows that it satis�es the identity (5). The idempoten
y of thequasigroup (G, ·) is obvious. Be
ause of (4) and after making some arrange-ments we get

ab · c = ϕ2(a) − 2ϕ(a) + a + ϕ(b) − ϕ2(b) + ϕ(c),namely, be
ause of (3) �nally we get
ab · c = ϕ(a) + ϕ(b) − ϕ2(b) + ϕ(c). (7)The symmetry of the identity (7) with respe
t to a and c proves the identity (2).Later we shall prove that the Example 1 is a 
hara
teristi
 example ofLGS�quasigroup, namely we 
an get ea
h LGS�quasigroup from a 
ertain 
om-mutative group in the way given in Example 1.Example 2. Let (F, +, ·) be a �eld in whi
h the equation

q2 − 3q + 1 = 0 (8)has a solution q, and the operation ∗ on the set F is de�ned by the formula
a ∗ b = (1 − q)a + qb. (9)



LGS�quasigroups 79Then by means of ϕ(a) = qa an automorphism of the 
ommutative group
(F, +) is obviously de�ned, and as the identity (8) is valid, for ea
h a ∈ F theidentity (3) is valid. However, the equality (9) 
an be written in the form

a ∗ b = a + ϕ(b − a),so based on the Example 1 it follows that (F, ∗) is a LGS�quasigroup.Example 3. Let in the �eld (C,+, ·) of 
omplex numbers the operation ∗ bede�ned by the formula (9), where q = 1
2(3 +

√
5) or q = 1

2(3 −
√

5). Thenthe identity (8) is valid thus, based on Example 2, it follows that (C, ∗) isLGS�quasigroup. This quasigroup has a ni
e geometri
 interpretation whi
h
an serve as a motivation for the study of LGS�quasigroups.Let us 
onsider the 
omplex numbers as the points of the Eu
lidean plane.For any two di�erent points a, b the formula (9) 
an also be written in the form
a ∗ b − a

b − a
= qwhi
h means that the point a∗ b divides the pair of points a, b in the ratio q. If

q = 1
2(3 +

√
5) namely q = 1

2(3−
√

5), then the point b divides the pair a, a ∗ brespe
tively the point a ∗ b divides the pair a, b in the ratio of golden se
tion,whi
h justi�es the name (left) quasigroup of the golden se
tion.
ab c=cb a=f

cb=e

ab=d

c

b

a

Figure 1.
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Ea
h identity in LGS�quasigroup (C, ∗) interprets a 
ertain geometri
 the-orem, whi
h 
ould naturally also be proved dire
tly, but the theory of LGS�quasigroup gives a better insight in the mutual relations of su
h theorems.So, for example on the Figure 1 the identity (2) is illustrated in the 
ase ofLGS�quasigroup (C, ∗) with q = 1
2(3 +

√
5), while instead of the symbol �∗�the symbol · is used. (We are going to use this way of marking in the following�gures.) All the �gures will be presented in the mentioned quasigroup with

q = 1
2(3+

√
5), but if in all the produ
ts of the form x ∗ y = z we ex
hange theroles of the elements y, z, on the same pi
tures, we shall get the illustrationfor the quasigroup (C, ∗) with q = 1

2(3 −
√

5).2. The basi
 properties of LGS�quasigroupsFurther, let (Q, ·) be a LGS�quasigroup. The elements of the set Q are 
alledthe points. The relationship of two quasigroups from Example 3 suggests thatthe next theorem is valid.Theorem 1. If (Q, ·) is a LGS�quasigroup and if the operation • on the set
Q is de�ned by the equivalen
y

a • b = c ←→ ac = b, (10)then (Q, •) is the LGS�quasigroup, too.Proof. As the groupoid (Q, •) is 
onjugated (in the terminology of S.K. Stein[1℄) to the quasigroup (Q, ·), then (Q, •) is also a quasigroup. The idempoten
yof that quasigroup is obvious. We have to prove the identity
(a • b) • c = (c • b) • a,i.e., the impli
ation

a • b = d, c • b = e, d • c = f −→ e • a = f.However, be
ause of (10), that impli
ation is equivalent to the impli
ation
ad = b, ce = b, df = c −→ ef = a,whi
h should be proved. Be
ause of (2) the assumptions of that impli
ationimply su

essively

ef · d = df · e = ce = b = ad,wherefrom ef = a follows.



LGS�quasigroups 81In [3℄ the 
on
ept of GS�quasigroup is de�ned. A quasigroup (Q, ·) issaid to be GS�quasigroup if it is idempotent and if it satis�es the (mutuallyequivalent) identities
a(ab · c) · c = b, a · (a · bc)c = b.Let us prove nowTheorem 2. If the operations ·, • on the set Q are su
h that the equivalen
y

ab = c ←→ c • b = a (11)is valid, then (Q, ·) is a LGS�quasigroup if and only if (Q, •) is a GS�quasigroup.Proof. It is obvious that (Q, ·) is a quasigroup if and only if (Q, •) is a quasi-group, and the operation · is idempotent if and only if the operation • isidempotent too. The identity (2) 
an be written in the equivalent form as theimpli
ation
ab = d, cb = e, dc = f −→ ea = f,i.e., be
ause of (11) as the impli
ation

d • b = a, e • b = c, f • c = d −→ f • a = eor, after some eliminations, as the identity
f • ((f • (e • b)) • b) = e.However, the last identity together with the idempoten
y 
hara
terizes GS�quasigroup (Q, •).Theorem 2 justi�es the name LGS�quasigroup. Based on that theoremand on the properties of GS�quasigroup using (11) the properties of LGS�quasigroup 
an be dedu
ed. Be
ause it is not always simple, we will furtherdedu
e the properties of LGS�quasigroup (Q, ·) independently from the theoryof GS�quasigroup.Theorem 3. LGS�quasigroups are medial, i.e., the identity

ab · cd = ac · bd (12)is valid.
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Proof. Be
ause of (2) we have su

essively
ab · cd = (cd · b)a = (bd · c)a = ac · bd.Therefore (Q, ·) is an IM�quasigroup, and it satis�es all the results from[2℄ and [4℄ with the geometri
 
on
epts of translation, paralellogram, midpointand addition of points, de�ned in [2℄.The identities of elasti
ity, right and left distributivity, as a 
onsequen
eof the identities of idempoten
y and mediality, are valid in LGS�quasigroup,namely we have the following identities

ab · a = a · ba, (13)
ab · c = ac · bc, (14)
a · bc = ab · ac. (15)Besides that, out of (2) be
ause of idempoten
y we get the identity

ab · b = ba, (16)whi
h is also valid in LGS�quasigroup (Q, ·).Theorem 4. Any three of the four equalities
ab = d, (17)
cb = e, (18)
dc = f, (19)
ea = f, (20)imply the remaining equalities (Figure 1).Proof. The substitutions a ←→ c and d ←→ e give the substitutions (17) ←→

(18) and (19) ←→ (20), so it is enough to prove the impli
ations
(17) & (18) & (20) −→ (19)

(17) & (19) & (20) −→ (18),



LGS�quasigroups 83i.e., that with the presumable equalities (17) and (20) the equalities (18) and(19) are mutually equivalent. We get su

essively
cb · a

(2)
= ab · c

(17)
= dc,whi
h together with (20) results in an equivalen
y of the equalities cb · a = eaand dc = f , i.e., the equalities (18) i (19).Theorem 5. Any two of the four equalities

ab = d, (21)
dc = a, (22)
bc = d, (23)
cb = a, (24)imply the remaining equality (Figure 2) .

dcba Figure 2.Proof. The substitutions a ←→ d, b ←→ c give the substitutions (21) ←→
(22) and (23) ←→ (24). Be
ause of that, for the proof of the impli
ations
(21) & (22) −→ (23) & (24) and (23) & (24) −→ (21) & (22) it is su�
ientto prove the impli
ations

(21) & (22) −→ (23) (25)
(23) & (24) −→ (22), (26)and from other impli
ations

(21) & (23) −→ (22) & (24), (27)
(21) & (24) −→ (22) & (23), (28)
(22) & (24) −→ (21) & (23),

(22) & (23) −→ (21) & (24)
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it is su�
ient to prove the impli
ations (27) and (28). We have su

essively
bc · d

(2)
= dc · b

(22)
= ab

(21)
= d

(1)
= dd,

d · dc
(23)
= bc · dc

(14)
= bd · c

(2)
= cd · b

(23)
= (c · bc)b

(13)
= (cb · c)b

(24)
= ac · b

(2)
= bc · a

(23)
= da,wherefrom the equalities (23) and (22) follow, whi
h proves the impli
ations(25) and (26). Further we get

bc
(16)
= cb · b

(24)
= ab

(21)
= d,

cb · b
(16)
= bc

(23)
= d

(21)
= ab,wherefrom the equalities (23) and (24) follow whi
h proves the impli
ations

(21) & (24) −→ (23) and (21) & (23) −→ (24). The �rst one of the twoimpli
ations together with (26) prove the impli
ation (28), and the se
ond oneof these impli
ations together with (26) prove the impli
ation (27).3. Parallelograms and midpoints in LGS�quasigroupsEqually, as in ea
h medial quasigroup, based on the results from [2℄ we shallsay that (a, b, c, d) is a parallelogram and we shall write Par(a, b, c, d) if thereare two points p, q so that pa = qb and pd = qc are valid, respe
tively, as anequivalent to this, if there are two points u, v so that au = bv and du = cv arevalid. From the two points p, q respe
tively u, v one 
an be 
hosen arbitrary,and then the se
ond one is uniquely determined so that the mentioned equali-ties are valid. In [2℄ it was proved that (Q,Par) is a parallelogram spa
e, i.e.,the quaternary relation Par ⊂ Q4 has the following properties:(P1) For any three points a, b, c there is one and only one point d su
h thatPar(a, b, c, d),(P2) If (e, f, g, h) is any 
y
li
 permutation of (a, b, c, d) or of (d, c, b, a) thenPar(a, b, c, d) implies Par(e, f, g, h),(P3) From Par(a, b, c, d) and Par(c, d, e, f) it follows Par(a, b, f, e).Let us prove:



LGS�quasigroups 85Theorem 6. In the assumptions of the Theorem 5 the statement Par(a, b, d, c)is valid.Proof. We have the equalities ab = bc, cb = dc.Theorem 7. The statement Par(a, d, e, f) is valid, if and only if there are twopoints b, c so that d = ab, e = bc, f = ab · c (Figure 3).
ab c=f

ab=d

bc=e

a b

c

Figure 3.Proof. Let a, b, c be any points and d = ab, e = bc, f = ab · c. Then be
auseof (1) respe
tively (2) we have ab = ab · ab, (ab · c)b = bc · ab, so the statementPar(a, ab, bc, ab · c), i.e., Par(a, d, e, f) is valid.Conversely, let Par(a, d, e, f) be valid. There is the point b so that ab = d, andthen the point c so that bc = e. Based on the �rst part of the theorem thestatement Par(a, ab, bc, ab · c), i.e., Par(a, d, e, ab · c) is valid, whi
h togetherwith Par(a, d, e, f), a

ording to (P1), gives the equality f = ab · c.Theorem 8. If o, a, b are any points, ab = c′, and the point c so that c′c = o,and bc = d′, and the point d so that d′d = o, then the statements Par(o, a, c′, d′),Par(a, b, d′, d), Par(o, b, c′, d) are valid (Figure 4).
d''do d'

c'

c

ba Figure 4.
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Proof. We have Par(a, ab, bc, ab · c), i.e., Par(a, c′, d′, o) or Par(o, a, c′, d′) a
-
ording to Theorem 7. Let d′′ = ac. Then we get equalities
d′′d′ = ac · bc

(14)
= ab · c = c′c = o,

d′d = o, wherefrom a

ording to Theorem 5 the equality dd′ = d′′ follows.From the equalities ac = dd′, bc = d′d′ the statement Par(a, d, d′, b), i.e.,Par(a, b, d′, d) follows. Finally, from Par(0, a, c′, d′) and Par(a, d, d′, b) be
auseof Theorem 24 from [2℄ follows Par(d, c′, b, o), i.e., Par(o, b, c′, d) follows.We shall say that the point c is the midpoint of the pair of points a, b andwe write M(a, c, b) if the statement Par(a, c, b, c) is valid.Besides the results listed and proved in [2℄ and [4℄ the following statementis validTheorem 9. From ab = c and bc = d follows M(a, c, d) (Figure 5).
dce a b Figure 5.Proof. There is the point e so that ba = e. From ab = c, ba = e, a

ordingto Theorem 5 follows cb = e, and from bc = d, cb = e, a

ording to thesame theorem, follows dc = e. So we have ba = dc, bc = dd, whi
h provesPar(a, c, d, c), i.e., M(a, c, d).4. The 
hara
terization of the LGS�quasigroupLet 0 be a given point. For any two points a, b we de�ne the sum a + b by theequivalen
y

a + b = c ←→ Par(0, a, c, b). (29)In [4℄ it is proved that (Q,+) is a 
ommutative group with the neutralelement 0, and the identity
ab = a0 + 0b (30)is also proved, whi
h 
an be proved dire
tly. Really, be
ause of (16) and (2)we get

0a = a0 · 0, 0b · a = ab · 0,



LGS�quasigroups 87so Par(0, a0, ab, 0b) is valid, whi
h gives the identity (30), be
ause of (29). In[2℄ it is proved that from (30) the identity
ab = a + λo(b − a) (31)follows, where λo : x → 0x is left translation of the quasigroup (Q, ·) whi
h isalso the automorphism of the group (Q,+). Let us prove nowTheorem 10. For ea
h point a the identity

λ2
o
(a) − 3λo(a) + a = 0 (32)is valid.

d cb0a-a 0 a Figure 6.Proof. Let �rst be b = 2λo(a) = 0a + 0a, i.e., be
ause of (29) Par(0, 0a, b, 0a).As be
ause of (13) 0 · a0 = 0a · 0 is valid, so with u = a0, v = 0 from thede�nition of the parallelogram the identity
0a · a0 = b0 (33)follows. If now c = 3λo(a) = 0a+b, then be
ause of (29) we have Par(0, 0a, c, b),thus there is the point p so that 00 = 0a · p and

b0 = cp (34)is valid.The �rst of these two statements gets the form pa · 0 = 00 be
ause of (2),wherefrom
pa = 0 (35)follows.From the equality a + (−a) = 0 follows Par(0, a, 0,−a), and as be
ause of(16) a0 = 0a · a is valid, the identity

a(−a) = 0a · 0 (36)follows. Let
d = 3λo(a) − a, (37)
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i.e., d = −a + c, so Par(0,−a, d, c) is valid, and as be
ause of (36) we have
0a · 0 = a(−a), so the identity

0a · c = ad (38)is valid. Now, we have su

essively
ad

(38)
= 0a · c

(2)
= ca · 0

(35)
= ca · pa

(14)
= cp · a

(34)
= b0 · a

(33)
= (0a · a0)a

(14)
= (0a · a)(a0 · a)

(16),(13)
= a0 · (a · 0a)

(15)
= a(0 · 0a),wherefrom follows

d = 0 · 0a = λ2
o
(a),whi
h together with (37) proves the identity (32).Comparing formulas (3) and (32), then the formulas (4) and (31) it followsthat ea
h LGS�quasigroup 
an be got in the way as in the Example 1, i.e.,that it is validTheorem 11. LGS�quasigroup (Q, ·) exists if and only if there exists a 
om-mutative group (Q,+) and its automorphism ϕ so that the identity (3) is valid.If the 
ommutative group (Q,+) is given and its automorphism ϕ, then theoperation · is de�ned by the formula (4), and if the LGS�quasigroup (Q, ·) isgiven and the element 0 ∈ Q, then the operation + is de�ned by the formula

a + b = ρ−1
o

(a) · λ−1
o

(b) (39)and 0 is the neutral element of the group (Q,+), where ϕ = λo and ρo are theleft and the right translations of the quasigroup (Q, ·) de�ned by the element 0.In fa
t, the formula (39) follows from (30) by the substitution of the vari-ables a, b with the variables ρ−1
o

(a), λ−1
o

(b).5. RGS�quasigroupsWe say that the quasigroup (Q, ·) is the right quasigroup of the golden se
tionor shorter RGS�quasigroup, if the identity of idempoten
y
aa = a, (40)



LGS�quasigroups 89and besides that the identity
a · bc = c · ba. (41)is valid.Example 4. Let (G, +) be a 
ommutative group in whi
h there is an auto-morphism ϕ whi
h satis�es the identity

ϕ2(a) + ϕ(a) − a = 0. (42)If the binary operation · on the set G is de�ned by the identity
ab = a + ϕ(b − a), (43)then it 
an be proved that (G, ·) is a RGS�quasigroup.Example 5. Let (F, +, ·) be a �eld in whi
h the equation

q2 + q − 1 = 0 (44)has the solution q, and the operation ∗ on the set F is de�ned by the formula
a ∗ b = (1 − q)a + qb. (45)Then it 
an be proved that (F, ∗) is a RGS�quasigroup.Example 6. Let in the �eld (C,+, ·) of 
omplex numbers the operation ∗ bede�ned by the formula (45), where q = 1

2(−1 +
√

5) or q = 1
2(−1−

√
5). Thenthe identity (44) is valid thus, based on Example 5, it follows that (C, ∗) isRGS�quasigroup. This quasigroup has a ni
e geometri
 interpretation whi
h
an serve as a motivation for the study of RGS�quasigroups.If we 
onsider the 
omplex numbers as the points of the Eu
lidean planethen for any two di�erent points a, b the formula (45) 
an also be written inthe form

a ∗ b − a

b − a
= qwhi
h means that the point a ∗ b divides the pair of points a, b in the ratio q.If q = 1

2(−1 −
√

5) namely q = 1
2(−1 +

√
5), then the point a divides the pair

a ∗ b, a respe
tively the point a ∗ b divides the pair b, a in the ratio of golden
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se
tion, whi
h justi�es the name (right) quasigroup of the golden se
tion.We 
an introdu
e the same geometri
 
on
epts in any RGS�quasigroupanalogously as in a LGS�quasigroup, and in fa
t in a RGS�quasigroup thereexists the same (indeed dual) theory be
ause the following theorem is validTheorem 12. If the operations ·, • on the set Q are su
h that the equivalen
y
ab = c ←→ b • a = cis valid, then (Q, ·) is a LGS�quasigroup if and only if (Q, •) is a RGS�quasigroup.Referen
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