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LGS—quasigroups

Zdenka Kolar-Begovi¢ and Vladimir Volenec

Abstract. The concept of a LGS—quasigroup is defined and investigated in this paper.
The geometric concepts of parallelograms and midpoints are introduced in a general LGS—
quasigroup and the geometrical interpretation in the LGS-quasigroup C(1(3++/5)) is given.
The theorem about the characterization of LGS—quasigroup by means of a commutative
group is proved. RGS—quasigroup is introduced and the connection with LGS—qusigroup is

investigated.

1. Definition and examples of LGS—quasigroups

We say that the quasigroup (Q,-) is the left quasigroup of the golden section
or shorter LGS—quasigroup, if the identity of idempotency

aa = a, (1)
and besides that the identity
ab-c=cb-a (2)
is valid.

Example 1. Let (G,+) be a commutative group in which there is an auto-
morphism ¢ which satisfies the identity

¢*(a) = 3p(a) +a=0. (3)
If the binary operation - on the set G is defined by the identity
ab=a+ ¢(b—a), (4)

then (G, ) is a LGS—quasigroup. We shall prove it here.
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For each a,b € G the equations ax = b, ya = b are equivalent because of
(4) with the equations
a+¢(x—a)=>b,

y+ela) —py) =0, (5)

of which the first one has the unique solution z = a + ¢~ 1(b — a), and the
second one can be written in the form

P (y) — oly) — ¥*(a) = —p(b). (6)
By addition of the equations (5) and (6) because of (3) we get the identity
p(y) — ¢*(a) + ¢(a) = —p(b) +b
with the unique solution
y=9¢"[¥*(a) = p(a) = p(b) +b] = p(a) —a—b+ ¢ (b),

which clearly shows that it satisfies the identity (5). The idempotency of the
quasigroup (G, -) is obvious. Because of (4) and after making some arrange-
ments we get

ab- ¢ = ¢?(a) = 2p(a) + a+ (b)) — ¢?(b) + ¢(e),
namely, because of (3) finally we get
ab- ¢ = p(a) + ¢(b) — *(b) + (o). (7)

The symmetry of the identity (7) with respect to a and ¢ proves the identity (2).

Later we shall prove that the Example 1 is a characteristic example of
LGS—quasigroup, namely we can get each LGS—quasigroup from a certain com-
mutative group in the way given in Example 1.

Example 2. Let (F,+,-) be a field in which the equation
@ —3¢+1=0 (8)
has a solution ¢, and the operation * on the set F' is defined by the formula

axb=(1-q)a+ qgb. (9)
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Then by means of ¢(a) = ga an automorphism of the commutative group
(F,+) is obviously defined, and as the identity (8) is valid, for each a € F' the
identity (3) is valid. However, the equality (9) can be written in the form

axb=a+ p(b—a),
so based on the Example 1 it follows that (F)x*) is a LGS—quasigroup.

Example 3. Let in the field (C,+, ) of complex numbers the operation * be
defined by the formula (9), where ¢ = (3 +v/5) or ¢ = 1(3 — V/5). Then
the identity (8) is valid thus, based on Example 2, it follows that (C,x) is
LGS—quasigroup. This quasigroup has a nice geometric interpretation which
can serve as a motivation for the study of LGS—quasigroups.

Let us consider the complex numbers as the points of the Euclidean plane.
For any two different points a, b the formula (9) can also be written in the form

axb—a

b—a — 4

which means that the point a*b divides the pair of points a, b in the ratio ¢. If
q= %(3 ++/5) namely ¢ = %(3 —+/5), then the point b divides the pair a,a * b
respectively the point a * b divides the pair a,b in the ratio of golden section,
which justifies the name (left) quasigroup of the golden section.

ab-c=cb-a=f

Figure1.
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Each identity in LGS—quasigroup (C, %) interprets a certain geometric the-
orem, which could naturally also be proved directly, but the theory of LGS—
quasigroup gives a better insight in the mutual relations of such theorems.
So, for example on the Figure 1 the identity (2) is illustrated in the case of
LGS—quasigroup (C,*) with ¢ = %(3 ++/5), while instead of the symbol “*”
the symbol - is used. (We are going to use this way of marking in the following
figures.) All the figures will be presented in the mentioned quasigroup with
q= %(3 ++/5), but if in all the products of the form z *y = z we exchange the
roles of the elements y, z, on the same pictures, we shall get the illustration
for the quasigroup (C, =) with ¢ = (3 — V/5).

2. The basic properties of LGS—quasigroups

Further, let (@, -) be a LGS—quasigroup. The elements of the set @) are called
the points. The relationship of two quasigroups from Example 3 suggests that
the next theorem is valid.

Theorem 1. If (Q,-) is a LGS—quasigroup and if the operation e on the set
Q 1is defined by the equivalency

aeb=c<—ac=0b, (10)
then (Q, ) is the LGS—quasigroup, too.

Proof. As the groupoid (@, e) is conjugated (in the terminology of S. K. Stein
[1]) to the quasigroup (Q,-), then (@, ®) is also a quasigroup. The idempotency
of that quasigroup is obvious. We have to prove the identity

(aob)ec=(ceb)eaq,
i.e., the implication
aeb=d, ceb=¢, dec=f —cea=f.
However, because of (10), that implication is equivalent to the implication
ad="b, ce=0b, df =c — ef = a,

which should be proved. Because of (2) the assumptions of that implication
imply successively
ef -d=df -e=ce=b=ad,

wherefrom ef = a follows. O
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In [3] the concept of GS—quasigroup is defined. A quasigroup (Q,-) is
said to be GS—quasigroup if it is idempotent and if it satisfies the (mutually
equivalent) identities

a(ab-c)-c=0b, a-(a-bc)ec=b.
Let us prove now

Theorem 2. If the operations -, ® on the set Q are such that the equivalency
ab=c——ceb=a (11)
is valid, then (Q,-) is a LGS—quasigroup if and only if (Q, ®) is a GS—quasigroup.

Proof. Tt is obvious that (@, -) is a quasigroup if and only if (@, e) is a quasi-
group, and the operation - is idempotent if and only if the operation e is
idempotent too. The identity (2) can be written in the equivalent form as the
implication

ab=d, cb=e, dc=f — ea=f,
i.e., because of (11) as the implication
deb=ua, ceb=c, fec=d — fea=ce

or, after some eliminations, as the identity

Je((fe(cob))ob)=c.

However, the last identity together with the idempotency characterizes GS—
quasigroup (Q,e). 0

Theorem 2 justifies the name LGS—quasigroup. Based on that theorem
and on the properties of GS—quasigroup using (11) the properties of LGS—
quasigroup can be deduced. Because it is not always simple, we will further
deduce the properties of LGS—quasigroup (@, -) independently from the theory
of GS—quasigroup.

Theorem 3. LGS—quasigroups are medial, i.e., the identity
ab-cd = ac-bd (12)

1s valid.
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Proof. Because of (2) we have successively
ab-cd = (cd-b)a = (bd-c)a = ac- bd. O

Therefore (Q,-) is an IM—quasigroup, and it satisfies all the results from
[2] and [4] with the geometric concepts of translation, paralellogram, midpoint
and addition of points, defined in [2].

The identities of elasticity, right and left distributivity, as a consequence
of the identities of idempotency and mediality, are valid in LGS—quasigroup,
namely we have the following identities

ab-a = a- ba, (13)
ab-c = ac- be, (14)
a-bc=ab-ac. (15)

Besides that, out of (2) because of idempotency we get the identity
ab- b= ba, (16)
which is also valid in LGS—quasigroup (@, -).

Theorem 4. Any three of the four equalities

ab = d, (17)
ch=e, (18)
de = f, (19)
ea = f, (20)

imply the remaining equalities (Figure 1).

Proof. The substitutions a «<— ¢ and d «— e give the substitutions (17) «—
(18) and (19) «— (20), so it is enough to prove the implications

(17) & (18) & (20) — (19)

(17) & (19) & (20) — (18),
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i.e., that with the presumable equalities (17) and (20) the equalities (18) and
(19) are mutually equivalent. We get successively

2)

cb‘a:ab-cu:?)

de,

which together with (20) results in an equivalency of the equalities ¢b - a = ea
and dc = f, i.e., the equalities (18) i (19). O

Theorem 5. Any two of the four equalities

ab = d, (21)
dc = a, (22)
bc =d, (23)
cb = a, (24)

imply the remaining equality (Figure 2) .

a b c d

Figure 2.

Proof. The substitutions a «— d, b «— ¢ give the substitutions (21) «——
(22) and (23) «<— (24). Because of that, for the proof of the implications
(21) & (22) — (23) & (24) and (23) & (24) — (21) & (22) it is sufficient
to prove the implications

(21) & (22) — (23) (25)

(23) & (24) — (22), (26)

and from other implications

(21) & (23) — (22) & (24), (27)
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it is sufficient to prove the implications (27) and (28). We have successively

bed 2 deb B ap® q @ g,
d-de @ ve-de@pd- e @ ed- v (e bl
13 (cb-c)b e b Zpe-a® da,

wherefrom the equalities (23) and (22) follow, which proves the implications
(25) and (26). Further we get

(16) (21)
C = =

b
bWy

cb-b(2:4)a

(23)
CcC =

b
(21)

d,

d ab,

wherefrom the equalities (23) and (24) follow which proves the implications
(21) & (24) — (23) and (21) & (23) — (24). The first one of the two
implications together with (26) prove the implication (28), and the second one
of these implications together with (26) prove the implication (27). O

3. Parallelograms and midpoints in LGS—quasigroups

Equally, as in each medial quasigroup, based on the results from [2] we shall
say that (a,b,c,d) is a parallelogram and we shall write Par(a, b, ¢, d) if there
are two points p, q so that pa = ¢qb and pd = qc are valid, respectively, as an
equivalent to this, if there are two points u, v so that au = bv and du = cv are
valid. From the two points p, q respectively u, v one can be chosen arbitrary,
and then the second one is uniquely determined so that the mentioned equali-
ties are valid. In [2] it was proved that (Q,Par) is a parallelogram space, i.e.,
the quaternary relation Par C Q* has the following properties:

(P1) For any three points a, b, ¢ there is one and only one point d such that
Par(a, b, ¢, d),

(P2) If (e, f, g, h) is any cyclic permutation of (a,b,c,d) or of (d,c,b,a) then
Par(a, b, ¢,d) implies Par(e, f, g, h),

(P3) From Par(a,b,c,d) and Par(c,d, e, f) it follows Par(a, b, f,e).

Let us prove:
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Theorem 6. In the assumptions of the Theorem 5 the statement Par(a,b,d, c)
1s valid.

Proof. We have the equalities ab = be, ¢b = dec. O

Theorem 7. The statement Par(a,d, e, f) is valid, if and only if there are two
points b, ¢ so that d = ab, e = be, f = ab- ¢ (Figure 3).

ab - c=f bc=e

a b ab=d
Figure 3.

Proof. Let a, b, ¢ be any points and d = ab, e = bc, f = ab- c. Then because
of (1) respectively (2) we have ab = ab- ab, (ab-¢)b = bc - ab, so the statement
Par(a, ab, be,ab - ¢), i.e., Par(a,d, e, f) is valid.

Conversely, let Par(a,d, e, f) be valid. There is the point b so that ab = d, and
then the point ¢ so that bc = e. Based on the first part of the theorem the
statement Par(a, ab, be,ab - ¢), i.e., Par(a,d,e,ab - ¢) is valid, which together
with Par(a,d, e, f), according to (P1), gives the equality f = ab- c. O

Theorem 8. If o, a, b are any points, ab = ¢/, and the point ¢ so that c'c = o,
and be = d', and the point d so that d'd = o, then the statements Par(o,a,c,d’),
Par(a,b,d,d), Par(o,b,c,d) are valid (Figure }).

0 d d’ d”

Figure4.
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Proof. We have Par(a, ab,be,ab - ¢), i.e., Par(a,d,d,0) or Par(o,a,c,d’) ac-

cording to Theorem 7. Let d” = ac. Then we get equalities

d"d = ac - be ) ab-c=cdc=o,
d'd = o, wherefrom according to Theorem 5 the equality dd’ = d” follows.
From the equalities ac = dd’, bc = d'd’ the statement Par(a,d,d’,b), i.e.,
Par(a,b,d',d) follows. Finally, from Par(0, a,c,d') and Par(a,d,d’,b) because
of Theorem 24 from |2] follows Par(d, ¢, b,0), i.e., Par(o,b,,d) follows. [

We shall say that the point ¢ is the midpoint of the pair of points a, b and
we write M (a, ¢, b) if the statement Par(a,c,b, ) is valid.

Besides the results listed and proved in [2]| and [4] the following statement
is valid

Theorem 9. From ab = ¢ and bc = d follows M (a,c,d) (Figure 5).

e a b c d
Figure 5.

Proof. There is the point e so that ba = e. From ab = ¢, ba = e, according
to Theorem 5 follows ¢b = e, and from bc = d, cb = e, according to the
same theorem, follows dc = e. So we have ba = dec, bc = dd, which proves
Par(a,c,d, c), i.e., M(a,c,d). O

4. The characterization of the LGS—quasigroup

Let 0 be a given point. For any two points a, b we define the sum a 4 b by the
equivalency
a+b=c«<— Par(0,a,c,b). (29)

In [4] it is proved that (Q,+) is a commutative group with the neutral
element 0, and the identity
ab = a0 + 0b (30)

is also proved, which can be proved directly. Really, because of (16) and (2)
we get
0a=a0-0,0b-a=ab-0,
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so Par(0, a0, ab,0b) is valid, which gives the identity (30), because of (29). In
[2] it is proved that from (30) the identity

ab=a+ \o(b—a) (31)

follows, where A, : * — Ox is left translation of the quasigroup (Q,-) which is
also the automorphism of the group (@, +). Let us prove now

Theorem 10. For each point a the identity
M(a) —3X\o(a) +a=0 (32)

18 valid.

e}

-a 0 a Oa b d c
Figure6.
Proof. Let first be b = 2\,(a) = 0a + Oa, i.e., because of (29) Par(0, Oa, b, 0a).

As because of (13) 0-a0 = Oa - 0 is valid, so with v = a0, v = 0 from the
definition of the parallelogram the identity

Oa - a0 = b0 (33)

follows. If now ¢ = 3\,(a) = Oa+b, then because of (29) we have Par(0, Oa, ¢, b),
thus there is the point p so that 00 = Oa - p and

b0 = cp (34)

is valid.
The first of these two statements gets the form pa - 0 = 00 because of (2),
wherefrom

pa =0 (35)

follows.
From the equality a + (—a) = 0 follows Par(0, a,0, —a), and as because of
(16) a0 = Oa - a is valid, the identity

a(—a) =0a-0 (36)

follows. Let
d = 3X(a) — a, (37)
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ie, d = —a+ ¢, so Par(0,—a,d,c) is valid, and as because of (36) we have
0a - 0 = a(—a), so the identity

O0a-c=ad (38)
is valid. Now, we have successively
(38) @

ad =" 0a-c =

(33

(35)
C =
B (0a - a0)a

ca~pa(1;1)cp'a(3;1)b0-a

(0a - a)(al - a) 1609 1. (a-0a) (18) a(0 - 0a),

a -0

(14)

wherefrom follows
d=0-0a=X\(a),

which together with (37) proves the identity (32). O

Comparing formulas (3) and (32), then the formulas (4) and (31) it follows
that each LGS—quasigroup can be got in the way as in the Example 1, i.e.,
that it is valid

Theorem 11. LGS—quasigroup (Q,-) exists if and only if there exists a com-
mutative group (Q,+) and its automorphism ¢ so that the identity (3) is valid.
If the commutative group (Q,+) is given and its automorphism ¢, then the
operation - is defined by the formula (4), and if the LGS-quasigroup (Q,-) is
given and the element 0 € @, then the operation + is defined by the formula

a+b=p, (a) 2, (b) (39)
and 0 is the neutral element of the group (Q,+), where ¢ = X\, and p, are the
left and the right translations of the quasigroup (Q,-) defined by the element 0.

In fact, the formula (39) follows from (30) by the substitution of the vari-
ables a, b with the variables p,'(a), A;1(b).
5. RGS—quasigroups

We say that the quasigroup (Q, -) is the right quasigroup of the golden section
or shorter RGS—quasigroup, if the identity of idempotency

aa = a, (40)
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and besides that the identity
a-bc=c-ba. (41)
is valid.

Example 4. Let (G,+) be a commutative group in which there is an auto-
morphism ¢ which satisfies the identity

©*(a) + ¢la) —a = 0. (42)
If the binary operation - on the set GG is defined by the identity
ab=a+ ¢(b—a), (43)
then it can be proved that (G,-) is a RGS—quasigroup.
Example 5. Let (F,+,-) be a field in which the equation
¢ +q—1=0 (44)
has the solution ¢, and the operation * on the set F'is defined by the formula
axb=(1—q)a+ gb. (45)
Then it can be proved that (F,x) is a RGS—quasigroup.

Example 6. Let in the field (C,+,-) of complex numbers the operation * be
defined by the formula (45), where ¢ = 3(—1++/5) or ¢ = 3(—=1—+/5). Then
the identity (44) is valid thus, based on Example 5, it follows that (C,x) is
RGS—quasigroup. This quasigroup has a nice geometric interpretation which
can serve as a motivation for the study of RGS—quasigroups.

If we consider the complex numbers as the points of the Euclidean plane
then for any two different points a,b the formula (45) can also be written in

the form
axb—a

b—a
which means that the point a * b divides the pair of points a,b in the ratio q.
Ifg= %(—1 —+/5) namely q = %(—1 ++/5), then the point a divides the pair
a * b, a respectively the point a * b divides the pair b, a in the ratio of golden

=q
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section, which justifies the name (right) quasigroup of the golden section.

We can introduce the same geometric concepts in any RGS—quasigroup
analogously as in a LGS—quasigroup, and in fact in a RGS—quasigroup there
exists the same (indeed dual) theory because the following theorem is valid

Theorem 12. If the operations -, ® on the set Q) are such that the equivalency
ab=c+—bea=c

is valid, then (Q,-) is a LGS—quasigroup if and only if (Q,e) is a RGS-

quasigroup.
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