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Generating huge quasigroups from small non-linear

bijections via extended Feistel function

Smile Markovski and Aleksandra Mileva

Abstract. Quasigroups of huge order, like 2256, 2512, 21024, that can be e�ectively con-
structed, have important applications in designing several cryptographic primitives. We
propose an e�ective method for construction of such huge quasigroups of order r = 2s2t

for
small �xed values of s and arbitrary values of t; the complexity of computation of the quasi-
group multiplication is O(log(log(r))) = O(t). Besides the computational e�ectiveness,
these quasigroups can be constructed in such a way to have other desirable cryptographic
properties: do not satisfy the commutative law, the associative law, the idempotent law, to
have no proper subquasigroups, to be non-linear, etc. These quasigroups are constructed by
complete mappings generated by suitable bijections of order 2s via extended Feistel network
functions.

1. Introduction

The cryptographic community started dealing with quasigroups (or Latin squares,
as their combinatorial counterpart) for producing di�erent kinds of crypto-
graphic primitives two decades ago. Authentication schemas have been pro-
posed by J. Dènes and A.D. Keedwell (1992) [4], secret sharing schemes by
J. Cooper et al. (1994) [3], a version of popular DES block cipher by using
Latin squares by G. Carter et al. (1995) [2], di�erent proposals for use in
the design of cryptographic hash functions by several authors [10, 12, 20, 26],
Latin squares in cipher systems (2003) [14], PRNG based on quasigroup string
transformations by S. Markovski and al. (2005) [19], a hardware stream cipher
by D. Gligoroski et al. (2005) [9], a public key cipher by D. Gligoroski, S.
Markovski and S.J. Knapskog (2008) [11], and many others.

A quasigroup is a groupoid (Q, ∗) that satis�es the property each one of
the equations a ∗ x = b and y ∗ a = b to have a unique solution x, respectively
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y. When Q is a �nite set, the main body of the Cayley table of the quasi-
group (Q, ∗) represents a Latin square, i.e., a matrix with rows and columns
that are permutations of Q. In cryptographic applications the quasigroups
are usually used in two di�erent ways. If they are of relatively small order
(|Q| = 4, 8, 16, 32), then the designers iteratively apply them many times
(e.g., 80 times in EDON80 [9]). On the other side, for obtaining fast and
secure cryptographic systems with a few iterations, �nite quasigroups of huge
order (called huge quasigroups) are needed. Here, by huge order we mean
|Q| = 2n, n = 16, 32, 64, 128, . . . .

Huge quasigroups can not be represented by Cayley tables and one should
de�ne them by using suitable functions. The cryptographic qualities of the
huge quasigroups depend on the functions that are used for their de�nitions.
By a quasigroup of a good cryptographic quality we mean a �nite quasigroup
that is non-commutative, non-associative, non-idempotent, without right or
left units and without a proper subquasigroup. The algebraic degree of the
quasigroup should be as high as possible, at least 2. Also, they should not
satisfy identities of the kinds x ∗ (... ∗ (x︸ ︷︷ ︸

l

∗y)) = y and y = ((y ∗ x) ∗ ...) ∗ x︸ ︷︷ ︸
l

for

some l < 2n, where n is the order of the quasigroup.

Here we use modi�ed Feistel networks [8], that we call extended Feistel
networks, to de�ne huge quasigroups. A Feistel network takes any function
and transforms it into a bijection, so it is commonly used technique for cre-
ating a non-linear cryptographic function [6], [16]. Using a Feistel network
for creating a huge quasigroup is not a novel approach. Kristen [21] presents
several di�erent constructions using one or two Feistel networks and isotopies
of quasigroups. Complete mappings, introduced by Mann [17] (the equiva-
lent concept of orthomorphism was introduced explicitly in [5]), are also useful
for creation of huge quasigroups. In [21] complete mappings with non-a�ne
functions represented by Cayley tables or with a�ne functions represented by
binary transformations are used for that aim. The main disadvantages of the
previously mentioned constructions is the lack of e�ciency in one case and the
lack of security in other case. Namely, the Cayley table representations need a
lot of memory, and the a�ne functions have no good cryptographic properties.

In this paper we conjunct these two approaches. In fact, we use extended
Feistel networks as complete mappings to generate huge quasigroups of order
r = 2s2t

. We only need to store small permutations of order 2s, s = 4, 8, 16.
We show that the quasigroups obtained by our construction satisfy the secu-
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rity properties mentioned above (i.e., they are not: commutative, associative,
idempotent, etc.).

The paper is organized as follows. Quasigroups obtained by complete map-
pings are considered in Section 2, where it is shown that such a quasigroup
has a property that each of its parastrophes is de�ned by a complete mapping
too. The extended Feistel networks are de�ned in Section 3, and in Section
4 their algebraic degree is counted. Huge quasigroups de�ned by extended
Feistel networks are given in Section 5, where their cryptographic properties
are considered too. Conclusion remarks are in Section 6.

2. Complete mappings

Our construction of huge quasigroups is based on quasigroups derived from
groups by using complete mappings. Here we give the needed de�nitions and
some properties.

De�nition 2.1. A complete mapping of a group (G, +) is a bijection θ : G→ G
such that the mapping ϕ : G→ G de�ned by ϕ(x) = −x + θ(x) (ϕ = −I + θ,
where I is the identity mapping) is again a bijection of G. The mapping ϕ is
said to be the orthomorphism associated to the complete mapping θ. A group
G is admissible if there is a complete mapping θ : G→ G.

Question about whether or not a group G is admissible is a subject that
has been extensively studied [13, 22, 23]. It is well-known fact that inverse of
the complete mapping is also a complete mapping of Abelian group (G, +) [7].

Sade proposed the following method for creating a quasigroup from an
admissible group [25]:

Proposition 2.1. Let (Q,+) be an admissible group with complete mapping

θ. De�ne an operation • on Q by:

x • y = θ(x− y) + y (1)

where x, y ∈ Q. Then (Q, •) is a quasigroup. (Then we say that (Q, •) is

derived by θ.) �

In the sequel, we will consider only complete mappings of the Abelian
groups (Zn

2 ,⊕n), where ⊕n denotes the operation bitwise XOR of words of
length n bits. The results of Paige [22] implies that the groups (Zn

2 ,⊕n) are
admissible. Then the equation (1) get the form:

x • y = θ(x⊕n y)⊕n y. (2)
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Proposition 2.2. If θ is a complete mapping of (Zn
2 ,⊕n), then its orthomor-

phism ϕ = I ⊕n θ is a complete mapping of (Zn
2 ,⊕n) too, with orthomorphism

θ = I ⊕n ϕ. �

Example 2.1. Let Q = Z2
2 = {0, 1, 2, 3}, where we use the integer notation

0 ≡ 〈0, 0〉, 1 ≡ 〈0, 1〉, 2 ≡ 〈1, 0〉, 3 ≡ 〈1, 1〉. De�ne θ : Q → Q by θ(〈x0, x1〉) =
〈x0 ⊕ x1, x0 ⊕ 1〉, where x1, x0 are bits. Table 1 demonstrates that both θ and
I + θ are bijections, and the quasigroup (Q, •) is de�ned by (2).

x θ(x) ϕ(x) = x⊕2 θ(x)
〈0, 0〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈1, 1〉 〈1, 0〉
〈1, 0〉 〈1, 0〉 〈0, 0〉
〈1, 1〉 〈0, 0〉 〈1, 1〉

• 0 1 2 3
0 1 2 0 3
1 3 0 2 1
2 2 1 3 0
3 0 3 1 2

Table 1: The complete mapping θ of the group Z2
2 and the derived quasigroup.

Given a quasigroup (Q, f), �ve new operations f−1,−1f,−1(f−1), (−1f)−1

and f∗ on the set Q can be derived by as follows.

−1f(x, y) = z ←→ f(z, y) = x,
f−1(x, y) = z ←→ f(x, z) = y,

−1(f−1)(x, y) = z ←→ f−1(z, y) = x ←→ f(z, x) = y,
(−1f)−1(x, y) = z ←→ (−1f)(x, z) = y ←→ f(y, z) = x,

f∗(x, y) = z ←→ (−1f)−1(x, y) = yz ←→ f(y, x) = z.

The set Par(f) = {f, f−1,−1f,−1(f−1), (−1f)−1, f∗} is said to be the set
of parastrophes of f . |Par(f)| 6 6, i.e., some of parastrophes may coincides
between themselves. For each g ∈ Par(f), (Q, g) is a quasigroup too and
Par(f) = Par(g) (see [1], [4]). The parastrophes of a quasigroup determine
some identities that can be used for cryptographic encoding and decoding
functions to be de�ned. For example, by using the identities f−1(x, f(x, z)) = z
and f(x, f−1(x, y)) = y, f and f−1 can be taken as encoding and decoding
functions.

The next theorem shows that if a quasigroup (Zn
2 , f) is derived by a com-

plete mapping, then all of its parastrophes can be derived by complete map-
pings too. This fact can be especially useful for encoding and decoding pur-
poses.
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Theorem 2.1. Let θ : Zn
2 → Zn

2 be a complete mapping of the group (Zn
2 ,⊕n)

and let (Zn
2 , f) be the quasigroup derived by f(x, y) = θ(x⊕n y)⊕n y. Then the

following statements are true.

a) (Q,−1f) is derived by the complete mapping δ = θ−1.

b) (Q, f−1) is derived by the complete mapping λ = (I ⊕n θ−1)−1.

c) (Q, (−1(f−1))) is derived by the complete mapping ρ = I ⊕n θ−1.

d) (Q, (−1f)−1) is derived by the complete mapping τ = (I ⊕n θ)−1.

e) (Q, f∗) is derived by the complete mapping ϕ = I ⊕n θ.

Proof. a) −1f(x, y) = z ←→ f(z, y) = x←→ θ(z ⊕n y)⊕n y = x←→
z ⊕n y = θ−1(x⊕n y)←→ z = θ−1(x⊕n y)⊕n y, and that implies
−1f(x, y) = δ(x⊕n y)⊕n y.

b) f−1(x, y) = z ←→ f(x, z) = y ←→ θ(x⊕n z)⊕n z = y
←→ x⊕n z = θ−1(y ⊕n z) ←→ x = θ−1(y ⊕n z)⊕n z ⊕n y ⊕n y
←→ x⊕n y = θ−1(y ⊕n z)⊕n y ⊕n z ←→ x⊕n y = (I ⊕ θ−1)(y ⊕n z)
←→ (I ⊕n θ−1)−1(x⊕n y) = y ⊕n z ←→ (I ⊕n θ−1)−1(x⊕n y)⊕n y = z,
and that implies f−1(x, y) = λ(x⊕n y)⊕n y.

c) (−1(f−1))(x, y) = z ←→ f−1(z, y) = x←→ f(z, x) = y
←→ θ(z ⊕n x)⊕n x = y ←→ z ⊕n x = θ−1(x⊕n y)
←→ z = θ−1(x⊕n y)⊕n x⊕n y ⊕n y ←→ z = (I ⊕n θ−1)(x⊕n y)⊕n y,
and that implies (−1(f−1))(x, y) = ρ(x⊕n y)⊕n y.

d) (−1f)−1(x, y) = z ←→−1 f(x, z) = y ←→ f(y, z) = x
←→ θ(y ⊕n z)⊕n z = x←→ z ⊕n y ⊕n θ(z ⊕n y) = x⊕n y
←→ (I ⊕n θ)(z ⊕n y) = x⊕n y ←→ z ⊕n y = (I ⊕n θ)−1(x⊕n y)←→
z = (I ⊕n θ)−1(x⊕n y)⊕n y, and that implies (−1f)−1(x, y) = τ(x⊕n y)⊕n y.

e) f∗(x, y) = z ←→ f(y, x) = z ←→ θ(y ⊕n x)⊕n x = z ←→
θ(x⊕n y)⊕n x⊕n y⊕n y = z ←→ (I ⊕n θ)(x⊕n y)⊕n y = z, and that implies
f∗(x, y) = ϕ(x⊕n y)⊕n y.

3. Extended Feistel networks

Generally, a group with a�ne complete mapping do not produces a quasigroup
that satis�es the cryptography needs. Non-a�ne complete mappings are more
promising. It is very easy to create a table-driven non-a�ne complete mapping
as long as we don't care about the order of the quasigroup. Considering huge
quasigroups, practically it is not possible to store table-driven bijections. It is
much more di�cult to create a non-a�ne bijection that is not table-driven and,



96 S. Markovski and A. Mileva

additionally, that is a complete mapping. By using extended Feistel network,
we create a huge non-a�ne complete mapping from a small table-driven non-
a�ne bijection.

De�nition 3.1. Let (G, +) be an Abelian group, let f : G→ G be a mapping
and let a, b, c ∈ G be constants. The extended Feistel network (shortly ExtFN),
Fa,b,c : G2 → G2 created by f is de�ned for every l, r ∈ G by

Fa,b,c(l, r) = (r + a, l + b + f(r + c)).

The extended Feistel network Fa,b,c is a bijection with inverse

F−1
a,b,c(l, r) = (r − b− f(l + c− a), l − a).

A Feistel network can be obtained from an ExtFN if we take constants a =
b = c = 0.

One of the main results of the paper, that we will use frequently, is the
following.

Theorem 3.1. Let (G, +) be an arbitrary Abelian group and a, b, c ∈ G. If

Fa,b,c : G2→ G2 is an extended Feistel network created by a bijection f :G→ G,
then Fa,b,c is a complete mapping of the group (G2,+).

Proof. Let ϕ = −I + Fa,b,c, i.e.,

ϕ(l, r) = −(l, r) + F (l, r) = (−l + r + a,−r + l + b + f(r + c))

for every l, r ∈ G. De�ne the function Ω : G2 → G2 by

Ω(l, r) = (f−1(l + r − a− b)− l + a− c, f−1(l + r − a− b)− c).

We have Ω ◦ ϕ = ϕ ◦ Ω = I, i.e., ϕ and Ω = ϕ−1 are bijections.

In the sequel we will consider only ExtFN of the Abelian groups (Zn
2 ,⊕n).

De�nition 3.2. Let (G, +) be a group and let f : G→ G be a mapping. f is
an a�ne mapping if f(x + y) = f(x) + f(y) − f(0) for each x, y ∈ G, where
0 ∈ G is the identity element. A linear mapping is an a�ne mapping f with
f(0) = 0.

Proposition 3.1. Let a, b, c ∈ Zk
2 and let Fa,b,c : Z2k

2 → Z2k
2 be an extended

Feistel network created by a mapping f : Zk
2 → Zk

2. Then Fa,b,c is a�ne i� f
is a�ne.
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Proof. Let l1, l2, r1, r2 ∈ Zk
2 and let f be a�ne. Then, since f(r1⊕k r2⊕k c) =

f(r1 ⊕k c)⊕k f(r2 ⊕k c)⊕k f(c), we have that Fa,b,c is a�ne as well:

Fa,b,c((l1, r1)⊕2k (l2, r2))
= ((r1 ⊕k r2 ⊕k a), (l1 ⊕k l2 ⊕k b⊕k f(r1 ⊕k r2 ⊕k c)))
= [(r1⊕k a), (l1⊕k b⊕k f(r1⊕k c))]⊕2k [(r2⊕k a), (l2⊕k b⊕k f(r2⊕k c))]⊕2k

[(0⊕k a), (0⊕k b⊕k f(0⊕k c))]
= Fa,b,c(l1, r1)⊕2k Fa,b,c(l2, r2)⊕2k Fa,b,c(0, 0),

Let now Fa,b,c be an a�ne function. Then we have

Fa,b,c((l1, r1)⊕2k (l2, r2)) = Fa,b,c(l1, r1)⊕2k Fa,b,c(l2, r2)⊕2k Fa,b,c(0, 0)
and that implies

f(r1 ⊕k r2 ⊕k c) = f(r1)⊕k f(r2)⊕k f(c)
for each r1, r2 ∈ Zk

2. We infer from the last equality that f is a�ne too:

f(r1 ⊕k r2) = f(r1 ⊕k (r2 ⊕k c)⊕k c) = f(r1)⊕k f(r2 ⊕k c)⊕k f(c) =
f(r1) ⊕k f(0 ⊕k r2 ⊕k c) ⊕k f(c) = f(r1) ⊕k f(0) ⊕k f(r2) ⊕k f(c) ⊕k f(c) =
f(r1)⊕k f(r2)⊕k f(0).

So, if a non-a�ne ExtFN Fa,b,c created by f is needed as a complete map-
ping, it is enough to take f to be a non-a�ne bijection.

Proposition 3.2. Let f, g : Zk
2 → Zk

2 be bijections, a, b, c, a′, b′, c′ ∈ Zk
2 and

let Fa,b,c, Fa′,b′,c′ : Z2k
2 → Z2k

2 be extended Feistel networks created by f and g
respectively. Then the composite function Fa,b,c ◦Fa′,b′,c′ is a complete mapping

on Z2k
2 too.

Proof. Let ϕ = I ⊕2k Fa,b,c ◦ Fa′,b′,c′ . Then, for every l, r ∈ Zk
2, we have

ϕ(l, r) = ((g(r ⊕k c′)⊕k a⊕k b′), (a′ ⊕k b⊕k f(l ⊕k b′ ⊕k g(r ⊕k c′)⊕k c))).

De�ne the function Ω : Z2k
2 → Z2k

2 by

Ω(l, r) = ((f−1(r ⊕k a′ ⊕k b)⊕k l ⊕k a⊕k c), (g−1(l ⊕k a⊕k b′)⊕k c′)).

It can be checked that Ω◦ϕ = ϕ◦Ω = I, i.e., ϕ and Ω = ϕ−1 are bijections.

Corollary 3.1. If Fa,b,c is an extended Feistel network created by bijection f ,
then F 2

a,b,c is a complete mapping of (Z2k
2 ,⊕2k) too. �

In general, if θ is a complete mapping on a group G, θ2 may not be a
complete mapping on G, as Example 3.1 shows.
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Example 3.1. We have in Table 2 a complete mapping θ(x) on (Z4
2,⊕4) (given

in integer representation) such that θ2(x) is not a complete mapping, as it is
shown in Table 3.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ(x) 12 6 3 14 2 13 5 9 8 11 15 1 7 4 10 0

x⊕4 θ(x) 12 7 1 13 6 8 3 14 0 2 5 10 11 9 4 15

Table 2: Integer representation of a complete mapping θ(x).

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ2(x) 7 5 14 10 3 4 13 11 8 1 0 6 9 2 15 12

x⊕4 θ2(x) 7 4 12 9 7 1 11 12 0 8 10 13 5 15 1 3

Table 3: Integer representation of a non-complete mapping θ2(x).

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) 3 2 1 0

F (x) 3 6 9 12 2 7 8 13 1 4 11 14 0 5 10 15

x⊕4 F (x) 3 7 11 15 6 2 14 10 9 13 1 5 12 8 4 0

Table 4: Integer representation of an extended Feistel network F (x).

Example 3.2. In Table 4 we have an example of an ExtFN F = F0,0,0 that is
a complete mapping created by a bijection f such that F 3 is not a complete
mapping. Namely, F 3 is the identical mapping, so I ⊕4 F 3 = I ⊕4 I is the
constant zero mapping, that maps each x ∈ Z4

2 into 0.

4. The algebraic degree of an ExtFN

A vector valued Boolean function (v.v.b.f.) is a mapping B : Z2
s → Z2

t, where
s and t > 1 are positive integers; we have a Boolean function for t = 1. Each
v.v.b.f. B can be represented by t Boolean functions bi : Z2

s → Z2 as follows:

B(x1, . . . , xs) = (b1(x1, . . . , xs), b2(x1, . . . xs), . . . , bt(x1, . . . , xs)),

where

b1(x1, . . . , xs) = y1, . . . , bt(x1, . . . , xs) = yt ←→ B(x1, . . . , xs) = (y1, . . . , yt).
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Each Boolean function bi can be represented in Algebraic Normal Form as

bi(x1, x2, . . . , xs) =
∑

I⊆{1,2,...,s}

αI(
∏
i∈I

xi) (3)

where αI ∈ Z2, the sum is for the Boolean function XOR and the product is for
the Boolean function conjunction. The right-hand side of (3) can be interpreted
as a polynomial in the �eld (Z2,+, ·) and the degree of bi is taken to be the
degree of the polynomial. The algebraic degree of a v.v.b.f. B is de�ned as
the maximum of the degrees of its component polynomials (b1, b2, . . . , bs):

deg(B) = max{deg(bi) | i ∈ {1, 2, . . . , s}}.

Theorem 4.1. Let the bijection f : Zk
2 → Zk

2 be of algebraic degree deg(f) > 1
and let Fa,b,c : Z2k

2 → Z2k
2 be an extended Feistel network created by f . Then

deg(Fa,b,c) = deg(f).

Proof. Let (a1, . . . , ak), (b1, . . . , bk) and (c1, . . . , ck) be the binary representa-
tions of the constants a, b, c ∈ Zk

2. The mappings f : Zk
2 → Zk

2 and Fa,b,c :
Z2k

2 → Z2k
2 are v.v.b.f. and so there are Boolean polynomials q1, q2, . . . , qk and

p1, p2, . . . , p2k such that

f(x1, . . . , xk) = (q1(x1, . . . , xk), q2(x1, . . . , xk), . . . , qk(x1, . . . , xk)),

Fa,b,c(x1, . . . , x2k) = (p1(x1, . . . , x2k), p2(x1, . . . , x2k), . . . , p2k(x1, . . . , x2k)).

Let deg(f) = max{deg(qi) | i ∈ {1, 2, . . . , k}} > 1. Then there is a t ∈
{1, 2, . . . , k} such that deg(f) = deg(qt).

We have Fa,b,c(x1, . . . , x2k) = (xk+1 ⊕ a1, . . . , x2k ⊕ ak, x1 ⊕ b1 ⊕ q1(xk+1 ⊕
c1, . . . , x2k ⊕ ck), . . . , xk ⊕ bk ⊕ qk(xk+1 ⊕ c1, . . . , x2k ⊕ ck)). This implies that
pi(x1, . . . , x2k) = xi+k ⊕ ai and pi+k(x1, . . . , x2k) = xi ⊕ bi ⊕ qi(xk+1 ⊕
c1, . . . , x2k ⊕ ck) for each i ∈ {1, 2, . . . , k}. Then, for each i ∈ {1, 2, . . . , k},
deg(pi) = 1 and

deg(pi+k) =
{

0, ∀ i (qi(xk+1 ⊕ c1, . . . , x2k ⊕ ck) = xi ⊕ bi)
deg(qi), otherwise.

(4)

So, deg(Fa,b,c) = deg(f).

Example 4.1. A bijection f : Z4
2 → Z4

2 of deg(f) = 3 is given in Table 5. The
representation of f as v.v.b.f. is f(x1, x2, x3, x4) = (q1, q2, q3, q4), where
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q1(x1, x2, x3, x4) = x1 + x3 + x4 + x1x3 + x1x4 + x2x3 + x1x2x4 + x2x3x4,
q2(x1, x2, x3, x4) = x2 + x3 + x4 + x1x4 + x3x4 + x1x2x3,
q3(x1, x2, x3, x4) = x1 + x3 + x1x4 + x1x2x3,
q4(x1, x2, x3, x4) = 1+x1+x2+x4+x1x2+x1x3+x1x4+x2x3+x1x2x3+x1x2x4.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) 1 12 15 6 4 9 3 2 10 8 13 11 14 5 7 0

Table 5: A bijection f of deg(f) = 3.

The Theorem 4.1 implies that we can make non-a�ne complete mapping
Fa,b,c of di�erent non-linearity. Namely, it is enough to choose a non-a�ne
bijection f of desired degree. An e�ective construction of a bijection f of
prede�ned higher degree is an open problem. Note that the maximum degree
of a mapping f : Zk

2 → Zk
2 is less or equal than k.

The complete mapping Fa,b,c has the property that the �rst k polynomials
are of degree 1. On the other side, the complete mapping F 2

a,b,c is with better

performances, since F 2
a,b,c(x1, . . . , x2k) = (A,B), where

A=(x1⊕b1⊕q1(xk+1⊕c1, . . . , x2k⊕ck), . . . , xk⊕bk⊕qk(xk+1⊕c1, . . . , x2k⊕ck)),

B = (xk+1 ⊕ a1 ⊕ q1(x1 ⊕ b1 ⊕ q1(xk+1 ⊕ c1, . . . , x2k ⊕ ck), . . . , xk ⊕ bk ⊕
qk(xk+1⊕ c1, . . . , x2k⊕ ck)), . . . , x2k⊕ak⊕ qk(x1⊕ b1⊕ q1(xk+1⊕ c1, . . . , x2k⊕
ck), . . . , xk ⊕ bk ⊕ qk(xk+1 ⊕ c1, . . . , x2k ⊕ ck)).

5. Huge quasigroups obtained by a chain of ExtFN

Recall that an ExtFN Fa,b,c (a, b, c ∈ Z2
s) created by a bijection f : Z2

s →
Z2

s is a complete mapping, so Fa,b,c is a bijection on Z2
2s as well. De�ne

F
(1)

a(1),b(1),c(1)
= Fa,b,c and let F (n)

a(n),b(n),c(n) , n > 1, be de�ned. Then, for

some a(n+1), b(n+1), c(n+1) ∈ Z2
s2n+1

, de�ne F
(n+1)

a(n+1),b(n+1),c(n+1) to be the ExtFN

created by the bijection F
(n)

a(n),b(n),c(n) . Note that F
(n)

a(n),b(n),c(n) is a complete

mapping of the group Z2
s2n

for each n > 1, hence we have de�ned inductively a
chain of complete mappings {F (n)

a(n),b(n),c(n) | n = 1, 2, 3, . . . } in the corresponding
groups. Now, by using (1), one can de�ne a quasigroup of order 2s2n

on the
set Z2

s2n
for each n > 1.

In applications one needs e�ectively constructed quasigroups of order 2256,
2512, 21024, . . . . A huge quasigroup of order 22k

can now be designed as follows.
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Take a suitable non-a�ne bijection of desired algebraic degree f : Z2
2t → Z2

2t
,

where t < k is a small positive integer (t = 2, 3, 4). Choose suitable constants
a(i), b(i), c(i) ∈ Z2

2t+i
, 1 6 i 6 k − t, and construct iteratively the complete

mapping F = F
(k−t)

a(k−t),b(k−t),c(k−t) : Z2
2k → Z2

2k
. De�ne a quasigroup operation

• on the set Z2
2k

by (1), i.e., x • y = F (x⊕ y)⊕ y, for every x, y ∈ Z2
2k

.
Note that we need only k − t iterations for getting F and a small amount

of memory for storing the bijection f . Hence, the complexity of our algorithm
for construction of quasigroups of order n = 22k

is O(log(log n)).

Example 5.1. As starting bijection we can use the bijection f : Z4
2 → Z4

2

from Example 4.1. So, t = 2. We choose constants (a(i), b(i), c(i)) = (i, 0, 0) ∈
Z2

2t+i
, i = 1, 2, . . . , 7. Now we can construct the following complete mappings,

where li, ri ∈ Zi
2, i = 4, 8, 16, . . . :

F
(1)
1,0,0 : Z8

2 → Z8
2 as F

(1)
1,0,0(l4, r4) = ((r4 ⊕4 1), (l4 ⊕4 f(r4))),

F
(2)
2,0,0 : Z16

2 → Z16
2 as F

(2)
2,0,0(l8, r8) = ((r8 ⊕8 2), (l8 ⊕8 F

(1)
1,0,0(r8))),

F
(3)
3,0,0 : Z32

2 → Z32
2 as F

(3)
3,0,0(l16, r16) = ((r16 ⊕16 3), (l16 ⊕16 F

(2)
2,0,0(r16))),

F
(4)
4,0,0 : Z64

2 → Z64
2 as F

(4)
4,0,0(l32, r32) = ((r32 ⊕32 4), (l32 ⊕32 F

(3)
3,0,0(r32))),

F
(5)
5,0,0 : Z128

2 → Z128
2 as F

(5)
5,0,0(l64, r64) = ((r64 ⊕64 5), (l64 ⊕64 F

(4)
4,0,0(r64))),

F
(6)
6,0,0 : Z256

2 → Z256
2 as F

(6)
6,0,0(l128, r128)=((r128⊕1286),(l128⊕128F

(5)
5,0,0(r128))),

F
(7)
7,0,0 :Z512

2 →Z512
2 as F

(7)
7,0,0(l256, r256)=((r256⊕2567), (l256⊕256F

(6)
6,0,0(r256))).

We need only 7 = 9− 2 iterations for getting F
(7)
7,0,0 : Z512

2 → Z512
2 .

Further on in this section we consider the algebraic properties of the quasi-
groups obtained by the above algorithm. For that aim we take a somewhat
simpli�ed situation when f : Zk

2 → Zk
2 is a bijection and Fa,b,c : Z2k

2 → Z2k
2

is an ExtFN created by f . We denote by (Q, •) the quasigroup on the set
Q = Z2k

2 derived by the complete mapping Fa,b,c.

Proposition 5.1. The quasigroup (Q, •) is non-idempotent i� f(c) 6= b or

a 6= 0.

Proof. Let (Q, •) be idempotent. Then, for all x ∈ Q we have

x • x = x←→ Fa,b,c(x⊕2k x)⊕2k x = x←→ Fa,b,c(0, 0) = (0, 0)

←→ Fa,b,c(a, b⊕k f(c)) = (0, 0)←→ a = 0 ∧ f(c) = b.
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Proposition 5.2. The quasigroup (Q, •) does have neither left nor right unit.

Proof. Let e be the right unit of (Q, •). Then, for all x ∈ Q, we have

x • e = x −→ Fa,b,c(x⊕2k e)⊕2k e = x −→ Fa,b,c(x⊕2k e) = x⊕2k e.

This means that Fa,b,c = I is the identity mapping. We have now, for every
l, r ∈ Q, that (r ⊕k a, l ⊕k b ⊕k f(r ⊕k c)) = (l, r) and this implies that
f(r⊕k c) = a⊕k b for each r. The last equality contradicts the bijectivity of f .

Let e be the left unit of (Q, •). Then, for all x ∈ Q, we have

e • x = x −→ Fa,b,c(e⊕2k x)⊕2k x = x −→ Fa,b,c(e⊕2k x) = 0.

This contradicts the fact that Fa,b,c is a bijection.

Proposition 5.3. The equality

(x • y) • (y • x) = x (5)

is an identity in (Q, •).

Proof. (x • y) • (y • x) = Fa,b,c((x • y)⊕n (y • x))⊕n (y • x)) =
Fa,b,c(Fa,b,c(x⊕n y)⊕n y⊕n Fa,b,c(y⊕n x)⊕n x)⊕n Fa,b,c(y⊕n x)⊕n x = x.

The quasigroups that satisfy the identity (5) are known as Schroeder quasi-
groups (see [15]).

Corollary 5.1. The quasigroup (Q, •) is anti-commutative, i.e., no di�erent

elements of Q commutes.

Proof. Let x, y ∈ Q and let x•y = y•x. By (5), we have x = (x•y)•(y•x) =
(y • x) • (x • y) = y.

Lemma 5.1. Let ϕ = I ⊕2k Fa,b,c. Then ϕ ◦ Fa,b,c = Fa,b,c ◦ ϕ i� a = 0 and

f(r⊕k c)⊕k f(l⊕k b⊕k c⊕k f(r⊕k c)) = b⊕k f(l⊕k r⊕k b⊕k c⊕k f(r⊕k c))
for each l, r ∈ Q.

Proof. Let l, r ∈ Q. Then

ϕ(l, r) = ((l ⊕k r ⊕k a), (l ⊕k r ⊕k b⊕k f(r ⊕k c))),

(ϕ ◦ Fa,b,c)(l, r) = ((r ⊕k l ⊕k b⊕k f(r ⊕k c)), (r ⊕k a⊕k l ⊕k f(r ⊕k c)⊕k

f(l ⊕k b⊕k f(r ⊕k c)⊕k c))),

(Fa,b,c ◦ ϕ)(l, r) = ((l ⊕k r ⊕k b⊕k f(r ⊕k c)⊕k a), (l ⊕k r ⊕k a⊕k b⊕k

f(l ⊕k r ⊕k b⊕k f(r ⊕k c)⊕k c))).
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Hence, we have:

(ϕ ◦ Fa,b,c)(l, r) = (Fa,b,c ◦ ϕ)(l, r) ←→ a = 0 ∧ f(r ⊕k c) ⊕k f(l ⊕k b ⊕k

c⊕k f(r ⊕k c)) = b⊕k f(l ⊕k r ⊕k b⊕k c⊕k f(r ⊕k c)).

Lemma 5.2. For the quasigroup (Q, •) we have

x • (y • x) = (x • y) • x←→ (ϕ ◦ Fa,b,c)(x⊕2k y) = (Fa,b,c ◦ ϕ)(x⊕2k y)

for any x, y ∈ Q, x 6= y, where ϕ = I ⊕2k Fa,b,c.

Proof. x • (y • x) = (x • y) • x ←→ Fa,b,c(x ⊕2k Fa,b,c(y ⊕2k x) ⊕2k x) ⊕2k

Fa,b,c(y ⊕2k x)⊕2k x = Fa,b,c(Fa,b,c(x⊕2k y)⊕2k y ⊕2k x)⊕2k x←→
Fa,b,c(Fa,b,c(y ⊕2k x)) ⊕2k Fa,b,c(y ⊕2k x) = Fa,b,c(Fa,b,c(x ⊕2k y) ⊕2k x ⊕2k y)
←→ ϕ(Fa,b,c(x⊕2k y)) = Fa,b,c(ϕ(x⊕2k y)).

An immediate consequence of Lemma 5.1 and Lemma 5.2 is that

x • (x • x) = (x • x) • x←→ a = 0 ∧ f(c) = b.

Now we have the following su�cient conditions for non-associativity of the
quasigroup (Q, •).

Proposition 5.4. If a 6= 0, or f(c) 6= b, or ϕ ◦ Fa,b,c(x) 6= Fa,b,c ◦ ϕ(x) for

some x 6= 0 ∈ Q, then the quasigroup (Q, •) is non-associative. �

It can be checked that the quasigroup (Q, •) is associative i� the following
equalities are identities in (Zk

2,⊕k), where t, xl, xr, yl, yr, zl, zr are variables:

t = xl ⊕k xr ⊕k zl ⊕k zr ⊕k f(yr ⊕k zr ⊕k c),
t = a⊕k f(xr ⊕k yr ⊕k c),
t = b⊕k f(xl ⊕k yl ⊕k yr ⊕k zr ⊕k a⊕k b⊕k c⊕k t)⊕k

⊕k f(xl ⊕k yl ⊕k b⊕k c⊕k t).

 (6)

Namely, we can represent x, y, z ∈ Q by x = (xl, xr), y = (yl, yr), z = (zl, zr),
where xl, xr, yl, yr, zl, zr ∈ Zk

2, and then (x • y) • z = x • (y • z) i� (6) holds
true. This shows that the quasigroup (Q, •) is highly non-associative, since a
bijection f can hardly satis�es the equations (6) for given elements x, y, z ∈ Q.

Note that if θ is a complete mapping of a group (Zn
2 ,⊕n), we have

y • x = θ(y ⊕n x)⊕n x
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(y • x) • x = θ(θ(y ⊕n x)⊕n x⊕n x)⊕n x = θ2(y ⊕n x)⊕n x

and, by induction, ((y • x) • . . . ) • x︸ ︷︷ ︸
l

= θl(y ⊕n x)⊕n x.

We have also

x • y = θ(x⊕n y)⊕n y ⊕n x⊕n x = ϕ(x⊕n y)⊕n x,

x • (x • y) = θ(x⊕n ϕ(x⊕n y)⊕n x)⊕n ϕ(x⊕n y)⊕n x = ϕ2(x⊕n y)⊕n x

and, by induction, x • (· · · • (x︸ ︷︷ ︸
l

•y)) = ϕl(x⊕n y)⊕n x.

Proposition 5.5.
a) The identity y = ((y • x) • . . . ) • x︸ ︷︷ ︸

l

holds true in (Q, •) i� F l
a,b,c = I.

b) The identity x • (· · · • (x︸ ︷︷ ︸
l

•y)) = y holds true in (Q, •) i� ϕl = I,

where ϕ = I ⊕2k Fa,b,c. �

Regarding the subquasigroups of the quasigroup (Q, •), we notice the fol-
lowing property, where < A > denotes the subquasigroup generated by the
subset A of Q.

Proposition 5.6. < 0 >=< {F i
a,b,c(0) | i = 1, 2, . . . } > .

Proof. 0•0 = Fa,b,c(0), Fa,b,c(0)•0 = F 2
a,b,c(0), F 2

a,b,c(0)•0 = F 3
a,b,c(0), . . . .

6. Conclusions

In this paper we have de�ned a generalization of a Feistel network so called ex-
tended Feistel network, and then we conjuncted two very familiar approaches
of Feistel networks and complete mappings in one novel way for creating quasi-
groups of huge order 2s2t

. The starting function f , needed a Feistel network to
be de�ned, is of small order 2s and it can be chosen in such a way the created
quasigroup to be non-idempotent, non-commutative, non-associative, without
left or right unit, nonlinear,... Although of huge order, the multiplication in
the created quasigroup is highly e�ective, its complexity is O(t).

The quasigroups of huge orders de�ned in this paper are suitable for ap-
plications in cryptography. The fact that the constructed extended Feistel
networks are complete mappings θ, such that the mappings θ−1 and I⊕k θ are
also complete, can be used parastrophes to be de�ned in a suitable way. So,
these quasigroups can be used for encoding and decoding purposes.
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