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Finite GS—quasigroups

Yahya Amad and M. Aslam Malik

Abstract. This paper is concerned with the determination of the set of possible orders
of finite GS-quasigroups. Also some examples of finite GS-quasigroups are given.
1. Introduction

The following definition of GS-quasigroups was given by V.Volenec in [4]
and [1].

Definition 1.1. A quasigroup (Q,-) is said to be GS-quasigroup (golden
section quasigroup) if the equalities

aa = a,
a(ab-c)-c=b,
a-(a-bc)ce="b

hold for all its elements.
The study of GS-quasigroups in [4] is motivated by:

Example 1.2. Let C be set of complex numbers and * an operation on set

C defined by:

1-V5 L V5,
2 2
Let us regard complex numbers as points of the Euclidean plane, then the
point b divides the pair a and a * b in the ratio of golden section, which
justifies the term of GS-quasigroups.

axb=

Here, we’ll give some examples of finite GS-quasaigroups, and determine:
for which positive integer n there exists a GS — quasigroup of order n?

We require the following elementary results, whose proofs are simple.
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Lemma 1.3. Let (G1,-1),(Ga,+2),...,(Gn, ) be GS — quasigroups, and
o be the operation defined on G = G1 X G X ... X Gy by:

(55173727~~-,95n)0(91,?/27---,3/n) - (l‘l 1Y1,T22Y25,--.,Tn 'n yn)

Then (G, o) is a GS — quasigroup.

Therefore, if GS-quasigroups of orders ki, ks, ..., ky, exist, then a GS-
quasigroup of order kiko - - -k, exists.

The following characterization of GS-quasigroups was given in [4].
Theorem 1.4. A GS — quasigroup on the set Q exists if and only if on

the same set exists a commutative group (Q,~+) with an automorphism ¢
satisfying the identity

(pow)(z) —p(z) -2 =0. (1)

Then
a-b=a+ (- a). (2)

2. Commutative GS-quasigroups

By using Theorem 1.4 to study commutative GS-quasigroups we want to
find all commutative groups (@, +) with an automorphism ¢ satisfying (1)
and with the additional condition that the operation - defined by (2) is
commutative. The commutativity of - implies

a+@b—a)=b+¢p(a—0).
Thus
p(b—a)—ypla—b)=b—a,
and consequently
p(r) +p(x) = (3)

for all x € Q.
From (1) it follows p(¢(x)) + ¢(p(z)) = ¢(z) + ¢(z) + = + =, which by
(3) gives p(z) = x + = + x. Substituting this to (3) we get,

r+r+z+rx+ar+x==2.
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Therefore, x + x +x +x + 2 = 0 for all x € @, i.e., each element of the
group (Q,+) is of order 5 or 1. The only finite groups which satisfy that
condition are (Z5)"™, and the group of order 1.

On the other hand, if t +x + 2z +x+x = 0, for all z € @, then
o) =r+zr+2=—x—x, ie p(r)=3r = —2z is an automorphism
satisfying (1) and the operation defined by (2) is commutative.

Thus we have proved:

Theorem 2.1. The only non-trivial finite commutative GS — quasigroups
are the quasigroups obtained in the technique described in Theorem 1.4 from
the group (Zs)", for some n € N.

From each group (Zs5)™ we obtain unique GS-quasigroup of order 5".

Example 2.2. From the group (Zs)? and the automorphism ¢(z) = 3z =
—2x we obtain the GS-quasigroup of order 25:

9501 2 3 45 6 7 8 910111213141516 1718192021 222324
03 1421518161917 5 8 6 9 7 20232124221013111412
3142 018161917158 6 9 7 5 23212422201311141210
1420 316191715186 9 7 5 8 21242220231114121013
4 203 119171518169 7 5 8 6 24222023211412101311
203 141715181619 7 5 8 21 9 22202321241210131114

1518161917 5 8 6 9 7 202321242210131114120 3 1 4 2
18161917158 6 9 7 5 232124222013111412103 1 4 2 0
1619171518 6 9 7 5 8 21242220231114121013 1 4 2 0 3
1917151816 9 7 5 8 6 242220232114121013114 2 0 3 1
1715181619 7 5 8 6 9 22202321241210131114 2 0 3 1 4
5 8 6 9 720232124221013111412 0 3 1 4 2 1518161917
8 6 9 7 523212422201311141210 0 1816191715
6 9 7 5 821242220231114121013 31619171518
9 7 5 8 624222023211412101311 11917151816
75 86 9222023212412101311 14 4 17151816 19
20232124221013111412 0 3 1 4 2 151816191 8 6 9 7

0O Utk WN - O

—
Lo~ o®

1 4 2
4 20
203
031

—
[S2 QTSN
N B =W

75
58

161232124222013111412103 1 4 2 0181619171 6 975
17121242220231114121013 1 4 2 0 316191715186 9 7 5 8
18124222023211412101311 4 2 0 3 11917151816 9 7 5 8 6
19122202321241210131114 2 0 3 1 417151816197 5 8 6 9
201013111412 0 3 1 4 2 1518161917 5 8 6 9 7 2023212422
2111311141210 3 1 4 2 018161917158 6 9 7 5 2321242220
2211114121013 1 4 2 0 31619171518 6 9 7 5 8 2124222023
23]11412101311 4 2 0 3 11917151816 9 7 5 8 6 2422202321
2411210131114 2 0 3 1 417151816197 5 8 6 9 2220232124
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2. Cyclic groups

The automorphism ¢(x) = ma (m is relatively prime to n) of the group Z,,
satisfies (1) if and only if m? —m — 1 = 0(mod n).

Now by using Quadratic Reciprocity Law we want to find for which
n € N the quadratic congruence has solution m (in that case m and n are
relatively prime).

Since m? —m — 1 is odd, n cannot be even. Therefore, it seems appro-
priate to begin by considering the congruence

m? —m — 1 = 0(mod p),

where p is an odd prime and ged(1,p) = 1. The assumption that p is an
odd prime implies that ged(4,p) = 1. Thus, the quadratic congruence is
equivalent to

4(m* —m —1) = 0(mod p).

Now, completing the square we obtain
4m* —=m—1)=2m—-1)* -5
The last quadratic congruence may be expressed as
(2m — 1)% = 5(mod p).
Now, putting y = 2m — 1 in last congruence, we get
y* = 5(modp)

Thus, 5 is quadratic residue of p if and only if p = £1(mod 5). So, that the
solutions are all primes of the form p = 5141, [ € Z. Factors of m? —m —1
are all primes of the form p = 5[ + 1.

This proves the following:

Theorem 2.1. The cyclic group Z, has an automorphism that satisfies
(1) if and only if its order n is a product of primes from the set {5l £ 1},
where l € Z, i.e., if and only if n is an odd integer with any prime factor is
congruent to £1 modulo 5.

Example 2.2. The group Z;; has two such automorphisms: ¢(z) = 4z
and ¢(x) = 8x. So, we obtain two GS-quasigroups of order 11.
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One induced by ¢(x) = 4x:
11/0 12 3 45 6 7 8 910
0/0 48159 261037
1/8 1 59 2 6103 7 0 4
2159 26103 704281
312 6103 7048159
41103 7 0 4 8 1 5 9 2 6
5/7 0 4 8 1 5 9 2 610 3
64 8159 26103 70
71159 2 6103 7 0 4 8
819 2 6103 70 4 8 1 5
916 103 7 0 4 8 1 5 9 2
1013 704 8 15 9 5 610
and one induced by ¢(z) = 8z:
1110 12 3 45 6 7 8 910
0|0 8 52107 41 9 6 3
114196 3 085 2107
218 52107 419 6 30
311 96 3 085 2107 4
415 2107 419 6 3 08
5/9 6 3 08 5 2107 41
612107 419 6 3 085
716 3 08 5 2107 419
81100 7 4 1 9 6 3 0 8 5 2
913 0 8 52107 419 6
107 419 6 3 085 210

Remark 2.3. Let p be an odd prime and suppose k > 1. If (a,p) = 1, then
22 = a(mod p*) has either no solutions or exactly two solutions, according
as 22 = a(mod p) is or not solvable.

Corollary 2.4. The cyclic group Z,x has an automorphism satisfying (1)
if and only if p is a prime from the set {5l +1:1 € Z}, i.e., if and only if
p = £1(mod5).

3. Conclusions

The following theorem is simple but crucial.

Theorem 3.1. Let G be a commutative group of order mimeo, where my and
meo are relatively prime positive integers, with an automorphism o satisfying
(1). Then there exist groups G1 and Gy such that G = G X Ga, |G1] = mq,
|G2| = my with automorphisms satisfying (1).
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Example 3.2. The group Zss = Zs x Z11 has two automorphisms ¢(z) =
8z and ¢(x) = 48z satisfying (1). Zs and Z1; have automorphisms p(z) =
3z and ¢(x) = 4z, p(z) = 8x satisfying (1), respectively.

So, for GS-quasigroups of orders 5% and p*, where p is a prime of the
form 51 £ 1 there is no any GS-quasigroup of order p* such that p # 51 & 1.
Thus the final result:

Theorem 3.3. Let n =[], l; be square free number. Then a GS — quasi-
group of order n exists if and only if each prime factor of n is congruent to
+1 modulo 5, i.e., if and only if l; = +1(mod 5) for all 1 <i < n.
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