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Decompositions of an Abel-Grassmann’s groupoid

Madad Khan

Abstract. In this paper we have decomposed AG-groupoids. We have proved that
if S is an AG*-groupoid, then S/p is isomorphic to S/o, for n,m > 2, where p and
o are congruence relations. Further it has shown that S/n is a separative semilattice
homomorphic image of an AG-groupoid S with left identity, where 7 is a congruence

relation.

1. Introduction

An Abel-Grassmann’s groupoid [5], abbreviated as an AG-groupoid, is a
groupoid S whose elements satisfy the invertive law:

(ab)c = (cb)a, for all a,b,c € S. (1)

It is also called a left almost semigroup |3, 4]. In [1], the same structure
is called a left invertive groupoid. 1t is a useful non-associative algebraic
structure, midway between a groupoid and a commutative semigroup, with
wide applications in the theory of flocks.

An AG-groupoid S is medial [3], that is,

(ab)(cd) = (ac)(bd), for all a,b,c,d, € S. (2)

If an AG-groupoid satisfies the following property, then it is called an
AG*-groupoid [5].

(ab)c = b(ca), for all a,b,c € S. (3)

Then also
(ab)e = b(ac), forall a,b,ce€ S. (4)

It is easy to see that the conditions (3) and (4) are equivalent. In an
AG*-groupoid S holds all permutation identities of a next type [6],
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(z122)(2374) = (Tr(1)Tr(2)) (Tr(3)Tr(a)) (5)

where {m(1),7(2),7(3),7(4)} means any permutation of the set {1,2,3,4}.
It means that if S = S?, then S becomes a commutative semigroup. Many
characteristics of a non-associative AG*-groupoid are similar to a commu-
tative semigroup.

As a consequence of (5), we would have (z17223)™ = (T(1)Tp2)Tpe3)™
where {p(1),p(2),p(3)} means any permutation of the set {1,2,3} and
m > 2. The result can be generalized for finite numbers of elements of S.

2. The smallest separative congruences

In an AG*-groupoid S, (ab)c = b(ac) holds for all a,b,c € S. This leads us
to (aa)a = a(aa) which implies that a?a = aa®. Hence it is easy to note
that a"*la = aa™*!, a™a™ = a™", (a™)" = a™", (ab)" = a™b", for all a,b
and positive integers m and n.

We define a relation p on an AG-groupoid S as follows: apb if and only
if there exists a positive integer n such that ab” = "+ and ba™ = a" 1.

We define a relation o on an AG-groupoid S as follows: acb if and only
if there exists a positive integer n such that a”b = a"*! and b%a = b1,

A relation p on an AG-groupoid S is called separative if abpa® and abpb?
imply that apb.

The following lemma has been proved in [6].

Lemma 1. Let 6 be a separative congruence on an AG*-groupoid S, then
for all a, b € S it follows that abdba.

In the following two lemmas we have proved that the relations p and o
are commutative without using separativity.

Lemma 2. If S is an AG*-groupoid, then abpba for all a,b in S.

Proof. By using (5) and (2), we have, (ab)(ba)™ = (ab)(b™a™) = (ab)(a™b"™)
= (aa™)(bb™) = (bb™)(aa™) = b a™ 1 = (ba)™*L. Similarly (ba)(ab)™ =
(ab)™*!. Hence abpba. O

Lemma 3. If S is an AG*-groupoid, then aboba for all a,b in S.

(b"a™)(ab) = (b"b)(a™a) =

Proof. By using (5), we have, (ba)"(ab) =
= (ab)"*!. Hence aboba. O

b tlgntl = (ba)"*L. Similarly (ab)™(ba)
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The proofs of the following theorems are available in 6] and [5].

Theorem 1. S/ p is a mazximal separative commutative image of an AG*-
groupoid S.

Theorem 2. S o is a mazimal separative commutative image of an AG*-
groupoid S.

Lemma 4. p is equivalent to o for m,n > 2, on an AG*-groupoid S.

Proof. Let apb, then there exists a positive integer n such that ab™ = b"+!
and ba" = a"*'. Now multiply b on both sides of ab” = b"*!, then using
(1), we get b"*t1b = (ab™)b = b"Ha.
Similarly ba™ = a™*! implies that a"*'b = a"*2. Hence aob.
Conversely, assume that aob, then there exists a positive integer m such
that b™a = b™*! and a™b = ™ *!. Assume that m > 2. Now multiply b
on both sides of b¥™a = b™*!, then, using (3) and (5), we get

b = b(b"a) = (ab)b™ = (ab)(b™ 1b) = (ba)(b™ 'b) = a(b™b) = ab™ .

Similarly @b = a™*! implies that ba™*! = a™+2. Hence apb. O

Theorem 3. If S is an AG*-groupoid, then S/p is isomorphic to S/o, for
m,n = 2.

Proof. 1t follows from Lemma 4. O
Remark 1. S/p is not isomorphic to S/o forn =m = 1.

If S is an AG-groupoid then (ab)c = a(bc), is not generally true for all
a,b,c € S, that is (Sz)S # S(zS), for some z in S.

The relations v and § be defined in S as follows:

ayb if and only if there exists a positive integer n such that b € S(aS)
and a” € S(bS) for all @ and bin §

adb if and only if there exists a positive integer m such that b € (Sa)S
and a™ € (Sb)S for all @ and bin S.

Lemma 5. ¢ is equivalent to v on an AG*-groupoid S.

Proof. Let a™ € S(bS), then using (3) and (1), we get
"2 € (S(bS))a* = ((b9)S)a® = (a((bS)S))a = (a(5?b))a

= ((S%a)b)a C (Sb)S.

a

N
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Similarly b € S(aS) implies that 6"*? € (Sa)S.
Conversely, assume that a™ € (Sb)S, using (1) and (5), we get,

a1 € ((8b)S)a = (aS)(Sb) = (aS)(bS) C S(bS).

Similarly " € (Sa)S implies that "t € S(aS). O

3. The semilattice decomposition
In an AG-groupoid S with left identity we have,
a(bc) = b(ac), for all a,b,c e S. (6)
The following law holds for an AG-groupoid with left identity,
(ab)(ed) = (de)(ba), for all a,b,c,d € S. (7)

Also it is easy to see that if an AG-groupoid S contains left identity e,
then SS = S and Se =5 =eS.

In [2] the power of elements in an AG-groupoid has been defined as
follows: a™ = (...(((aa)a)a)...)a, (m-times).

Here we begin with an example of an AG-groupoid.

Example 1. Let S = {1,2,3,4} and the binary operation “-” be defined
on S as follows:

1 2 3 4
113 4 1 2
212 3 4 1
311 2 3 4
414 1 2 3
Then clearly (S, -) is an AG-groupoid with left identity 3. O

From now, by S, we shall mean an AG-groupoid with left identity e.
The following Lemma 6 and Theorems 4 — 8 are available in [2].

Lemma 6. If a € S, then for every positive integer m,

Theorem 4. If a € S, then a™a®*"~! = a™+2"~1, for all positive integers
m and n.
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Theorem 5. If a € S, then a®"a™ = a®>*™™, for all positive integers m
and n.

Theorem 6. Ifa € S, then a®® = a*"e, for every positive integer n.
Theorem 7. Ifa € S, then (a™)"™ = a"™", for all positive integers m and n.
Theorem 8. If each a € S, then (ab)™ = a™b", for every positive integer n.

Define a relation n on S as follows: xny if and only if there exists n such
that (za)” € (ya)S and (ya)" € (za)S.

Lemma 7. Ifa,b € S, then a®b® = ba?.
Theorem 9. 7 is a semilattice congruence on S.

Proof. 1t is reflexive and symmetric. For transitivity let us suppose that zny
and ynz, then there exist positive integers m, n such that (za)™ € (ya)sS,
(ya)™ € (za)S and (ya)™ € (za)S, (za)™ € (ya)S. More specifically, there
exist t1, to € S, such that (za)” = (ya)t; and (za)™ = (ya)ta. Now using
Theorems 7, 8, (1) and (6), we have,

((za)")*™ = ((ya)t1)*™ = ((ya)™)*ti™ € ((2a)5)?S, but
((20)5)*S = ((20)5)(2a)9))S = (5((za)9))((2a)5)
= (za)(S((za)S))S) = (za)S.

( )an

Therefore (xa)*™" € (za)S. Similarly (za)?™ € (za)S. Hence 7 is transi-
tive.

To show compatibility, let zny then there exists a positive integer m
such that (za)™ € (ya)S and (ya)™ € (za)S. Hence there exists t3 and
t4 such that (ra)™ = (ya)ts and (ya)™ = (za)ty. Now using Theorem 8,
Lemma 7, (2), (7) and (6), we get

(z2)a)’™ = ((x2)%a®)" = ((x2)*(a®e))™ = ((za)*z*)" = ((wa)2)*)"
= ((za)2)™)? = ((wa)™=")* = (((ya)ts)=™)? = ((ya)?2*")3
= ((y2")?a®)t; = ((v* (:""7'2)) a®)t5 = (((y2"" ) (yz))a®)t3
= (32" Na)((yz) a))t3 = 5(((y=)a) ((yz*"")a))
= ((y2)a) (t5((y="""1)a)) € ((y2)a) S

Similarly we can show that ((yz)a)?™ € ((w2)a)S. Therefore (xz)n(yz).
Similarly we can show that 7 is left compatable. Hence 7 is a congruence
relation.
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Next we shall show that n is a band congruence, by using Theorem 8,
Lemma 7 and (1), we have (za)? = 22a2 = a%2? = (aa)2? = (z%a) a €
(2%a) S. Also using (6), (1), (2) and (7) we get (J:2a)2 = (z%a) (z%a) =
2%((z%a) a) = 2%(a®2?) = 2*((az)(az)) = 2?((za)(za)) = (za)(z*(za)) €
(za)S. Therefore xnz?, that is, :L% = x,. Hence S, is idempotent. Now
let xny which implies that znxz?nxy, therefore xnxy.

Let zny and using Lemma 7, we have

(z9) 0)* = () 0)* = () @) ((y) a) € () 0) S.

Similarly ((yz)a)? € ((xy)a)S. Therefore zynyz, that is, Tnly = Ynly-
Hence S is a commutative AG-groupoid and so is commutative semi-
group of idempotents. O

Theorem 10. 7 is separative on S.

Proof. Let 2’nxzy and xyny?. Then we have a?ny?, but, z2nz and yny.
So, znx?ny’ny. Therefore, xny. Hence 7 is separative. O

Theorem 11. S/n is a separative semilattice homomorphic image of S.

Proof. 1t follows from Theorems 9 and 10. O

Remark 2. If every congruence on S is left zero, i.e., axTa, then S/n is a
mazximal separative semilattice homomorphic image of S.
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