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Non-commutative �nite groups

as primitive of public key cryptosystems

Dmitriy N. Moldovyan

Abstract. A new computationally di�cult problem de�ne over non-commutative
�nite groups is proposed as cryptographic primitive. Finite non-commutative rings of the
four-dimension vectors over the ground �eld are de�ned with the vector multiplication
operations of di�erent types. Non-commutative multiplicative groups of the rings are
applied to design public key cryptoschemes based on the proposed di�cult problem.

1. Introduction

The most widely used in the public key cryptography di�cult problems,
factorization and �nding discrete logarithm, can be solved in polynomial
time on a quantum computer [5]. Quantum computing develops towards
practical implementations therefore cryptographers look for some new hard
problems that have exponential complexity while using both the ordinary
computers and the quantum ones [1, 2]. Such new di�cult problems have
been de�ned over braid groups representing a particular type of in�nite non-
commutative groups. Using the braid groups as cryptographic primitive a
number of new public key cryptosystems have been developed [3, 6].

Present paper introduces a new hard problem de�ned over �nite non-
commutative groups and public key cryptoschemes constructed using the
proposed hard problem. It is also presented a theorem disclosing the local
structure of the non-commutative group, which is exploited in the proposed
hard problem. Then concrete type of the non-commutative �nite groups is
constructed over �nite four-dimension vector space.
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2. New problem and its cryptographic applications

Suppose for some given �nite non-commutative group Γ containing element
Q possessing high prime order q there exists a method for easy selection
of the elements from su�ciently large commutative subgroup Γcomm ∈ Γ.
One can select as private key a random element W ∈ Γcomm such that
W ◦Q 6= Q ◦W and a random number x < q and then compute the public
key Y = W ◦ Qx ◦ W−1 (note that it is easy to show that for arbitrary
value x the inequality W ◦Qx 6= Qx ◦W holds). Finding pair (W,x), while
given Γ, Γcomm, Q, and Y , is a computationally di�cult problem that is
suitable to design new public key cryptosystems. The problem suits also
for designing commutative encryption algorithms.

The public key agreement protocols can be constructed as follows. Sup-
pose two users have intension to generate a common secret key using a
public channel. The �rst user generates his private key (W1, x1), com-
putes his public key Y1 = W1 ◦ Qx1 ◦ W−1

1 , and sends Y1 to the second
user. The last generates his private key (W2, x2), computes his public key
Y2 = W2 ◦ Qx2 ◦W−1

2 , and sends Y2 to the �rst user. Then the �rst user
computes the value

K12 = W1 ◦ (Y2)
x1 ◦W−1

1 = W1 ◦
(
W2 ◦Qx2 ◦W−1

2

)x1 ◦W−1
1

= W1 ◦W2 ◦Qx2x1 ◦W−1
2 ◦W−1

1 .

The second user computes the value

K21 = W2 ◦ (Y1)
x2 ◦W−1

2 = W2 ◦
(
W1 ◦Qx1 ◦W−1

1

)x2 ◦W−1
2

= W1 ◦W1 ◦Qx1x2 ◦W−1
1 ◦W−1

2 .

The elements W1 and W2 belong to the commutative subgroup Γcomm,
therefore K21 = K12 = K, i.e. each of the users has generated the same
secret K that can be used, for example, to encrypt con�dential messages
send through the public channel.

Suppose a public-key reference book is issued. Any person can send
to some user a con�dential message M using user's public key Y = W ◦
Qx ◦ W−1, where W and x are elements of user's private key. For this
aim the following public key encryption scheme can be used, in which it is
supposed using some encryption algorithm FK controlled with secret key K
representing an element of the group Γ.

1. Sender generates a random element U ∈ Γcomm and a random number
u, then computes the elements R = U ◦Qu ◦U−1 and K = U ◦ Y u ◦U−1 =
U ◦

(
W ◦Qx ◦W−1

)u ◦ U−1 = U ◦W ◦Qxu ◦W−1 ◦ U−1.
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2. Using the element K as encryption key and encryption algorithm EK

sender encrypts the message M into the cryptogramm C = FK(M). Then
he sends the cryptogram C and element R to the user.

3. Using the element R the user computes the encryption key K as
follows K = W ◦ Rx ◦ W−1 = W ◦

(
U ◦Qu ◦ U−1

)x ◦ W−1 = W ◦ U ◦
Qux ◦ U−1 ◦ W−1. Then the user decrypts the cryptogram C as follows
M = F−1

K (C), where F−1
K is the decryption algorithm corresponding to the

encryption algorithm FK .
The proposed hard problem represents some combining the exponentia-

tion procedure with the procedure de�ning group mapping that is an auto-
morphism. These two procedures are commutative therefore their combina-
tion can be used to de�ne the following commutative-encryption algorithm.

1. Represent the message as element M of the group Γ.
2. Encrypt the message with the �rst encryption key (W1, e1), where

W1 ∈ Γcomm, e1 is a number invertible modulo m, and m is the least
common multiple of all element orders in the group Γ, as follows C1 =
W1 ◦M e1 ◦W−1

1 .
3. Encrypt the cryptogram C1 with the second encryption key (W2, e2),

where W2 ∈ Γcomm, e2 is a number invertible modulo m, as follows

C12 = W2 ◦ Ce2
1 ◦W−1

2 = W2 ◦W1 ◦M e1e2 ◦W−1
1 ◦W−1

2 .

It is easy to show the encrypting the message M with the second key
(W2, e2) and then with the �rst key (W1, e1) produces the cryptogram C21 =
C12, i.e. the last encryption procedure is commutative.

3. On choosing elements

In the cryptoschemes described in previous section the �rst element of the
private key should be selected from some commutative group. A suitable
way to de�ne such selection is the following one. Generate an element G ∈ Γ
having su�ciently large prime order g and de�ne selection of the element
W as selection of the random number 1 < w < g and computing W = Gw .
Using this mechanism the private key is selected as two random numbers w
and x and the public key is the element Y = Gw ◦Qx ◦G−w. One can easy
show that for arbitrary values w and x the inequality Gw ◦Qx 6= Qx ◦Ww

holds.
For security estimations it represents interest haw many di�erent ele-

ments are generated from two given elements G and Q having prime orders
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g and q, respectively. The following theorem gives a positive answer to this
question.

Theorem 1. Suppose elements G and Q of some non-commutative �nite

group Γ have the prime orders g and q, correspondingly, and satisfy the

following expressions G ◦ Q 6= Q ◦ G and K ◦ Q 6= Q ◦ K, where K =
G◦Q◦G−1. Then all of elements Kij = Gj◦Qi◦G−j, where i = 1, 2, . . . , q−1
and j = 1, 2, . . . , g, are pairwise di�erent.

Proof. It is evident that for some �xed value j the elements Kij = Gj ◦
Qi ◦ G−j , where i = 1, 2, . . . , q, compose a cyclic subgroup of the order
q. Condition K ◦ Q 6= Q ◦ K means that element K is not included in
the subgroup ΓQ generated by di�erent powers of Q. Suppose that for
some values i, i′ 6= i, j, and j′ 6= j elements Kij and Ki′j′ are equal, i.e.
Gj ◦ Qi ◦ G−j = Gj′ ◦ Qi′ ◦ G−j′ . Multiplying the both parts of the last
equation at the right by element Gj and at the left by element G−j one gets
Qi = Gj′−j ◦Qi′ ◦G−(j′−j). The subgroup ΓQ has the prime order, therefore
its arbitrary element di�erent from the unity element is generator of ΓQ,
i.e. for i′ ≤ q − 1 the element P = Qi′ generates subgroup ΓQ. Taking this
fact into account one can write(

Qi
)z =

(
Gj′−j ◦Qi′ ◦G−(j′−j)

)z
= Gj′−j ◦Qi′z ◦G−(j′−j)

= Gj′−j ◦ P z ◦G−(j′−j) ∈ ΓQ.

The last formula shows that mapping ϕGj′−j (P z) = Gj′−j ◦P z◦G−(j′−j)

maps each element of ΓQ on some element of ΓQ. The mapping ϕGj′−j (ΓQ)
is bijection, since for z = 1, 2, . . . , q the set of elements

(
Qi

)z
composes the

subgroup ΓQ. Thus, the mapping ϕGj′−j (ΓQ) is a bijection of the subgroup
ΓQ onto itself.

Since order of the element G is prime, there exists some number u =
(j′ − j)−1 mod g for which the following expressions hold G =

(
Gj′−j

)u

and

ϕG (ΓQ) = ϕ(Gj′−j)u (ΓQ) = ϕGj′−j

(
ϕGj′−j

(
. . . ϕGj′−j (ΓQ) . . .

))︸ ︷︷ ︸
u bijective mappings

,

where the mapping is represented as superposition of u mappings ϕGj′−j (ΓQ).
The superposition is also a bijection of the subgroup ΓQ onto itself, since
the mapping ϕGj′−j (ΓQ) is the bijection ΓQ onto ΓQ. Therefore the follow-
ing expression holds K = G ◦Q ◦G−1 = ϕG(Q) ∈ ΓQ and K ◦Q = Q ◦K.
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The last formula conradicts to the condition K ◦Q 6= Q◦K of the theorem.
This contradiction proves Theorem 1. �

According to Theorem 1 there exist (q−1)g di�erent elements Zij 6= E,
where E is unity element of Γ. Together with the unity element E they
compose g cyclic subgroups of the order q and each of elements Zij 6= E
belongs only to one of such subgroups.

4. Finite rings of four-dimension vectors

Di�erent �nite rings of m-dimension vectors over the ground �eld GF (p),
where p is a prime, can be de�ned using technique proposed in [4]. The non-
commutative rings of four-dimension vectors are de�ned as follows. Suppose
e, i, j, k be some formal basis vectors and a, b, c, d ∈ GF (p), where p > 3,
are coordinates. The vectors are denoted as ae+bi+ci+dk or as (a, b, c, d).
The terms τv, where τ ∈ GF (pd) and v ∈ {e, i, j,k}, are called components
of the vector.

The addition of two vectors (a, b, c, d) and (x, y, z, v) is de�ned addition
of the coordinates corresponding to the same basis vector accordingly to
the following formula

(a, b, c, d) + (x, y, z, v) = (a + x, b + y, c + z, d + v).

The multiplication of two vectors ae + bi + cj + zw and xe + yi + zj +
vk is de�ned as multiplication of each component of the �rst vector with
each component of the second vector in correspondence with the following
formula

(ae+bi+cj+zw)◦ (xe+yi+zj+vk) = axe◦e+bxi◦e+cxj◦e+dxk◦e+
+aze ◦ j + bzi ◦ j + czj ◦ j + dzk ◦ j+ ave ◦ k + bvi ◦ k + cvj ◦ k + dvk ◦ k,

where ◦ denotes the vector multiplication operation. In the �nal expres-
sion each product of two basis vectors is to be replaced by some basis vec-
tor or by a vector containing only one non-zero coordinate in accordance
with the basis-vector multiplication table (BVMT) de�ning associative and
non-commutative multiplication. There are possible di�erent types of the
BVMTs, but in this paper there is used the BVMT of some particular
type shown in Table 1, where µ 6= 0. For arbitrary combination of the
values µ ∈ GF (p) and τ ∈ GF (p) Table 1 de�nes formation of the non-
commutative �nite ring of four-dimension vectors.
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Table 1: The basis-vector multiplication table

◦ −→e −→ı −→
j

−→
k

−→e µe µi µj µk
−→ı µi − µ−1τe k −τ j
−→
j µj −k − µ−1e i
−→
k µk τ j −i − µ−1τe

In the de�ned ring the vector (µ−1, 0, 0, 0) plays the role of the unity ele-
ment. For implementing the cryptoschemes described in Section 2 it repre-
sents interest the multiplicative group Γ of the constructed non-commutative
ring. To generate the elements Q and G of su�ciently large orders it is
required computing the group order Ω that is equal to the number of in-
vertible vectors. If some vector A = (a, b, c, d) is invertible, then there
exists its inverses A−1 = (x, y, z, v) for which the following formula holds
A ◦ A−1 = E = (µ−1, 0, 0, 0). This vector equation de�nes the following
system of four linear equations with four unknowns x, y, z, and v:

µax− µ−1τby − µ−1cz − µ−1τdv = µ−1

µbx + µay − dz + cv = 0
µcx + µaz − τbv + τdy = 0

µdx− cy + bz + µav = 0.

If this system of equations has solution, then the vector (a, b, c, d) is invert-
ible, otherwise it is not invertible. The main determinant of the system is
the following one

∆(A) =

∣∣∣∣∣∣∣∣
µa −µ−1τb −µ−1c −µ−1τd
µb µa −d c
µc τd µa −τb
µd −c b µa

∣∣∣∣∣∣∣∣
Computation of the determinant gives

∆(A) =
(
µ2a2 + τb2 + c2 + τd2

)2
.

Counting the number of di�erent solutions of the congruence ∆(A) ≡ 0 mod
p one can de�ne the number N of non-invertible vectors and then de�ne the
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group order Ω = p4 −N . The indicated congruence has the same solutions
as the congruence

µ2a2 + τb2 + c2 + τd2 ≡ 0 mod p. (1)

Statement 1. For prime p = 4k + 1, where k > 1, µ 6= 0, and τ 6= 0, the
order of the non-commutative group of the four-dimension vectors is equal

to Ω = p(p− 1)(p2 − 1).

Proof. For primes p = 4k + 1 the number −1 is a quadratic residue, since
(−1)(p−1)/2 = (−1)2k ≡ 1 mod p. Therefore there exists number λ such
that λ2 ≡ −1 mod p and congruence (1) can be represented as follows

(µa)2 − (λc)2 ≡ τ
(
(λb)2 − d2

)
mod p,

(µa− λc)(µa + λc) ≡ τ
(
(λb)2 − d2

)
mod p,

αβ ≡ τ
(
(λb)2 − d2

)
mod p,

where α ≡ µa−λc mod p and β ≡ µa + λc mod p. It is easy to see that for
each pair of numbers (α, β) satisfying the last congruence correspond unique
pair of numbers (a, c) satisfying congruence (1). Therefore the number of
solutions of congruence (1) can be computed as number of solutions of the
last equation. Two cases can be considered. The �rst case correspond
to condition (λb)2 − d2 6≡ 0 mod p and there exist (p − 1)2 of di�erent
pairs (b, d) satisfying this condition. For each of such pairs (b, d) for all
(p − 1) values α 6≡ 0 mod p there exists exactly one value β such that the
last congruence holds. Thus, the �rst case gives N1 = (p − 1)3 di�erent
solutions of congruence (1).

The second case correspond to condition (λb)2 − d2 ≡ 0 mod p which is
satis�ed with 2p−1 di�erent pairs (b, d). The left part of the last congruence
is equal to zero modulo p in the following subcases i) α 6≡ 0 mod p and β ≡
0 mod p (p− 1 di�erent variants), ii) α ≡ 0 mod p and β 6≡ 0 mod p (p− 1
di�erent variants), and iii) α ≡ 0 mod p and β ≡ 0 mod p (one variant).
Thus, the subcases gives 2p−1 di�erent variants of the pairs (a, c), therefore
the second case gives N2 = (2p − 1)2 di�erent solutions of congruence (1).
In total we have N = N1 +N2 = (p−1)3 +(2p−1)2 = p3 +p2−p solutions.
The value N is equal to the number of non-invertible vectors and de�nes
the group order Ω = p4 −N = p4 − p3 − p2 + p = p(p− 1)(p2 − 1). �

Statement 2. Suppose prime p = 4k + 3, where k > 1, µ 6= 0, τ 6= 0, and
the value τ is a quadratic non-residue modulo p. Then the order of the non-

commutative group of four-dimension vectors is equal to Ω = p(p−1)(p2−1).
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Proof. For primes p = 4k+3 the number−1 is a quadratic non-residue, since
(−1)(p−1)/2 = (−1)2k+1 ≡ −1 mod p. Since the value τ is quadratic non-
residue the following formulas hold τ (p−1)/2 ≡ −1 mod p and (−τ)(p−1)/2 ≡
1 mod p. The last formula shows that there exists number λ such that
λ2 ≡ −τ mod p and congruence (1) can be represented as follows

(µa)2 − (λb)2 ≡ (λd)2 − c2 mod p,
(µa− λb)(µa + λb) ≡ (λd)2 − c2 mod p,

γδ ≡ (λd)2 − d2 mod p,

where γ ≡ µa−λb mod p and δ ≡ µa + λb mod p. Then, counting di�erent
solutions of the last equation is analogous to counting solutions in the proof
of Statement 1. This gives N = p3 +p2−p di�erent solutions of congruence
(1) and the group order Ω = p(p− 1)(p2 − 1). �

5. Computational experiments and illustrations

Numerous computational experiments have shown that in the case p =
4k + 3, where k > 1, µ 6= 0, τ 6= 0, when the value τ is a quadratic residue
modulo p, the group order also equals to Ω = p(p−1)(p2−1). However the
formal proof of the last fact have not been found. The experiments have
also shown that for given modulus p the structure of the non-commutative
group of four-dimension vectors is the same for all non-zero values of the
structural coe�cients µ and τ . Here under structure of the group it is sup-
posed a table showing the number of di�erent vectors having the same order
ω for all possible values ω. In the case of the commutative �nite groups of
four-dimension vectors the group structure changes with changing values of
structural coe�cients. The experiments have been performed using di�er-
ent other variants (than Table 1) of the BVMTs de�ning non-commutative
groups of four-dimension vectors and in all cases the same structure and the
same group order have been get, for all non-zero values of the structural
coe�cients.

De�ning a group of four-dimension vectors with Table 1 and parameters
µ = 1, τ = 1, and p = 234770281182692326489897 (it is a 82-bit number)
one can easily generate the vectors Q and G having the prime orders q =
g = 117385140591346163244949 (it is a 81-bit number) and then generate
vector K = G ◦Q ◦G−1:

Q = (197721689364623475468796, 104620049500285101666611,
91340663452028702293061, 190338950319800446198610);
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G = (44090605376274898528561, 33539251770968357905908,

62849418993954316199414, 121931076128999477030014);

G−1 = (44090605376274898528561, 201231029411723968583989,

171920862188738010290483, 112839205053692849459883);

K = (197721689364623475468796, 127324294038715727080605,

205837389432865711027118, 169402831102520905889980).

The vectors satisfy the conditions G ◦ Q 6= G ◦ Q and K ◦ Q 6= Q ◦K
(see Theorem 1), therefore they can be used to implement the cryptoschemes
presented in Sections 2 and 3. It is easy to generate many other di�erent
pairs of the vectors Q and G possessing 81-bit prime orders q and g and
satisfying the condition of Theorem 1. The least common multiple of all
element orders in the constructed group is

m = 12939853526188313144336212835389396459316

920609647589590297471969647376.

The exponent e of the encryption key for commutative encryption algo-
rithm can be selected as e = 7364758519536461719117. Then the exponent
of the decryption key is computed using formula d = e−1 mod p:

d = 8969427630416482351904498868955232431090386202

188967381064403670926661.

Accordingly to the algorithm for computing the private key from the
public one, which is described in the next section, the 80-bit security of
the proposed cryptoschemes is provided in the case of 80-bit primes q and
g. In this case the di�culty of the computation of the public key from
the private one does not exceed 5800 multiplications modulo 80-bit prime.
In the corresponding cryptoschemes of the public encryption and of the
public key agreement, which are based on elliptic curves, the di�culty of
computing the public key from the private one is equal to about 2400 mul-
tiplications modulo 160 prime. Taking into account that di�culty of the
modulo multiplication is proportional to squared length of the modulus one
can estimate that the proposed cryptoschemes are about 1.6 times faster
than analogous schemes implemented using elliptic curves. Besides, perfor-
mance of the proposed cryptoschems can be signi�cantly enhanced de�ning
computation of the secrete element W as a sum of small powers of G, for
example, W =

∑6
s=1 ρsG

ts , where ρs ∈ GF (p), ts 6 15, s = 1, 2, . . . , 6.
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6. Algorithm for computing the private key

Using the known parameters Q and G having the orders q and g = q
the following algorithm �nds the private key (w, x) from the public one
Y = Gw ◦Qx ◦G−w.

1. For all values j = 1, 2, . . . , q compute vectors T (j) = Gj ◦ Y ◦ G−j

(di�culty of this step is 2q vector multiplications).

2. Order the table computed at the step 1 accordingly to the values T (j)
(di�culty of this step is q log2 q comparison operations).

3. Set counter i = 1 and initial value of the vector V = (µ−1, 0, 0, 0).

4. Compute the vector V ← V ◦Q.

5. Check if the value V is equal to some of the vectors T (j) in the ordered
table. If there is some vector T (j′) = V , then deliver the private key
(w, x) = (j′, i) and STOP. Otherwise go to step 6.

6. If i 6= q, then increment counter i ← i + 1 and go to step 4. Oth-
erwise STOP and output the message INCORRECT CONDITION.
(Di�culty of steps 5 and 6 does not exceed q vector multiplication
operations and q log2 q comparison operations.)

Overall the time complexity of this algorithm is about 3q vector mul-
tiplication operations and 2q log2 q comparison operations, i.e. the time
complexity is O(q) operations, where O(·) is the order notation. The al-
gorithm requires storage for q vectors and for the same number of |p|-bit
numbers, i.e. the space complexity is O(q).

This algorithm shows that the 80-bit security of the proposed cryptosys-
tems can be provided selecting 80-bit primes q and g. Such prime orders of
the vectors Q and G can be get using 81-bit primes p.

Is seems that element G having composite order can be used in the
cryptoschemes described above and this will give higher security, while us-
ing the given �xed modulus p. However this item represents interest for
independent research.

7. Conclusions

Results of this paper shows that �nite non-commutative groups represent
interest for designing fast public key agreement schemes, public encryption
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algorithms, and commutative encryption algorithms. Such cryptoschemes
are fast and the hard problem they are based on is expected to have ex-
ponential di�culty using both the ordinary computers and the quantum
ones.

Theorem 1 is useful for justi�cation of the selection elements Q and
G while de�ning parameters of the cryptoschemes. The proposed non-
commutative �nite group of the four-dimension vectors seems to be ap-
propriate for practical implementation of the proposed schemes. We have
proved the formulas for computing the order of such groups in majority
of cases. Unfortunately for a quarter of cases the formal proof have not
been found and this item remains open for future consideration. However
the proved cases covers the practical demands while implementing the pro-
posed cryptoscheme in the case of using the constructed non-commutative
groups of four-dimension vectors.

It is easy to show that there exists multiplicative homomorphism of the
proposed groups of four-dimension vectors into the �nite �eld over which
the vector space is de�ned. Therefore in the case of using the constructed
�nite non-commutative group in the proposed cryptoschemes one should
take into account the existing homomorphism. To prevent attacks using
this homomorphism the large prime orders g and q of the elements G and
Q should satisfy conditions g|p + 1 and q|p + 1 (i.e., g 6 |p− 1 and q 6 |p− 1,
since g > 2 and q > 2).
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