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ARO—quasigroups
Vladimir Volenec, Zdenka Kolar-Begovi¢ and Ruzica Kolar-Super

Abstract. In this paper the concept of ARO—quasigroup is introduced and some identi-
ties which are valid in a general ARO—quasigroup are proved. The "geometric" concepts
of the midpoint, parallelogram and affine regular octagon are introduced in a general
ARO—-quasigroup. The geometric interpretation of some proved identities and introduced

concepts is given in the quasigroup C (1 + @)

1. Definition and examples

A quasigroup (Q, -) will be called A RO—quasigroup if it satisfies the following
identities of idempotency and mediality

aa = a, (1)
ab-cd = ac-bd (2)

and besides that the identity
ab-b=ba-a. (3)

Example 1. Let (G, +) be a commutative group in which there exists the
automorphism ¢ which satisfies the identity

(pop)(a) + (pop)(a) —pla) — pla) — p(a) — p(a) +a=0,

which can be written in a simpler form
2(pop)(a) —4p(a) +a=0. (4)
If the multiplication - on the set G is defined by the formula

ab=a+ ¢(b—a) (5)
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we shall prove that (G,-) is ARO—quasigroup. For each a,b € G the equa-
tions ax = b and ya = b, owing to (5), are equivalent to the equations

at+or—a)=>b,  y+p(a)—ey) =0 (6)

The first equation has the unique solution z = a + ¢~ '(b — a), and out of
the second equation it follows

2(p o) (y) — 2¢(y) = 2(p o p)(a) — 2¢(b),
2y — 2¢(y) = 2b — 2¢p(a).

The addition of two last equations gives

2(p 0 9)(y) — 4p(y) + 2y = 2(p 0 p)(a) = 2p(a) — 2p(b) + 20,
i.e., owing to (4) the solution must have the form
y = 2p(a) —a — 2p(b) + 2b. (7)
Really, it is a solution of (6) because from (7), according to (4), we get
y —¢(y) =2¢(a) —a = 2p(b) + 2b — ¢(2¢(a) — a = 2¢(b) + 2b)
=2(p o) (b) — 4p(b) +2b — (2(p 0 p)(a) — 3p(a) + a)=b—p(a).

We have proved that (G,-) is a quasigroup. Its idempotency is obvious by
(5). According to (5) we also get

ab-cd =ab+ p(cd—ab) =a+ p(b—a)+p(c+ p(d—c)—a—pb—a))
=a—2¢p(a)+ (pop)(a)+p(b) — (pop)(b)+¢(c) — (pop)(c) + (pop)(d).

The symmetry of the obtained expression by b and ¢ proves the mediality
(2). By (5) it follows

ab-b=ab+ p(b—ab) =a+ p(b—a)+¢b—a—pb-a))
= (pop)(a) = 2¢(a) + a+2p(b) — (pop)(b),

and analogously
ba - a = 2p(a) — (pop)(a) + (¢ o p)(b) — 2¢(b) + b,

whence owing to (4)

ab-b—ba-a=2(pop)(a)—4p(a)+a— (2(po)(b) —4p(b) +b) =0,
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i.e., the identity (3) is valid. O
Example 2. Let (F,+,-) be a field. If the equation

2¢° —4q+1=0 (8)
has the solution ¢ in F' and if the operation * on F'is defined by the formula
axb=(1—-q)a+ gb. 9)

then ¢(a) = ga obviously defines an automorphism of a commutative group
(F,+). As the equality (8) is valid it implies that the equality (4) holds for
all a € F. However, (9) can be also written in the form

axb=a+ p(b—a)

and by Example 1, (F,*) is ARO—quasigroup. O

Example 3. Let (C,+,-) be a field of complex numbers and * binary
operation on C defined by (9), where ¢ is the solution of the equation (8),
ie,qg=1+ @ orqg=1- @ According to Example 2 (C,x*) is ARO-
quasigroup. For example, let ¢ = 1—1—@. The obtained quasigroup has a nice
geometric interpretation, which justifies the studying ARO—quasigroups and
defining the geometric concepts in them. Let us consider the set C as the
set of the points in the Euclidean plane. For the different points a and b
the equality (9) can be written as

axb—a

b—a — 1

which means that the points a, b, a * b determine the quotient ratio g. The
operation * is presented in the Figurel where, instead of a * b, we shall
shortly write ab, and in the sequel we will use this notation in all figures.

a b ab

Figure 1.

The identity (3) is illustrated in the Figure 2.
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ba-a
ba a ab-b b ab

Figure 2.

2. The basic properties

The immediate consequences of the identities (1) and (2) are the identities
of elasticity, left and right distributivity

ab-a=a-ba, (10)
a-bc=ab-ac, (11)
ab-c=ac-bc (12)

Let us prove the following theorem.

Theorem 1. In the ARO-quasigroup (Q,-) the following identities

(ab-b)a = (a - ab)b, (13)
(ab - c)ec = (c- ba)a, (14)
(ab-b)b = (b ba)a, (15)
(ab - ba)c = (ac ca)b, (16)
(ab - ba)a = (17)
(ab-ba)c-c=cb-a, (18)
(ab-ba)b-b = ba, (19)
(ab - ba)b = ba - ab, (20)
(ab-ba) - ca=ac-b (21)

are valid.
Proof. Firstly we get

(ab-b)a 3 (ab-a)-ba 19 (a-ba)-ba © 4. (ba-a) ® ab. (ab-b) =) (a-ab)b,

(ab'c)c@(c-ab)-ab@ - (ab - b)(—)ca (ba - a) 12 (c-ba)a,
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(ab-¢)(ba-c) = (ab-c)(ba) - (ab-c)c @ (ab-b)(ca) - (ab-c)c

(ab-b)(ab-c) - (ca-c) = (ab - bc)(ca - c) ® (ab - ca)(be - c)

(ab - ca)(ch - b) @ (ab - cb)(ca - b) 3 (ac-b)(ca-b) 2 (ac - ca)b,

1

—~
N
~

(ab - ba)c

—
N
~

—~
w
=

so the identities (13), (14) and (16) hold. From (14) using ¢ = b the identity
(15) follows, and using ¢ = a from (16) owing to (1) the identity (17) follows.
Further we get

,\
IS
N

ab-c)c-(ba - c)c@ (c-ab)(ab)-(ba - c)c@ (ca)(ab-b)-(ba - c)c

2)

(ab-ba)c-¢'2)(
(ca)(ba - a)-(ba - )2 (¢ - ba)a-(ba - &) 2 (¢ - ba)(ba - ¢) - ac
(
(

—
w
=

A
IS
2

c-ac)(ac-c)-ba ©) (c-ac)(ca-a)-ba - (ca-c)(ca-a)-ba

@ca-ba(g)cb-a,

—~
—_
—

~

ca - ca) - ba

i.e., the equality (18) is valid, wherefrom with ¢ = b because of (1) it follows
(19). Finally, we obtain

(12) (11)

(ab-ba)b 2 (ab-b)(ba-b) 2 (ba - a)(ba - b) 2 ba - ab,

@) 3) (11) (12)

(ab-ba)-ca = (ab-c)(ba-a) = (ab-c)(ab-b) =" ab-cb ac-b.

3. Midpoints and parallelograms

Let (Q,-) be ARO—quasigroup. The elements of the set @ will be called
points. The geometric presentation in the Figure 2 leads to the following
definition. For any two points a and b the point ¢, given by the equalities

c:a*b:ab-b@ba-a, (22)
will be called the midpoint of the points a and b.

Theorem 2. If the operation x on the set Q is defined by the formula (22),
then (Q, ) is idempotent medial commutative quasigroup.
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Proof. The equations a * x = b and y * a = b, which according to (22) can
be written as za - a = b and ya - a = b, are uniquely solvable for z and y
for each a,b € Q. Commutativity and idempotency of the operation * are
obvious, and mediality follows by means of (2) like this:

(axb)*(cxd) = (ab-b)(cd-d)-(cd-d) = (ab-cd)(bd) - (cd - d)
= (ac-bd)(cd) - (bd - d) = (ac-c)(bd - d) - (bd - d)
= (axc)*(bxd). O

We shall say that the points a, b, ¢, d are the vertices of a parallelogram
and we shall write Par(a,b,c,d) if axc =bxd. Iff axc=0bxd = o,
we shall say that the point o is the center of that parallelogram and write
Par,(a,b,c, d).

Theorem 3. (Q, Par) is a parallelogram space, i.e., the following properties
are valid:

(P1) For any points a,b, c there is the unique point d such that Par(a,b, c,d).

(P2) For any cyclic permutation (e, f,g,h) of (a,b,c,d) or of (d,c,b,a)
from Par(a,b,c,d) follows Par(e, f,g,h).

(P3) From Par(a,b,c,d) and Par(c,d,e, f) follows Par(a,b, f,e).

Proof. The statement Par(a,b,c,d) is according to (22) equivalent to the
equality ac-c = db - b, which is unique solvable by d, so the property (P1)
is valid. The property (P2) is the consequence of the commutativity of the
operation *. It remains to prove the property (P3). From Par(a,b,c,d)
and Par(c,d,e, f) it follows a*c = bxd and cxe = d* f. By means of the
mediality and commutativity of the operation * we get

(ax f)x(cxf)=(axc)x(fxf)=(bxd)«(f[f)=(bxf)=(d=[)
=(bxf)x(cxe)=(bxf)x(exc)=(bxe)*(f*c)
— (bre)x (e f),

wherefrom we get a *x f =bxe, i.e., Par(a,b, f,e). O
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4. Affine-regular octagon

Now we are going to introduce the concept of the affine regular octagon in
a general ARO—quasigroup. Firstly, we will prove the theorem which will
lead to the definition of the mentioned concept.

Theorem 4. In a cyclical sequence from eight equalities a;a;+1 = ;13012
(i = 1,2,3,4, 5,6,7,8), where indexes are taken modulo 8 from the set
{1,2,3,4, 5, 6,7,8}, each five adjacent equalities imply the remaining three
equalities.

Proof. 1t is sufficient to prove that the equalities

aias = asas, (23)

azaz = asay, (24)

azas = agas, (25)

asas = arag, (26)

asag = agar, (27)
imply the equality

agay = ajas. (28)
Firstly, let us prove that from the equality (23)-(25) the equality

aiaz = agay, (29)

follows, and in the same manner (by the substitution i — i + 2) from
equalities (25) — (27) the equality

azas = agag (30)

follows. Really, we get successively

||w

(12)

(a1a3 - as)ay aias - azas)as = (ajay - asaq)(asaq - asay)

e
=

2
aiagq - agag)(a3a4 . a5a4) (:) (alag . a4a3)(a3a4 . a5a4)

%
<

)
agas - agaz)(asay - asay) = agas - (agay - asay)

—
DO
—

1=

©)

asaz - az)(as - asaq (a3a4 -aq)(as - asay)

—~
s

)
asay - aq)(agas - aq) (a3a4 - a4a5)a4

IS
)

'
(
(
(a4 - agaq)(as - azaq) (0 (aqas3 - aq)(as - asaq)
)
(
(

s
&

(12)
aas - asas)as = (agaq - as)aq,
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wherefrom the equality (29) follows. Now, we can also prove the equality
(28), which follows from
(12) (30) 2 (29)
ajag - ag = a10Ge - Aagle = G106 * A305 = Q143 * AgA5 = AgA4 * A6A5

(11) (26) (10)
=" ag - a4as5 = Gg-a7ag = aga7 - ag. Il

We shall say that a1, ao, as, a4, as, ag, a7, ag are the wvertices of an
affine—regular octagon and we shall write ARO(aq, a2, as, a4, as, ag, a7, ag) if
any five adjacent, and then all eight, equalities from eight equalities a;a;+1 =
ai+3ai4+2 (1 =1,2,3,4,5,6,7,8) are valid (Figure 3).

Figure 3.

Corollary 1. If (iy,i9,13,14,15,16,17,18) 1S any cyclic permutation of
(1,2,3,4,5,6,7,8) orof (8,7,6,5,4,3,2,1), then
ARO(@1, az, a3, a4, as, ag, az, ag) implies ARO@;, , Qiy, Qig, Qiy, Gigy iy Qiry Qig)-

Corollary 2. If the statement ARO(a1, a2, a3, as, as, ag, a7, ag) holds, then
for each i € {1,2,3,4, 5,6,7,8} the statement a;a;+2 = a;+5a,+3 also holds.
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Corollary 3. Affine—reqular octagon is uniquely determined by any three
adjacent vertices. O

Theorem 5. If the statement ARO(aq1, az, a3, a4, as, ag, az, ag) is valid, then
for each i € {1,2,3,4,5,6,7,8} we have

ip 10542 * Qip20it] = QipaQi, Q3042 * Gi420i+3 = Qiliqd, (31)
Ai4405 * Aj41 = Aj41Q542 = Qj44Qi43, QiQi44 * Gj43 = Aj43A;42 = A;Q54-1-
(32)

Proof. The proof of the second equality (31) follows from the proof of the
first one (31) by the substitution of indexes i < i+ 4, i + 1 < i+ 3.
Because of Corollary 1 it is sufficient to prove, for example, the equality
asas - azay = asa;. We get successively

17 1) (24)
(azas : a3a2)a2 = Qa2a3 = a2a3 - a2a3 = G504 - a20a3
(2 (23) (12)
= a50G2 - a4a3 = G502 - a1G2 = 501 - a2,
S0 asag - agas = asap follows. The first equalities in (32) are obtained

by multiplication the equalities (31) with a;41 respectively a;;3 because of
the identity (17), and other equalities are taken from the definition of the
relation ARO. O

Theorem 6. Let the statement ARO(aq,a9,as,aq,as,ag, a7, as) be valid.
There is the point o such that for each i € {1,2,3,4,5,6,7,8} the equalities

(@iy10i - @jai11) Gig2 = 0,  (@i41Gi42 - Qi42Gi41) G; = O (33)
are valid, where indexes are taken modulo 8.

Proof. By (16) the mutual equivalence of the equalities (33) hold.
If o = (agas - agaz)ay, then o = (agaq - ajag)ag. By Corollary 1 it is
sufficient to prove the equality o = (agay4 - agas)as. We get

12)

(
(a3a4 : (Z4CL3)CL2 azaq - a1a2)a2 = (a3a4 : a2)(a1a2 : a2)

2
aszay4 - ag)(agal . al) (:) (a3a4 . a2a1) s asan
2
azaq - a3a4) ca3aq = (a2a1 . a3)(a3a4 . a4)
2)
azay - ag)(asas - az) 2 (aga1 - asaz)as

aay - ajaz)ag = o. O
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The point o from Theorem 6 will be called the center of the affine—
regular octagon (ai,asg,as,aq,as,as,ar,as) and it will be written in the
form AROo(ala a2, as, a4, as, ag, ay, CLS).

Theorem 7. With hypotheses of Theorem 6 for eachi € {1,2,3,4,5,6,7,8}
the equalities

0= Qa; * Ai+4 = QjQi44 * Aj44, (34)
Ai41Qi42 * A = 0 Qj410i,  Qi410; * Qj42 = 0 Qj410i42, (35)
00; = QA2 " Qiyl, O0Gj+2 = Ui420; * Gjt] (36)
are valid.
Proof. We get
(22) (31) (33)
@i * Q4 = Qi14Qi- @ = (Gi410i42 © Ai120i11)0; = O,
17)
Ai+1Qi42 - Q5 = (ai+1ai+2 ) ai+2az’+1)ai+1 1 G
(12) (33)
= (ai+1ai+2 : ai+2ai+1)ai * Q410 = 0- Q4104
(33) (18) 0
0a; = (Qi41Qi42 - Qi120;41)0; - A = Q042 - Qg1

In the previous proof the equivalence of the equations (33) and (34)
is proved, therefore the center of an affine-regular octagon can be also
characterized by (34).

5. The determination of the affine-regular octagon

The statements of the unique determination of the affine regular octagon
will be proved in this chapter.

Theorem 8. Affine—reqular octagon is uniquely determined by any three of
1ts vertices.

Proof. By Corollary 1 and 3 it is sufficient to prove only the following state-
ments

(i) The vertices a1, ag, a4 uniquely determine the vertex as. This state-
ment is obvious from the equalities (23).

(ii) The vertices aj, ag, as or aj, a3, as uniquely determine the vertex
as, respectively as. Indeed, let o is the point such that o = asa; - a1, and
then ag respectively as the point such that oa; = aia3-as, and a4 the point
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such that ajas = aqas. It should be proved the equality asas = asaq. It is
the consequence of the following consideration:

ey ©
(agas - agas)(agas) - agas = (agas - agas) - agas = (agas - agas) - aza3

2 3
@ (aqas - a2)(aza3 - as) ® (agas - az)(azag - az)

(12) (12)

=" (aqas - azaz)az = (ajag - azaz)as =’ (ajas - az)as
= oaj - az = (asa; - aj)ay - as

(12)

= (a5a2 . alag)(alag) . (a1a2)

= (asag - asasz)(aqas) - (asa3)

—
-

= (asa4 - aza3)(asa3) - (asa3).

(iii) The vertices ai, as, ag uniquely determine the vertex ag. Really,
let as be a point such that ajas = agaq, then ao be a point such that
aras = a4as, and as the point such that asas = asay. It should be proved
the equality asaq = agas, which follows from this:

=
kS
&
—~
s
e

(agaq - agas)aq (agaq - aq)(asas - aq) (agaq - asg)(as - asaq)

—
=
—~
N

= (aqas - a3)(aq - asaq) = (agas - aq)(as - asay)

—
—
=]

=

—~

~

= (CL4 . a3a4)(a3 . a5a4) = aqas - (a3a4 : a5a4)

12 1
D) 405 - (asas - a1) 2 (asas - asas)(azas - as)
2
= (a1a2 - asas)(azas - as) @ (a1a4 - azas)(asas - as)
12
= (a1a4 - asaq)(azas - aq) = (aras - aq)(azas - aq)
(12) (12)
=" (aas - azas)as = (ara3 - as)as
(12)
= (agaq - as)ag = (agas - agas)ay.

O

If the statement ARO(a1, as, as, a4, as, ag, a7, ag) hold, then two vertices
of the form a; and a;14 are said to be opposite vertices of the considered
affine-regular octagon.

Theorem 9. Affine—reqular octagon is uniquely determined by its center
and by any two of its vertices which are not opposite.
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Proof. (i) The center o and vertices aj, as respectively the vertices ai, as
uniquely determine the remaining vertices. Let as respectively as be a point
such that oa; = aqas3 - as, then a4 be a point such that ajas = a4as, and as
be a point such that o = asa; - a;. It should be proved asas = asaq, and
the proof is the same as the proof of the part (ii) of the proof Theorem 8.
(ii) The center o and the vertices ag, as uniquely determine the remain-
ing vertices. Let a; be a point such that o = ajas - a5, and a3 point such
that oaq1 = ajag - ag, and a4 point such that aiae = agag. Further the proof
is the same as in a previous case. U

5. Some new associated affine-regular octagons

In this chapter we are going to consider some new octagons whose vertices
can be obtained by means of the vertices of the initial octagon.

Equal products from the definition of the affine-regular octagon will be
labelled like this

a;i1 = bit1,i42 = ai430;42, (37)

where the indexes will be always taken mod 8 from the set {1,2,3,4,5,6,7,8}.
On the base of the proof of Theorem 4 according to Corollary 1 it follows
that there exists the point ¢;12 ;43 such that

;012 = Ci12,i43 = Qi450i43- (38)

Besides that, let
di = Aj+4G;. (39)

With these labels the equalities (31) and (32) can be written in the form
bivo,it3biit1 = di;  biir1bigoiys = dig3, (40)

diait1 = biy243, diyzair2 = by, (41)

where the indexes in the second equalities in (40) and (41) are reduced for
1. The equalities (31) can also be written in the form

di = Qiy1 Q12 Qiy20i11, dig2 = Q1105 Q; g1, (42)
and the equalities (33) can be written in this shortened form:

di a; = 0. (43)
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The equalities (35) and (36) can also be written as the equalities
bit2i+3a; =0bi—14, bi—1;a;42 = 0bj1243, (44)
0G; = Ciy2,i+3 Git1, OQi12 = Ci—1,; Qif1. (45)
Let us prove some more similar equalities. We get for example:
dyas = (aza3 - azaz)as 2 asap - a2a3 = dy,
and generally the equalities
diaiyo = diy3, dijai_2=d;_3 (46)
are valid. Due to the example
diaz =l (azas - azaz)az = azas i b4,
the general equalities
diaiy1 =bit2iy3, diai—1 =0bj_3; 2 (47)
hold. Let us prove for example
c12€23 iy asas - a5a3 @ asas - a203 0 asas - as5a4 = ds
and generally,
Ciyit1 Citl,it2 = dit2,  Ciyli+2 Ciit1 = di- (48)

On the base of the equalities (37) and (48) we get for example

bigbys o @ D bsd
12023 = as3a2 - a4a3 = Q304 - a2a3 = 045034,

(48)
c12¢23 = d3 = C45C34,

i.e., generally we have bi,i+1bi+1,i+2 = bi+3,i+4bi+2,i+3 and Cii+1Ci+1,i4+2 =

Ci+3,i+4Ci+2,i+3, Which proves the statements
ARO(b12, ba3, b3a, bas, bse, ber, brs, bs1),

ARO(c12, c23, €34, C45, C56, C67, CT8, C81) -

(49)

(50)
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The proof of the statement
ARO(dlad27d37d47d5)d67d77d8) (51)

is more complicated. We get for example

46 2 37 2 47
dyds L das - dsag @ dyds - asas S dads - asay ® dyas - dsay @ be7ba3

(47) dyag - dgay @ dydg - agay 37 dqdg - azas @ diag - dgaz = dads.

All three affine-regular octagons (52)-(54) have the center o because we
get for example

37 2
bi2 * bsg = bi2bse - bsg 0 (asas - arap) - arap @ (asar - agag) - arag
(2 _ 34 (1)
= (agay - a7)(aga6 - ag) = (ag * a7)(az x ag) = 0o = o,
_ (38) 2)
Cl2 * C56 = C12C56 - C56 = (@402 - Agag) - agas = (a4ag - a2a6) - Agag
2 34
@ (agas - ag)(azae - ag) = (aq * ag)(ag * ag) 3 00 ) 0,

2
d1 * d5 = d1d5 . d5 (:) (a2a3 . agag)(a6a7 . a7a6) . (a6a7 . a7a6)

A
IS

(az2a3 - agar)(agas - aras) - (agar - aras)
agag - agar)(agay - azag) - (agar - azag)
asag - azar)(asay) - (agar - azag)(arae)

agag - ag)(agar - a7) - (asar - a7)(agag - ag)

= (ag x ag)(as x ay) - (a3 x a7)(az * ag) 0000 0.

A numerous parallelograms are related to the affine-regular octagon.
So, for example we get the equalities
(21) (37)
ap * ag =agay - a1 = (agay - araz) - ajas =’ (agaq - agas) - asas

2 3 12

(z)(azcu - aq)(aqas - az) ©) (a2aq - aq)(azay - ay) = (a2a1 - agaq)ay
2) (37) (12) (39)

= (aga3 - ajaq)as = (asaq - ajaq)as = (asaq - as)as = diag - ag

:a4*d1,
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(37) 2
aj *bzg = aibgs - b3s = (a1 - agas) - agasz = ajag - (azaz - as)

(3) (37) ©)
= ajay - (agag - ag) =" aqas - (azag - az) = (a4 - azaz) - agag

37
0 asb12 - b2 = b2 * aa,

39 10 12
aq * d1 = a1d1 . d1 (:) (a1 . a5a1) s asal (:) (a1a5 . al) - a5a (:) (a1a5 . CL5)(L1

(34) (45) (38) (12)
(a1 xas)a; =" oay; = czqay =" aias-as = aijaz - azaz

2

39
(a6a4 . agag) - aqag :) (a6a2 : a4a8) - aqas (:) deg : dg = dg * dg,

)
)

@
Ik

2
(aras - aq)(azar - ag) ajas - asar) - a4ag @ (ara3 - asar) - asag
(

w0
18

(37),(39)

—

2)

big x d3 =biads - ds = (asasz - ayas) - arag = (asay - agas) - aras
2 (azar - ar)(azas - a3) "L o(asaz - az) T (azas - ag)(asaz - az)
2 (azag - azaz)-apaz 2 (azas3 - agaz)-apaz (374439 baada-dz = dg * bsa,
0% C34 = 0C34 - C34 (33139 ((agay - araz)as - araz)- ajas

(12) (19) (37
="((az2a1 - araz)ay - ar)az =" araz -az =" aqaz - az = az * as,
and we get the statements Par(ai, a4, ag, d1), Par(ai, bia, b3a, a4),
Par(ay, da, di, dg), Par(bia,da, ds, bsa), Par(o, as, ¢34, a4) or more gen-
eral statements

Par(a;, ajys, aiy1, d;), Par(ai, aj—3, ai—1, d;), (52)
Par(a;, b1, bivoiv3, aits), (53)

Par(a;, diy1, di, di—1), (54)

Par(biit1, dit1, dit2, bit2,i+3), (55)

Par(o, ai, ¢iit1, Qit1)- (56)

We have proved:

Theorem 10. Let the statement ARO,(ay,as2,as,aq,as,ag, ay,ag) holds.
Then there are the points b; i1, ¢iiv1, d; such that the statements (37)—(48)
and (52) — (56) hold, where the indezes are taken modulo 8 from the set
{1, 2, 3, 4, 5, 6, 7, 8}, and the statements AROO(blg, b23, bg47 b45, b56, b67, b78, bgl),
ARO,(c12, 23, €34, €45, C56, C67, C78, €81) and ARO(dy, da, d3, dy, ds, ds, d7, dg)

are also valid. O
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All results from the Theorems 5, 6, 7 and 10 can be illustrated in the
Figure 3.
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