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Check character systems and totally conjugate
orthogonal T-quasigroups

Galina B. Belyavskaya

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. We continue investigations of check character systems with one check
character over quasigroups under check equations without a permutation. These systems
always detect all single errors (i.e., errors in only one component of a code word) and
can detect some other errors occuring during transmission of data. For construction of
such systems we use totally conjugate orthogonal T -quasigroups. These quasigroups are
isotopic to abelian groups and have six mutually orthogonal conjugate quasigroups. We
prove that a check character system over any totally conjugate orthogonal T -quasigroup
is able to detect all transpositions and twin errors and establish additional properties of
a totally conjugate orthogonal T -quasigroup by which such system can detect all jump
transpositions and all jump twin errors. Some models of totally conjugate orthogonal
T -quasigroups which satisfy all of the required properties for detection of each of the
considered types of errors and an information with respect to the spectrum of such
quasigroups are given.

1. Introduction
In this article we deal with error detecting systems (codes) with a single
control symbol. Such systems have speci�c applications and are used for the
detection of certain types of errors. More exactly, we study check character
(or digit) systems with one check character.

A check character system (CCS) with one check character is an er-
ror detecting code over an alphabet A which arises by appending a check
digit an to every word a1a2...an−1 ∈ An−1 : An−1 → An, a1a2...an−1 →
a1a2...an−1an.
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The purpose of using such a system is to detect transmission errors
(which can arise once in a code word), in particular, made by human opera-
tors during typing of data. These errors can be distinct types: single errors
(that is errors in only one component of a code word), (adjacent) transpo-
sitions, i.e., errors of the form . . . ab . . . −→ . . . ba . . . , jump transpositions
(. . . abc · · · → . . . cba . . . ), twin errors (. . . aa · · · → . . . bb . . . ), jump twin er-
rors (. . . aca · · · → . . . bcb . . . ) and so on can be made by human operators.
Single errors and transpositions are the most prevalent ones.

The examples of check character systems used in practice are the fol-
lowing:

- the European Article Number (EAN) Code,
- the Universal Product Code (UPC),
- the International Standard Book Number (ISNB) Code,
- the system of the serial numbers of German banknotes,
- di�erent bar-codes used in the service of transportation, automation

of various processes and so on.
The work of I. Verhoe� [13] is the �rst signi�cant publication relating to

these systems. In this work decimal codes known in the 1970s are presented.
A. Ecker and G. Poch in [8] have given a survey of check character systems
and their analysis from a mathematical point of view. In particular, the
group-theoretical background of the known methods was explained and new
codes were presented that stem from the theory of quasigroups. Studies
of check character systems were continued by R.-H. Schulz in [12]. He
established necessary and su�cient conditions for a quasigroup with control
formula (3) (see below) to detect transpositions and jump transpositions
not only in information digits but, in addition, in the control digit of a
code word a1a2...an. The complete survey of check character systems using
quasigroups one can �nd in [3] due to G.B. Belyavskaya, V.I. Izbash, and
V.A. Shcherbacov.

The control digit of a system based on a quasigroup (system over a
quasigroup) is calculated by distinct check formulas (check equations) using
quasigroup operations.

Choosing Q(·) as a �nite set endowed with a binary algebraic struc-
ture (a groupoid) we can take one of the following general check (coding)
formulas for calculation of the control symbol an:

an = (. . . ((δ1a1 · δ2a2) · δ3a3) . . . ) · δn−1an−1 (1)

(. . . ((δ1a1 · δ2a2) · δ3a3) . . . ) · δnan = c (2)
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for �xed permutations δi of Q, i = 1, 2, . . . , n and a �xed element c of Q.
It is easy to see that a CCS with check formula (1) or (2) detects all

single errors if and only if Q(·) is a quasigroup. The other errors will be
detected if and only if this quasigroup has speci�c properties.

Often a permutation δi in (1), (2) is chosen such that δi = δi−1, i =
1, . . . , n, for a �xed permutation δ of Q. In this case we obtain the following
check formulas respectively:

an = (. . . ((a1 · δa2) · δ2a3) . . . ) · δn−2an−1, (3)

(. . . ((a1 · δa2) · δ2a3) . . . ) · δn−1an = c. (4)

In [4] CCSs over quasigroups with the check equation (3) or (4) are stu-
died. In the article [5], which is a continue of [4], CCSs over T -quasigroups
are considered, some properties of a T -quasigroup so that the CCS over it
is able to detect transpositions, jump transpositions, twin errors and jump
twin errors are established. Besides, some models of T -quasigroups, which
satisfy all of the required properties for detection of errors of each of the
considered types are given.

It is known that if a CCS over a quasigroup detects some of �ve con-
sidered types of errors, then this quasigroup has orthogonal mate (see, for
example, [4, Corollary 1 and Corollary 5], [2, Proposition 3]).

On the other hand, in the article [6] the quasigroups, all six conju-
gates of which are distinct and pairwise orthogonal, are studied. Such
quasigroups were called totally conjugate orthogonal quasigroups (shortly,
totCO-quasigroups). Necessary and su�cient conditions that a T -quasi-
group be a totCO-quasigroup (a totCO-T -quasigroup) are established.

In this article we continue to research check character systems with one
check character over quasigroups under the check equation (3) or (4) when
δ = ε, n > 4. For constructing of such systems we use totally conjugate or-
thogonal T -quasigroups. These quasigroups generalize medial quasigroups
and have six mutually orthogonal conjugate quasigroups.

We prove that a CCS over any totally conjugate orthogonal T -quasigroup
is able to detect, besides single errors, all transpositions and all twin errors
and establish additional properties of a totally conjugate orthogonal T -
quasigroup such that a system over it can detect all jump transpositions
and all jump twin errors. Some models of totally conjugate orthogonal T -
quasigroups which satisfy all of the required properties to detect each of the
considered types of errors and an information with respect to the spectrum
of such quasigroups are given.
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2. Check character systems over T-quasigroups
In this section we remind some necessary notions and results of [4,5] with
respect to the check character systems using T-quasigroups.

A quasigroup is an ordered pair (Q, A) (or (Q, ·)) where Q is a set and
A (or ·) is a binary operation de�ned on Q such that each of the equations
A(a, y) = b and A(x, a) = b is uniquely solvable for any pair of elements
a, b in Q. It is known that the multiplication table of a �nite quasigroup
de�nes a Latin square [7].

A quasigroup Q(·) is called a T -quasigroup if there exist an abelian group
Q(+), with automorphisms ϕ and ψ, and an element c∈Q such that

x · y = ϕx + ψy + c

for all x, y ∈ Q. Such quasigroups were considered by T. Kepka and P.
Nemec in [10]. They are special cases of quasigroups, which are isotopic
to abelian groups and generalize the well-known class of medial quasigroups
when, in addition, the automorphisms ϕ and ψ commute, that is ϕψ = ψϕ.
Note that below maps in a composition act from the right to the left.

A permutation α of a group Q(+) is called an orthomorphism (respec-
tively a complete mapping) if x − αx = βx (x + αx = βx) where β is a
permutation of Q and −x = Ix is the inverse element for x in the group
Q(+) [9]. It is easy to see (cf. [9]) that an automorphism α of a �nite group
Q(+) is an orthomorphism if and only if α is a regular automorphism, that
is the identity 0 of the group Q(+) is the only element of Q �xed by α :
αx 6= x if x 6= 0. If α is an orthomorphism, then Iα is a complete mapping
of Q(+). A complete mapping of a quasigroup Q(·) is a bijective mapping
x → θx of Q onto Q such that the mapping x → ηx de�ned by ηx = x · θx
is again a bijective mapping of Q onto Q.

Denote by OrtQ(+) the set of all orthomorphisms of a group Q(+).
In [5] the following theorems with respect to check character systems over
T -quasigroups were proved (Theorem 1, Theorem 2 and Theorem 4 of [5]
respectively) which we shall use.
Theorem 1. [5] A check character system using a �nite T -quasigroup
Q(·) : x · y = ϕx+ψy + c and check formula (3) with n > 4 is able to detect

1. single errors;
2. transpositions if and only if ψδϕ−1, ψδψ−1ϕ−1, Iψδn−2 ∈ OrtQ(+);
3. jump transpositions if and only if ψδ2ϕ−2, ψδ2ψ−1ϕ−2, Iϕψδn−3

are in OrtQ(+);
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4. twin errors if and only if iψδϕ−1, Iψδψ−1ϕ−1, ψδn−2 ∈ OrtQ(+);
5. jump twin errors if and only if Iψδ2ϕ−2, Iψδ2ψ−1ϕ−2, ϕψδn−3

are in OrtQ(+). 2

Theorem 2. [5] In Theorem 1 let δ = ε. Then a check character system
detects

1. single errors;
2. transpositions if and only if the automorphisms ϕψ−1, ϕ, Iψ are

regular;
3. jump transpositions if and only if the automorphisms ϕ2ψ−1, ϕ2,

Iϕψ are regular;
4. twin errors if and only if the automorphisms Iϕψ−1, Iϕ, ψ are

regular;
5. jump twin errors if and only if the automorphisms Iϕ2ψ−1, Iϕ2, ϕψ

are regular. 2

Theorem 3. [5] A check character system using a �nite T -quasigroup
Q(·) : x · y = ϕx + ψy + c and check formula (4) with δ = ε, n > 4, detects

1. single errors;
2. transpositions if and only if the automorphisms ϕ and ϕψ−1 are

regular;
3. jump transpositions if and only if the automorphisms ϕ2 and ϕ2ψ−1

are regular;
4. twin errors if and only if the automorphisms Iϕ, Iϕψ−1

are regular;
5. jump twin errors if and only if the automorphisms Iϕ2 and Iϕ2ψ−1

are regular. 2

3. Totally conjugate orthogonal T-quasigroups
In this section we shall give some necessary notions and results of [6] with
respect to the totally conjugate orthogonal T -quasigroups.

With any quasigroup (Q,A) the system Σ of six (not necessarily distinct)
conjugates (parastrophes) is connected:

Σ =
{
A,A−1,−1A,−1

(
A−1

)
, (−1A)−1, A∗

}
,

where A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x ⇔ A∗(y, x) = z.
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It is known [11] that the number of distinct conjugates in Σ can be 1,2,3
or 6. Using suitable Belousov's designation of conjugates of a quasigroup
(Q,A) of [1] we have the following system Σ of conjugates:

Σ =
{

A, rA, lA, lrA, rlA, sA
}

,

where 1A = A, rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1,sA =
A∗. Note that

(−1(A−1)
)−1 =rlrA =−1

(
(−1A)−1

)
=lrlA =sA and rrA =llA =

A, στA =σ(τA).
Two quasigroups (Q,A) and (Q,B) are orthogonal if the system of equa-

tions {A(x, y) = a, B(x, y) = b} is uniquely solvable for all a, b ∈ Q.
A set Σ = {A1, A2, ..., An} of quasigroups, de�ned on the same set, is

orthogonal if any two quasigroups of it are orthogonal.
Quasigroups which are orthogonal to some their conjugates or two conju-

gates of which are orthogonal (known as conjugate orthogonal or parastrophic-
orthogonal quasigroups) have encouraged great interest.

In [6] the quasigroups (Q,A) all conjugates of which are pairwise or-
thogonal and the spectrum of such quasigroups were considered. For these
quasigroups the set of all conjugates Σ =

{
A, rA, lA, lrA, rlA, sA

}
is ortho-

gonal.
De�nition 1. [6] A quasigroup (Q,A) is called totally conjugate orthogonal
(shortly, a totCO-quasigroup) if all its conjugates are pairwise orthogonal.

It is clear that a totCO-quasigroup is invariant with respect to the
transformation of conjugation ( that is if a quasigroup (Q,A) is a totCO-
quasigroup then the quasigroup (Q,σA) is also a totCO-quasigroup for any
conjugate σA) and that all conjugates of a totCO-quasigroup are distinct.

Let ϕ and ψ be automorphisms of an abelian group (Q,+) and
(ϕ + ψ)x = ϕx + ψx for any x ∈ Q, then ϕ + ψ is an endomorphism
of group (Q,+). It is known that all endomorphisms of an abelian group
form an associative ring with a unity under the operations of addition and
multiplication.
Theorem 4. [6] Let (Q,A) be a �nite or in�nite T -quasigroup of the form
A(x, y) = ϕx + ψy. Then two its conjugates are orthogonal if and only if
the maps corresponding to these conjugates:

(1 ⊥ l or s ⊥ lr) → ϕ + ε, (r ⊥ rl) → ϕ + ε and ϕ− ε,
(1 ⊥ r or s ⊥ rl) → ψ + ε, (l ⊥ lr) → ψ + ε and ψ − ε,
(1 ⊥ lr or s ⊥ l) → ϕ + ψ2, (1 ⊥ rl or s ⊥ r) → ϕ2 + ψ,
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(r ⊥ lr or rl ⊥ l) → ϕ− ψ, (1 ⊥ s) → ϕ− ψ and ϕ + ψ,
(l ⊥ r or lr ⊥ rl) → ψϕ− ε are permutations. 2

As it was noted in [6], for a T -quasigroup of the form A(x, y) = ϕx +
ψy + c with c 6= 0 the conditions of Theorem 4 are the same and do not
depend on the element c. So if a T -quasigroup (Q,A): A(x, y) = ϕx+ψy is
a totCO-quasigroup, then the T -quasigroup (Q,B): B(x, y) = ϕx + ψy + c
is also a totCO-quasigroup for any c ∈ Q.
Theorem 5. [6] A T -quasigroup (Q,A): A(x, y) = ϕx+ψy+c is a totCO-
quasigroup if and only if all maps ϕ+ε, ϕ−ε, ψ +ε, ψ−ε, ϕ2 +ψ, ψ2 +ϕ,
ϕ− ψ, ϕ + ψ, ψϕ− ε are permutations. 2

The conditions of Theorem 5 we can write otherwise:
Theorem 5a. A T -quasigroup (a medial quasigroup) (Q,A): A(x, y) =
ϕx + ψy + c is a totCO-quasigroup if and only if all maps ϕ2 − ε, ψ2 − ε,
ϕ2 + ψ, ψ2 + ϕ, ϕ − ψ, ϕ + ψ, ψϕ − ε (all maps ϕ2 − ε, ψ2 − ε, ϕ2 + ψ,
ψ2 + ϕ, ϕ2 − ψ2, ψϕ− ε respectively) are permutations.

Proof. Indeed, (ϕ + ε)(ϕ− ε) = ϕ2− ε, (ψ + ε)(ψ− ε) = ψ2− ε, and in the
case of a medial quasigroup (ϕ− ψ)(ϕ + ψ) = ϕ2 − ψ2.

Note that an operation A of the form A(x, y) = (ax + by + c) (mod n),
n > 2, is a quasigroup if and only if the numbers a, b modulo n are relatively
prime to n. In this case ϕ = La, ψ = Lb, where Lax = ax (mod n),
x ∈ Q = {0, 1, 2, ..., n−1}, are permutations (automorphisms of the additive
group modulo n) and the quasigroup Q(A) is a T -quasigroup (moreover, a
medial quasigroup).

In [6] the following statement (Corollary 2 of [6]) is proved:
Corollary 1. [6] A medial quasigroup (Q,A): A(x, y) = (ax+by) (mod n)
is a totCO-quasigroup if and only if all elements a+1, a−1, b+1, b−1, a2 +
b, b2 + a, a− b, a + b, ab− 1 modulo n are relatively prime to n. 2

This corollary can be rewrite otherwise:
Corollary 1a. A medial quasigroup (Q, A): A(x, y) = (ax + by) (mod n)
is a totCO-quasigroup if and only if all elements a2 − 1, b2 − 1, a2 + b, b2 +
a, a2 − b2, ab− 1 modulo n are relatively prime to n. 2

The following theorem (Theorem 3 of [6]) gives an information with
respect to the spectrum of totCO-quasigroups.
Theorem 6. [6] For any integer n > 11 which is relatively prime to 2, 3, 5
and 7 there exists a totCO-quasigroup of order n. 2
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4. Totally conjugate orthogonal T-quasigroups
Now we shall prove that a CCS over a totCO-T -quasigroup with check
formulas (3) or (4) is able to detect some errors.
Theorem 7. A check character system using a �nite totCO-T -quasigroup
Q(·) : x · y = ϕx + ψy + c and check formulae (3) with δ = ε, n > 4, detects

1. single errors;
2. transpositions;
3. jump transpositions if and only if the mappings ψ − ϕ2 and ε + ϕψ

are permutations;
4. twin errors;
5. jump twin errors if and only if the mapping ε + ϕ2, ϕψ − ε are

permutations.

Proof. From Theorem 5 it follows that all conditions for transpositions of
Theorem 2 are fulled if we take into account that the automorphism ϕψ−1

is regular if and only if the mapping ε − ϕψ−1 (the same ψ − ϕ or ϕ − ψ)
is a permutation and the automorphism ϕ ( Iψ) is regular if and if ε − ϕ
(respectively ε + ψ) is a permutation.

By Theorem 2 a CCS detects jump transpositions if and only if the
automorphisms ϕ2ψ−1, ϕ2, Iϕψ are regular that is when the mappings
ε−ϕ2ψ−1 (the same ψ−ϕ2), ε−ϕ2 and ε + ϕψ are permutations. But by
Theorem 5a in a totCO-T -quasigroup the mapping ε−ϕ2 is a permutation.

According to Theorem 2 a CCS detects twin errors if and only if the
automorphisms Iϕψ−1, Iϕ, ψ are regular, that is the mappings ε + ϕψ−1

(the same ψ +ϕ), ε+ϕ and ε−ψ are permutations. This is by Theorem 5.
At last, by Theorem 2 a CCS detects jump twin errors if and only if

the automorphisms Iϕ2ψ−1, Iϕ2, ϕψ are regular. It means that the maps
ε + ϕ2ψ−1 (the same ψ + ϕ2), ε + ϕ2 and ε − ϕψ are permutations. By
Theorem 5 the mapping ψ + ϕ2 is a permutation.

Corollary 2. If in Theorem 7 a totCO-quasigroup Q(·) is medial, then in
item 5 the condition ϕψ − ε can be eliminated.

Proof. Indeed, in any medial quasigroup Q(·) : x · y = ϕx + ψy + c the
automorphisms ϕ and ψ commute, so the mapping ϕψ − ε = ψϕ − ε is a
permutation in a totCO-T -quasigroup.

Theorem 8. A check character system using a �nite totCO-T -quasigroup
Q(·) : x · y = ϕx + ψy + c and check formula (4) with δ = ε, n > 4, detects
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1. single errors;
2. transpositions;
3. jump transpositions if and only if the mapping ψ−ϕ2 is a permutation;
4. twin errors;
5. jump twin errors if and only if the mapping ε + ϕ2 is a permutation.

Proof. Follows from the proof of Theorem 7, if we take into account that
for jump transpositions and jump twin errors in Theorem 3 there are less
conditions than in Theorem 2.

As a consequence of Theorems 7, 8 and Corollary 2 we obtain
Theorem 9. A check character system using a �nite medial totCO-quasigro-
up Q(·) : x · y = ϕx + ψy + c and check formula (3) (resp.(4)) with δ = ε,
n > 4, detects single errors, transpositions, jump transpositions, twin errors
and jump twin errors if and only if the mappings ψ−ϕ2, ε+ϕψ and ε+ϕ2

(ψ − ϕ2 and ε + ϕ2 respectively) are permutations.
Corollary 3. A check character system using a medial totCO-quasigroup
Q(·) : x · y = (ax + by + c) (mod n) and check formula (3) (resp.(4)) with
δ = ε, n > 4, detects single errors, transpositions, jump transpositions, twin
errors and jump twin errors if and only if the mappings a2 − b, 1 + ab and
1 + a2 (a2 − b and 1 + a2 respectively) modulo n are relatively prime to n.

Proof. Indeed, in this case the maps

ϕ2 − ψ : (ϕ2 − ψ)x = (L2
a − Lb)x = (a2 − b)x (mod n),

ε + ϕψ : (ε + ϕψ)x = (ε + LaLb)x = (1 + ab)x (mod n),
ε + ϕ2 : (ε + ϕ2)x = (ε + L2

a)x = (1 + a2)x (mod n)

are permutations if and only if the corresponding elements modulo n are
relatively prime to n. Note that in this case the elements a, b are also
relatively prime to n, since (Q, ·) is a quasigroup.

Theorem 10. For any integer n > 11 which is relatively prime to 2, 3, 5
and 7 there exists a medial totCO-quasigroup of order n such that the check
character system over this quasigroup with the check formulas (3) or (4),
δ = ε, n > 4, detects all single errors, transpositions, jump transpositions,
twin errors and jump twin errors.

Proof. Let a be the element a modulo n and (m, n) be the greatest common
divisor of m and n. Consider the medial quasigroup (Q, ·): x · y = 3x + 5y
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(mod n) where (3, n) = 1 and (5, n) = 1, Q = {0, 1, 2, ..., n − 1}. In this
case a = 3, b = 5. According to Proposition 1 of [6] this quasigroup is a
totCO-quasigroup for any n relatively prime to 2,3,5 and 7.

Check the conditions of Corollary 3 for this quasigroup: (a2 − b)x =
(9 − 5)x = 4x, (1 + ab)x = 16x, (1 + a2)x = (1 + 9)x = 10x modulo n,
x ∈ Q. Since n > 11 then the maps 4x, 10x modulo n are permutations
if n is relatively prime to 2 and 5. Let n be relatively prime to 2,3,5 and
7, then n 6= 16 and n < 16 only for n = 11, 13. These orders are prime
numbers, so (16, n) = 1 for every of these numbers. If n > 16, then 16 = 16
and (16, n) = 1 since n is relatively prime to 2. Thus, the quasigroup
A(x, y) = 3x+5y (mod n) is the needed totCO-quasigroup for any n which
is relatively prime to 2,3,5 and 7.
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