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Parallelograms in quadratical quasigroups

Vladimir Volenec and Ruzica Kolar-Super

Abstract. The “geometric” concept of parallelogram is introduced and investigated in

a general quadratical quasigroup and geometrical interpretation in the quadratical quasi-

group C(£) is given. Some statements about relationships between the parallelograms

and some other “geometric” structures in a general quadratical quasigroup will be also

considered.

A grupoid (Q, ) is said to be quadratical if the identity
ab-a = ca-bc (1)

holds and the equation ax = b has a unique solution z € @) for all a,b € Q
ie, (Q,-) is a right quasigroup. In [16] it is proved that (Q,-) is then a
quasigroup. (Q,-) is satisfying the following identitites

aa = a, 2

ab - cd = ac - bd, 3
4
5
6

7

ab-a=a-ba,
ab-a="ba-b,

a-bc=ab-ac,

(2)
(3)
(4)
(5)
(6)
(7)

ab-c=ac-bc

and the equivalencies

ab = cd < be = da, (8)
ar=b< x=(b-ba)-(b-ba)(ba-a), 9)
za=b< x=(a-ab)(ab-b)- (ab-Db). (10)
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Let (C,+,-) be the field of complex numbers and * the operation on C
defined by
axb=(1—q)a+qgb (11)

where ¢ = % It can be proved that (C,*) is a quadratical quasigroup.
This quasigroup has a nice geometric interpretation which motivates the
study of quadratical quasigroup. Let us regard the complex numbers as
points of the Euclidean plane. For any point a we obviously have a xa = a,
and for two different points a, b the equality (11) can be written in the form

axb—a q—0

b—a  1-0
which means that the points a, b, a x b are the vertices of a triangle directly
similar to the triangle with the vertices 0, 1, ¢ (Figure1). We can say that
a * b is the centre of a square with two adjacent vertices a and b, which

justifies the name “quadratical quasigroup”. We shall denote this quasigroup
by C(1£) because we have a x b= 4 if a = 0 and b = 1.

A
b
a*bf<
/a/aq\
0 1

Figure 1.
The figures in the quasigroup C(1f) can be used as the illustrations of
“geometric” relations in any quadratical quasigroup (Q, ). For example, the
left side of the identity (1) is obviously the midpoint of the points a and b
and this identity is illustrated in Figure 2 (here and in all other figures in
the article we shall use the sign - instead of the sign ).

In the sequel let (@, -) be any quadratical quasigroup. The elements of
Q are said to be points.

If e is an operation in the set ) defined by

aeb=a-ba=ab-a=ca-bc, (12)
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Figure 2.

then (cf. [16]) (@, ) is an idempotent medial commutative quasigroup, i.e.,
the identities

aea=a, (13)
(aeb)e(ced)=(aec)e(bed), (14)
aeb=>beq (15)

hold. The point a e b is said to be a midpoint of the pair {a, b} of points.

In [15] the notion of a parallelogram is defined in any medial quasigroup
and because of mediality (3) we can apply this definition in our quadratical
quasigroup (@, -). According to |15, Cor.1| the points a, b, ¢, d are said to
be the vertices of a parallelogram and we write Par(a,b,c,d) if there are
two points p and ¢ such that ap = bq, dp = c¢q. In [15] it is proved that
(Q, Par) is a parallelogram space, i.e., we have the properties:

(P1) For any a,b,c € @ there is an unique point d such that Par(a,b,c,d)
holds.

(P2) If (e, f,g,h) is any cyclical permutation of (a,b,c,d) or of (d,c,b,a),
then Par(a, b, c,d) implies Par(e, f,g,h).

(P3) Par(a,b,c,d), Par(c,d,e, f) = Par(a,b, f,e).

But, the parallelogram can be defined directly, using the midpoints, as
we have:

Theorem 1. Par(a,b,c,d) < aec=>bed.
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Proof. Let ap = bg. We must prove the equivalence of the equalities dp = cq
and a e c = b e d. We obtain successively

3 3
(a0 c)pg-p) = (ac-a)(pg-p) 2 (ac- pg)-ap 2 (ap - cq)-ap = (bq - cg)-by,
5 3 3
(be d)(pg-p) = (v 5)(pa - p) L (bd-0)-(ap - 0) 2 (v 4p)bg 2 (bq - dp) by,
wherefrom it follows the mentioned equivalence. O

Corollary 1. Par(a,c,b,c) < aeb=c.

If we use the equivalence Par(a,b,c,d) < aec=>bed as the definition
for parallelograms, then the properties (P1)-(P3) can be proved simply by
the properties of the quasigroup (Q,e). The properties (P1) and (P2) are
obvious. For the proof of (P3) we must prove that aec = bed and cee = de f
imply a e f = bee. We obtain

(aof)e(cod) 'Y (aec)e(fod)E (aec)e(def)=(bed)e(cec)

( )(bod)o(eoc)(M (15)

Il &

Yivec)e(dec) 2 (hee)e(cod)

and therefore a e f =bee.

Theorem 1 enables us to define the centre of a parallelogram. We say
that (a, b, ¢, d) is a parallelogram with a centre o and we write Par,(a, b, ¢, d)
ifaec=bed=o.

The parallelogram can be defined explicitly in the quasigroup (@, -) (Fi-
gure 3), without the auxiliary points, because of the following theorem.

Theorem 2. The statement Par(a,b,c,d) is equivalent with the equality

d = [b(bc-c) - (bc-c)c]la(a - ab) - (a - ab)b] (16)

Proof. According to (P1) it is sufficient only to prove that (16) implies
Par(a,b,c,d). Let
p=0b(bc-c)- (bc-c)e, (17)

qg=a(a-ab)-(a-ab)b. (18)

By (16) we have d = pq. According to (6) and (3) the equality (17) can be
written in the form

p=(b-bc)(be) - (be-c)e=(b-be)(be-c) - (be-c)
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b(bc-c)(bc-c)c

Figure 3.

equivalent with pb = ¢ because of (10). Owing to (7) and (3) the equality
(18) can be written in the form

qg=a(a-ab)- (ab)(ab-b) = (a-ab)- (a-ab)(ab-b)

equivalent with bg = a because of (9). This equality can be written as
aa = bg by (2). On the other hand we obtain

(7
da:pq-bq:)pb-qch-

The equalities aa = bg and da = ¢q prove the statement Par(a,b,c,d). O

Corollary 2. Par(a,b,c,d) holds if and only if there are two points p and
q such that pb=c, bq = a, pq = d.
Figure 4 shows how the equalities pb = ¢, bg = a, pqg = d imply Par(a,b, c,d)
in the quasigroup C(1f%).

Using Theorem 1 let us prove some new properties of the relation Par
in any idempotent medial commutative quasigroup (Q,e).
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Figure 4.

Theorem 3. Let Par,/(a’,b’,¢’,d’). The statements Par,(a,b,c,d) and
Parye,/(aea’ beb’ cec’ ded’) are equivalent.

Proof. 1t is sufficient to prove the equivalence of the equalities a e c = 0 and
(aea’)e(cec’) =o0e0’if we have the equality a’ e ¢/ = o’. But, this is
obvious because of

!/

(aec)eo’ =(aec)e(a’ec’) 1 (aea’)e(cec’). O

For any p € Q we have Pary(p,p,p,p) because of (13). Therefore, we
obtain:

Corollary 3. Pary(a,b,c,d) = Parpes(pea,peb,pec,ped).
Par,(a,b,c,d) implies Par,(b,c,d,a) and we obtain:

Corollary 4. Par,(a,b,c,d) = Par,(aebbec,ced,dea).
But, we have more generally:

Theorem 4. For any points a,b, ¢, d the statement Par(aeb,bec,ced, dea)
holds.

Proof. We obtain
(aeb)e(ced) (1 (aeb)e(dec) 1 (aed)e(bec) (1 (bec)e(dea). [

Corollary 5. It holds Par(a eb,bec,cea,a) for any points a,b, c.

A concept of a square is defined in [17]. We say that (a,b,c,d) is a
square with the centre o and we write S,(a, b, ¢, d) or simply S(a,b,c,d) if
ab = bc = cd = da = 0. Then we have the equalities ac = d, bd = a, ca = b,
db = ¢ too. Any two of these four equalities imply S(a, b, c,d). In [17, Th.
2| it is proved that S,(a, b, ¢, d) implies o = a e c = b e d, i.e., we have:
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Theorem 5. S,(a,b, c,d) = Par,(a,b,c,d), i.e., every square is a parallel-
ogram with the same centre.

The following theorem generalizes Theorem 5 in [17].
Theorem 6. Par,(a,b,c,d) < S,(ba,cb,dc,ad).

Proof. We obtain
12

aec (12 ba - cb
and the equalities a @ ¢ = 0 and ba - ¢cb = o are equivalent. Analogously, we
have
bed=o0<cb-dc=o,

cea=o0<dc-ad=o,

deb=0< ad-ba =o. 0

In the quasigroup C( Theorem 6 proves a well-known statement (cf.
(131, [21, [3], [9], [7]. [10], [2], [11]):

If we construct positively oriented squares on the sides of a given oriented
quadrangle, then the centers of these squares form a negatively oriented
square if and only if the given quadrangle is a parallelogram.

In [5] and [1, p. 241] a statement is proved, which is illustrated in Figure

5 in the quasigroup C(1f*) and can be formulated as the following theorem.

4

Theorem 7. If
Sa’(b7 c,ay, 0/2)7 Sb/(C, a, b17 62)7 SC’(a'a b7 C1, 02) (19)
and if @, 6, ¢ are points such that

Par(by,a,cq,a), Par(cy1,b,a2,b), Par(ai,c,bs,?) (20)

then we have the equalities

¢b = a, ac=b, ba=c, (21)
bet=a'| Cea=0b/, deb=c, (22)
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Proof. Let @, b, ¢ be points such that dc = ¢/, ba =a’, ¢b =b’. According
to (19) we have the equalities bjc = a, ca = V', be = d/, coa = ¢ (among
others). The equalities bjc = a = aa and ac = ¢’ = cya prove the first
statement (20) and analogously the other two statements (20) can be proved.
According to (8) from ca = b’ = ¢b it follows ac = be, ie., ac = a’.
Therefore we have ac = ba and by (8) it follows ¢b = aa, i.e., the first

equality (21). Finally, we obtain the first equality (22): bel ) ze5

Ceb =
~ 2
ac-ba=a'a’ = a’. O

A point o is said to be the center of the square on the segment (a,b) if
So(a,b,c,d) holds for some points ¢ and d, i.e., if ab = 0. A rotation for a
(positively oriented) right angle about a point o is the mapping a — b such
that ab = o.

Theorem 8. If a1, az, a3, as are any points and b;; is the center of the
square on the segment (a;,a;) for any i,j € {1,2,3,4} (i # j), then we
have the statements Par(bia,bs2, bsa,b14) and Par(bay,bes, bas,bs1). The
rotation for a right angle about the point a; ® as maps Par(bas, ba1, ba1, bas)
onto Par(bya,bs, bss, b14) and the rotation for a right angle about the point
as ® ag maps Par(b12, b32, b34, 514) onto Par(b41, b43, b23, le) (Figure 6).
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Figure 6.

Proof. According to [15, Th. 28] we have the statement Par(ajasz, azas,
asaq,araq) and Par(agay, asas,asas,asar) and for any 4,5 € {1,2,3,4}
(i # j) we have the equality a;a; = b;; . The rotation for a right angle
about the point a; e ag maps the points ba3, ba1, bsa1, bgg onto the points byo,
b32, bs4, b14 because of the equalities

(12) (15)
basbia = azaz - ajaz = azea; = aj ®az = aza - azaz = ba1b3a,

(12) (15)
bs1b3s = asar - azas =" aj®az = aszea; = asas - ajas = by3biy. 0

In the case of the quasigroup (C(%) Theorem 8 proves some statements
from [14] and [8].

Theorem 9. If
So(p7a’7u7 b)? Sol(p7a’/7u/’b/)7 (23)

Par(a’,p,b,c), Par(a,p,V,c) (24)

holds, then the rotation for a right angle about the point o maps Par(p,b,c,a’)
onto Par(a,p,b’,c’") and the rotation for a right angle about the point o’
maps Par(a,p,b’ ¢’ onto Par(c,a’,p,b) (Figure7).
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Figure 7.

Proof. Let the statements (23) hold and let ¢, ¢ be the points such that
cb’ =0, ¢'b = 0'. The equalities

pa=o0=cb’, pa'=0'=c'b
imply by (8) the equalities
ac=b'p=o0', a'c'=bp=o.
Now, the equalities
a'd) =p=pp,cb' =0="0bp resp. ab=p=pp,c’b=0"=bp

prove the statements (24). The last two statements of theorem are the
consequences of the equalities

pa=o0, bp=o, cb’=o0, a'c’=o0 resp. ac=0, pa’=0’, b'p=0’, c’'b=0'. O
In the case of the quasigroup C(%) Theorem 9 proves some statements
from [4]. The fact that the rotation for a right angle about the points o
maps the segment (b,a’) onto the segment (p,c’) proves that the median
from the vertex p of the triangle (p,b’, a) is orthogonal to the side (b,a’)
of the triangle (p,b,a’) and equal to the half of this side and a similar fact
holds for the median from the vertex p of the triangle (p, b, a’) and the
segment (b’,a) (cf. [18]).

Theorem 10. With the hypotheses of Theorem 9 it holds S(u,c,u’;c’)
(Figure 7).
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Proof. According to Corollary 2 we observe the implications

PCLT‘(b7p,(L/,C), U,p = a’lv pu = b = ’LL,U = C,
PCLT(b/,p,a7c/), up = a, pU/ =b' = w'=c’,

and the equalities u'u = ¢, uu’ = ¢"imply S(u,c,u’,c’). O

Theorem 11. The statements S(b,c,a1,az2), S(c,a,b1,b2), S(a,b,c1,c2)
and the equalities a, = c1ba, by = a1ca, ¢, = brag imply

Par(c,a,b,a,), Par(a,b,c,b,), Par(b,c,a,c,) (25)

b,ec,=a, c,ea,=0>b, a,eb, =c, (Figure 8).

Co
!’ Y C1
bo .%
N A
2
) \ b
dO
Cl1 a2

Figure 8.

Proof. We have the equalities cia = b, aby = ¢, ¢1bs = a, and according
to Corollary 2 it follows Par(c,a,b,a,). Analogously we can prove other
statements (25). From Par(b,,a,b, c) and Par(b,c,a,c,) by (P3) we obtain
Par(by,a,co,a), i.e., b, ® c, = a. O
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