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Con�gurations of conjugate permutations

Ivan I. Deriyenko

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. We describe some con�gurations of conjugate permutations which may be used
as a mathematical model of some genetical processes and crystal growth.

1. Introduction

Let Q = {1, 2, 3, . . . , n} be a �nite set. The set of all permutations of Q will
be denoted by Sn. The multiplication (composition) of permutations ϕ and ψ
of Q is de�ned as ϕψ(x) = ϕ(ψ(x)). Permutations will be written in the form
of cycles and cycles will be separated by points, e.g.

ϕ =
(

1 2 3 4 5 6
3 1 2 5 4 6

)
= (123.45.6.)

By a type of a permutation ϕ ∈ Sn we mean the sequence

C(ϕ) = {l1, l2, . . . , ln},

where li denotes the number of cycles of the length i. Obviously,

n∑
i=1

i · li = n .

For example, for ϕ = (132.45.6.) we have C(ϕ) = {1, 1, 1, 0, 0, 0}; for ψ =
(123456.) we obtain C(ψ) = {0, 0, 0, 0, 0, 1}.

As is well-known, two permutations ϕ,ψ ∈ Sn are conjugate if there exists
a permutation ρ ∈ Sn such that

ρϕρ−1 = ψ. (1)
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Theorem 1. (Theorem 5.1.3 in [1]) Two permutations are conjugated if and

only if they have the same type. �

In this short note we �nd all solutions of (1), i.e., for a given ϕ and ψ
we �nd all permutations ρ satisfying this equation, and describe some graphs
connected with these solutions.

2. Solutions of the equation (1)

Let's consider the equation (1). If ϕ = ψ = ε, then as ρ we can take any
permutation from Sn. So, in this case (1) has n! solutions.

If permutations ϕ and ψ are cyclic, then without loss of generality, we can
assume that

ϕ = (1ϕ(1)ϕ2(1)ϕ3(1) . . . ϕn−1(1).),

ψ = (1ψ(1)ψ2(1)ψ3(1) . . . ψn−1(1).),

where ϕ0(1) = ϕn(1) = 1 and ψ0(1) = ψn(1) = 1. In this case for ρ0 de�ned
by

ρ0(ϕi(1)) = ψi(1) = xi, i = 0, 1, . . . , n− 1, (2)

we have

ρ0ϕρ
−1
0 (xi) = ρ0ϕρ

−1
0 (ψi(1)) = ρ0ϕ

i+1(1) = ψi+1(1) = ψ(ψi(1)) = ψ(xi),

which shows that ρ0 satis�es (1). Moreover, as is not di�cult to see, each
permutation of the form

ρ = ρ0ϕ
i, i = 0, 1, . . . , n− 1 (3)

also satis�es this equation. There are no other solutions. So, in this case we
have n di�erent solutions.

In the general case when ϕ and ψ are decomposed into cycles of the length
k1, k2, . . . , kr, i.e.,

ϕ = (a11 a12 . . . a1k1) . . . (ar1 . . . arkr),
ψ = (b11 b12 . . . b1k1) . . . (br1 . . . brkr),

the solution ρ, according to [1], has the form

β =
(
a11 a12 . . . a1k1 . . . ar1 . . . arkr

b11 b12 . . . b1k1 . . . br1 . . . brkr

)
, (4)
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where the �rst row contains all elements of ϕ, the second � elements of ψ written
in the same order as in decompositions of ϕ and ψ into cycles. Replacing in
ϕ the cycle (a11 a12 . . . a1k1) by (a12 a13 . . . a1k1 a11) we save the permutation ϕ
but we obtain a new ρ. Similar to arbitrary cycles of ϕ and ψ. In this way we
obtain all ρ satisfying (1).

Let's observe that the cycle (a11 a12 . . . a1k1) gives k1 possibilities for the
construction ρ. From m cycles of the length k we can construct m! km various
ρ. So, in the case C(ϕ) = C(ψ) = {l1, l2, . . . , ln} we can construct

Nϕ = l1! · l2! · 2l2 · l3! · 3l3 · . . . · ln! · nln

various ρ.

3. Con�gurations of conjugate permutations

As is well-known, any permutation ϕ of the set Q of order n can be decomposed
into r 6 n cycles of the length k1, k2, . . . , kr with k1 + k2 + . . . + kr = n. We
denote this fact by

Z = Z(ϕ) = [k1, k2, . . . , kr]

and assume that k1 6 k2 6 . . . 6 kr. Z(ϕ) is called the cyclic type of ϕ. The
set of all permutations of the set Q with the same cyclic type Zi is denoted by
Fi and is called a �ock. Permutations belonging to the same �ock are conjugate
(Theorem 1). The number of �ocks Fi ⊂ Sn is equal to the number of possible
decompositions of n into a sum of natural numbers.

In each �ock we select one permutation σ and call it a stem-permutation.
For simplicity we can assume that elements of this permutation are written in
the natural order.

Example 1. Let's consider the set Q = {1, 2, 3, 4, 5}. The number 5 has seven
decompositions into a sum of natural numbers, so the set of all permutations of
Q has seven �ocks. Below we present these �ocks and their stem-permutations.

Z1 : 5 = 5 σ = (12345.)
Z2 : 5 = 1 + 4 σ = (1.2345.)
Z3 : 5 = 2 + 3 σ = (12.345.)
Z4 : 5 = 1 + 2 + 2 σ = (1.23.45.)
Z5 : 5 = 1 + 1 + 3 σ = (1.2.345.)
Z6 : 5 = 1 + 1 + 1 + 2 σ = (1.2.3.45.)
Z7 : 5 = 1 + 1 + 1 + 1 = 1 σ = (1.2.3.4.5.) = ε. �
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Let's consider an arbitrary �ock Fi ⊂ Sn and its stem-permutation σ. For
an arbitrary permutation ϕ0 ∈ Fi we de�ne the sequence of permutations
ϕ0, ϕ1, ϕ2, . . . by putting

ϕk+1 = ϕkσϕ
−1
k . (5)

Obviously all ϕk are in Fi. The set Fi is �nite, so ϕp = ϕs for some p and s.

b
ϕ0

- b
ϕ1

- b
ϕ2

- q q q - b
ϕp

ϕs���
b

@@I b
- b

� b
QQs

��+
qqq

Fig. 1. The graph connected with the sequence (5).

The sequence ϕ1, ϕ2, ϕ3, . . . can be initiated by various ϕ0 because for �xed
ϕ1 and σ the equation ϕ1 = ϕσϕ−1 has many solutions.

Let's denote by Φk the set of all possible solutions of the equation (5),
where ϕk+1 and σ are �xed. Let

Φk = {ϕ ∈ Φk : Z(ϕ) = Z(σ)}.

In the case when Φk has only one element the permutation ϕk+1 is called
simple. If Φk is the empty set, then ϕk+1 is called a telomere and is denoted
by ϕ̂k+1. In the corresponding oriented graph a telomere is a vertex which is
not preceded by another vertex.

The following theorem is obvious.

Theorem 2. Let σ be a stem-permutation of a �ock Fi. If ϕ ∈ Fi is a telomere,

then also ψ = σϕσ−1 is a telomere. �

Two permutations ϕ,ψ ∈ Fi ⊂ Sn have the same con�gurationK if ϕp = ψq

for some natural p and q, where
ϕp = ϕp−1σϕ

−1
p−1 , . . . , ϕ1 = ϕσϕ−1,

ψq = ψq−1σψ
−1
q−1 , . . . , ψ1 = ψσψ−1

and σ is a stem-permutation from Fi.

4. A simple algorithm for determining con�gurations

1. In a given �ock Fi we select a stem-permutation σ and one permutation
ϕ0 6= σ. Using these two permutations and (5) we construct the sequence
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ϕ0, ϕ1, . . . , ϕl, where ϕl 6= ϕs for all 0 6 s < l and ϕl+1 = ϕt for some
0 6 t < l. In this way we obtain the graph

b
ϕ0

- b
ϕ1

- b
ϕ2

- q q q - b -
ϕj

q q q - b
ϕl

2. For each ϕj from the above sequence, from all solutions of the equation

ρσρ−1 = ϕj

we select these solutions ρ 6= ϕj−1 which are in Fi and attach them to the
previous solutions as immediately preceding ϕj . In this way we obtain the
con�guration K = {ϕ0, ϕ1, . . . , ϕl, ρ1, ρ2, . . .} and the graph

b
ϕ0

- b
ϕ1

- b
ϕ2

- q q q - b -
ϕj

q q q - b
ϕl

b
HHj

ρ1

b
B
BN

ρ2

Next, for all new ρk attached to K we solve the equation ρσρ−1 = ρk and
attach to K these solutions ρ ′ 6= ρk which are in Fi. For this new ρ′ we solve
the equation ρσρ−1 = ρ′ and so on. Since Fi is �nite after some steps we
obtain a telomere which completes this procedure.

5. Examples

Now we give some examples. We will consider the set Q = {1, 2, 3, 4, 5, 6} and
its permutations. For simplicity we consider the �ock F1 containing all cyclic
permutations of Q and select σ = (123456.) as a stem-permutation of F1.

Example 2. If we choose ϕ0 = (125634.), then, according to (5), we obtain

ϕ1 = ϕ0σϕ
−1
0 = (163254.),

ϕ2 = ϕ1σϕ
−1
1 = (143625.),

ϕ3 = ϕ2σϕ
−1
2 = (163254.) = ϕ1 .

Thus, the �rst step of our algorithm gives the con�guration K = {ϕ0, ϕ1, ϕ2}.
Now, for each ϕi ∈ K we solve the equation ρσρ−1 = ϕi and add to K all

solutions belonging to F1.
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The equation ρσρ−1 = ϕ0 is satis�ed by the permutation ρ0 = (1.2.35.46.).
So, according to (3), other solutions of this equation have the form

ϕ01 = ρ0σ = (1.2.35.46.)(123456.) = (125436.),
ϕ02 = ρ0σ

2 = (1.2.35.46.)(135.246.) = (15.26.3.4.),
ϕ03 = ρ0σ

3 = (1.2.35.46.)(14.25.36.) = (165234.),
ϕ04 = ρ0σ

4 = (1.2.35.46.)(153.264.) = (13.24.5.6.),
ϕ05 = ρ0σ

5 = (1.2.35.46.)(165432.) = (145632.).

From these solutions only ϕ01, ϕ03, ϕ05 are in F1. We attach these solutions
to K as the immediately preceding ϕ0.

Next, we consider the equation ρσρ−1 = ϕ1. This equation has only one
solution belonging to F1. Since this solution coincides with ρ, we do not obtain
permutations which should be added to K.

The equation ρσρ−1 = ϕ2 has only one solution ρ = (145236.) 6= ϕ1

belonging to F1. We denote it by ϕ4 and add to K as the solution immediately
preceding ϕ2. At this instant we have the con�guration (uncomplete)

K = {ϕ0, ϕ1, ϕ2, ϕ01, ϕ03, ϕ05, ϕ4}

and the graph
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�

���
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-

cϕ05
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@@R c
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- c?
ϕ1

ϕ3
�c
ϕ2

� �
� 
6 cϕ4

Further we will work with the permutations ϕ01, ϕ03, ϕ05, ϕ4. Equations
ρσρ−1 = ϕ0i, i = 1, 3, 5, do not have solutions belonging to Fi. So, ϕ01, ϕ03,
ϕ05 are telomeres. We denote them by ϕ̂01, ϕ̂03, ϕ̂05.

The equation ρσρ−1 = ϕ4 has three solutions belonging to F1. Namely,

ϕ41 = ρ′σ = (1.6.24.35.)(123456.) = (143256.),
ϕ43 = ρ′σ3 = (1.6.24.35.)(14.25.36.) = (123654.),
ϕ45 = ρ′σ5 = (1.6.24.35.)(165432.) = (163452.).

Since equations ρσρ−1 = ϕ4j , j = 1, 3, 5, do not have solutions belonging
to F1, ϕ41, ϕ43, ϕ45 are telomeres.
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Summarizing the above we obtain the con�guration

K = {ϕ0, ϕ1, ϕ2, ϕ̂01, ϕ̂03, ϕ̂05, ϕ4, ϕ̂41, ϕ̂43, ϕ̂45}

and the graph
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Example 3. Using the same �ock F1 and the same σ but selecting another ϕ0

we can obtain another con�guration. For example by selecting ϕ0 = (162435.)
we obtain the con�guration K2 presented by the following graph:

(162435.)

?
(126453.)

�
�

��3 Q
QQs

(156423.) (153426.)

�
��3

Q
QQk

(135462.) (132465.)

Remark. The �ock F1 has six con�gurations:
• K1 and K2 are described in the above examples,
• K3 induced by ϕ0 = (125643.) contains 18 permutations,
• K4 induced by ϕ0 = (135624.) contains 42 permutations,
• K5 induced by ϕ0 = (136245.) contains 42 permutations,
• K6 has only two permutations: σ and σ−1.

Flocks K4 and K5 are isomorphic as graphs.

The set S6 is divided into 11 �ocks.

The author does'nt know a general method that would allow to determine
the number of con�gurations in each �ock. Neither does he know how to
quickly �nd a telomere using stem-permutations. It is also unknown how to
check if two telomeres belong to the same con�guration.
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6. Conclusions

The results shown were inspired by some research in genetics. Some termino-
logy (stem-permutation, telomere) was also drawn from genetics. The author
thinks that the described method of con�guration can be e�ectively used in
chemistry in researching growth of crystals.
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