Configurations of conjugate permutations

Ivan I. Deriyenko

DEVOTED TO THE MEMORY OF VALENTIN D. BELOUSOV (1925-1988)

Abstract. We describe some configurations of conjugate permutations which may be used as a mathematical model of some genetical processes and crystal growth.

1. Introduction

Let $Q = \{1, 2, 3, ..., n\}$ be a finite set. The set of all permutations of Q will be denoted by \mathbb{S}_n . The multiplication (composition) of permutations φ and ψ of Q is defined as $\varphi \psi(x) = \varphi(\psi(x))$. Permutations will be written in the form of cycles and cycles will be separated by points, e.g.

$$\varphi = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{array}\right) = (123.45.6.)$$

By a *type* of a permutation $\varphi \in \mathbb{S}_n$ we mean the sequence

$$C(\varphi) = \{l_1, l_2, \dots, l_n\},\$$

where l_i denotes the number of cycles of the length *i*. Obviously,

$$\sum_{i=1}^{n} i \cdot l_i = n \, .$$

For example, for $\varphi = (132.45.6.)$ we have $C(\varphi) = \{1, 1, 1, 0, 0, 0\}$; for $\psi = (123456.)$ we obtain $C(\psi) = \{0, 0, 0, 0, 0, 1\}$.

As is well-known, two permutations $\varphi, \psi \in \mathbb{S}_n$ are *conjugate* if there exists a permutation $\rho \in \mathbb{S}_n$ such that

$$\rho\varphi\rho^{-1} = \psi. \tag{1}$$

²⁰⁰⁰ Mathematics Subject Classification: 05B15; 20N05

Keywords: permutation, conjugate permutation, stem-permutation, symmetric group, flock, telomere, configuration.

Theorem 1. (Theorem 5.1.3 in [1]) Two permutations are conjugated if and only if they have the same type. \Box

In this short note we find all solutions of (1), i.e., for a given φ and ψ we find all permutations ρ satisfying this equation, and describe some graphs connected with these solutions.

2. Solutions of the equation (1)

Let's consider the equation (1). If $\varphi = \psi = \varepsilon$, then as ρ we can take any permutation from \mathbb{S}_n . So, in this case (1) has n! solutions.

If permutations φ and ψ are cyclic, then without loss of generality, we can assume that

$$\varphi = (1 \varphi(1) \varphi^2(1) \varphi^3(1) \dots \varphi^{n-1}(1)),$$

$$\psi = (1 \psi(1) \psi^2(1) \psi^3(1) \dots \psi^{n-1}(1)),$$

where $\varphi^0(1) = \varphi^n(1) = 1$ and $\psi^0(1) = \psi^n(1) = 1$. In this case for ρ_0 defined by

$$\rho_0(\varphi^i(1)) = \psi^i(1) = x_i, \quad i = 0, 1, \dots, n-1,$$
(2)

we have

$$\rho_0 \varphi \rho_0^{-1}(x_i) = \rho_0 \varphi \rho_0^{-1}(\psi^i(1)) = \rho_0 \varphi^{i+1}(1) = \psi^{i+1}(1) = \psi(\psi^i(1)) = \psi(x_i),$$

which shows that ρ_0 satisfies (1). Moreover, as is not difficult to see, each permutation of the form

$$\rho = \rho_0 \varphi^i, \quad i = 0, 1, \dots, n-1$$
(3)

also satisfies this equation. There are no other solutions. So, in this case we have n different solutions.

In the general case when φ and ψ are decomposed into cycles of the length k_1, k_2, \ldots, k_r , i.e.,

$$\varphi = (a_{11} a_{12} \dots a_{1k_1}) \dots (a_{r1} \dots a_{rk_r}), \psi = (b_{11} b_{12} \dots b_{1k_1}) \dots (b_{r1} \dots b_{rk_r}),$$

the solution ρ , according to [1], has the form

$$\beta = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k_1} & \dots & a_{r1} & \dots & a_{rk_r} \\ b_{11} & b_{12} & \dots & b_{1k_1} & \dots & b_{r1} & \dots & b_{rk_r} \end{pmatrix},$$
(4)

where the first row contains all elements of φ , the second – elements of ψ written in the same order as in decompositions of φ and ψ into cycles. Replacing in φ the cycle $(a_{11} a_{12} \dots a_{1k_1})$ by $(a_{12} a_{13} \dots a_{1k_1} a_{11})$ we save the permutation φ but we obtain a new ρ . Similar to arbitrary cycles of φ and ψ . In this way we obtain all ρ satisfying (1).

Let's observe that the cycle $(a_{11} a_{12} \dots a_{1k_1})$ gives k_1 possibilities for the construction ρ . From m cycles of the length k we can construct $m! k^m$ various ρ . So, in the case $C(\varphi) = C(\psi) = \{l_1, l_2, \dots, l_n\}$ we can construct

$$N_{\varphi} = l_1! \cdot l_2! \cdot 2^{l_2} \cdot l_3! \cdot 3^{l_3} \cdot \ldots \cdot l_n! \cdot n^{l_n}$$

various ρ .

3. Configurations of conjugate permutations

As is well-known, any permutation φ of the set Q of order n can be decomposed into $r \leq n$ cycles of the length k_1, k_2, \ldots, k_r with $k_1 + k_2 + \ldots + k_r = n$. We denote this fact by

$$Z = Z(\varphi) = [k_1, k_2, \dots, k_r]$$

and assume that $k_1 \leq k_2 \leq \ldots \leq k_r$. $Z(\varphi)$ is called the *cyclic type* of φ . The set of all permutations of the set Q with the same cyclic type Z_i is denoted by F_i and is called a *flock*. Permutations belonging to the same flock are conjugate (Theorem 1). The number of flocks $F_i \subset S_n$ is equal to the number of possible decompositions of n into a sum of natural numbers.

In each flock we select one permutation σ and call it a *stem-permutation*. For simplicity we can assume that elements of this permutation are written in the natural order.

Example 1. Let's consider the set $Q = \{1, 2, 3, 4, 5\}$. The number 5 has seven decompositions into a sum of natural numbers, so the set of all permutations of Q has seven flocks. Below we present these flocks and their stem-permutations.

$Z_1: 5 = 5$	$\sigma = (12345.)$	
$Z_2: 5 = 1 + 4$	$\sigma = (1.2345.)$	
$Z_3: 5 = 2 + 3$	$\sigma = (12.345.)$	
$Z_4: 5 = 1 + 2 + 2$	$\sigma = (1.23.45.)$	
$Z_5: 5 = 1 + 1 + 3$	$\sigma = (1.2.345.)$	
$Z_6: 5 = 1 + 1 + 1 + 2$	$\sigma = (1.2.3.45.)$	
$Z_7: 5 = 1 + 1 + 1 + 1 = 1$	$\sigma = (1.2.3.4.5.) = \varepsilon.$	

Let's consider an arbitrary flock $F_i \subset \mathbb{S}_n$ and its stem-permutation σ . For an arbitrary permutation $\varphi_0 \in F_i$ we define the sequence of permutations $\varphi_0, \varphi_1, \varphi_2, \ldots$ by putting

$$\varphi_{k+1} = \varphi_k \sigma \varphi_k^{-1}. \tag{5}$$

Obviously all φ_k are in F_i . The set F_i is finite, so $\varphi_p = \varphi_s$ for some p and s.

Fig. 1. The graph connected with the sequence (5).

The sequence $\varphi_1, \varphi_2, \varphi_3, \ldots$ can be initiated by various φ_0 because for fixed φ_1 and σ the equation $\varphi_1 = \varphi \sigma \varphi^{-1}$ has many solutions.

Let's denote by Φ_k the set of all possible solutions of the equation (5), where φ_{k+1} and σ are fixed. Let

$$\overline{\Phi}_k = \{ \varphi \in \Phi_k \, : \, Z(\varphi) = Z(\sigma) \}.$$

In the case when $\overline{\Phi}_k$ has only one element the permutation φ_{k+1} is called *simple*. If $\overline{\Phi}_k$ is the empty set, then φ_{k+1} is called a *telomere* and is denoted by $\hat{\varphi}_{k+1}$. In the corresponding oriented graph a telomere is a vertex which is not preceded by another vertex.

The following theorem is obvious.

Theorem 2. Let σ be a stem-permutation of a flock F_i . If $\varphi \in F_i$ is a telomere, then also $\psi = \sigma \varphi \sigma^{-1}$ is a telomere.

Two permutations $\varphi, \psi \in F_i \subset \mathbb{S}_n$ have the same *configuration* K if $\varphi_p = \psi_q$ for some natural p and q, where

$$\varphi_p = \varphi_{p-1} \sigma \varphi_{p-1}^{-1}, \dots, \varphi_1 = \varphi \sigma \varphi^{-1},$$

$$\psi_q = \psi_{q-1} \sigma \psi_{q-1}^{-1}, \dots, \ \psi_1 = \psi \sigma \psi^{-1}$$

and σ is a stem-permutation from F_i .

4. A simple algorithm for determining configurations

1. In a given flock F_i we select a stem-permutation σ and one permutation $\varphi_0 \neq \sigma$. Using these two permutations and (5) we construct the sequence

 $\varphi_0, \varphi_1, \ldots, \varphi_l$, where $\varphi_l \neq \varphi_s$ for all $0 \leq s < l$ and $\varphi_{l+1} = \varphi_t$ for some $0 \leq t < l$. In this way we obtain the graph

2. For each φ_j from the above sequence, from all solutions of the equation

$$\rho \sigma \rho^{-1} = \varphi_j$$

we select these solutions $\rho \neq \varphi_{j-1}$ which are in F_i and attach them to the previous solutions as immediately preceding φ_j . In this way we obtain the configuration $K = \{\varphi_0, \varphi_1, \ldots, \varphi_l, \rho_1, \rho_2, \ldots\}$ and the graph

Next, for all new ρ_k attached to K we solve the equation $\rho \sigma \rho^{-1} = \rho_k$ and attach to K these solutions $\rho' \neq \rho_k$ which are in F_i . For this new ρ' we solve the equation $\rho \sigma \rho^{-1} = \rho'$ and so on. Since F_i is finite after some steps we obtain a telomere which completes this procedure.

5. Examples

Now we give some examples. We will consider the set $Q = \{1, 2, 3, 4, 5, 6\}$ and its permutations. For simplicity we consider the flock F_1 containing all cyclic permutations of Q and select $\sigma = (123456.)$ as a stem-permutation of F_1 .

Example 2. If we choose $\varphi_0 = (125634.)$, then, according to (5), we obtain

$$\varphi_1 = \varphi_0 \sigma \varphi_0^{-1} = (163254.),$$

$$\varphi_2 = \varphi_1 \sigma \varphi_1^{-1} = (143625.),$$

$$\varphi_3 = \varphi_2 \sigma \varphi_2^{-1} = (163254.) = \varphi_1$$

Thus, the first step of our algorithm gives the configuration $K = \{\varphi_0, \varphi_1, \varphi_2\}$.

Now, for each $\varphi_i \in K$ we solve the equation $\rho \sigma \rho^{-1} = \varphi_i$ and add to K all solutions belonging to F_1 .

The equation $\rho \sigma \rho^{-1} = \varphi_0$ is satisfied by the permutation $\rho_0 = (1.2.35.46.)$. So, according to (3), other solutions of this equation have the form

$$\begin{split} \varphi_{01} &= \rho_0 \sigma = (1.2.35.46.)(123456.) = (125436.), \\ \varphi_{02} &= \rho_0 \sigma^2 = (1.2.35.46.)(135.246.) = (15.26.3.4.), \\ \varphi_{03} &= \rho_0 \sigma^3 = (1.2.35.46.)(14.25.36.) = (165234.), \\ \varphi_{04} &= \rho_0 \sigma^4 = (1.2.35.46.)(153.264.) = (13.24.5.6.), \\ \varphi_{05} &= \rho_0 \sigma^5 = (1.2.35.46.)(165432.) = (145632.). \end{split}$$

From these solutions only $\varphi_{01}, \varphi_{03}, \varphi_{05}$ are in F_1 . We attach these solutions to K as the immediately preceding φ_0 .

Next, we consider the equation $\rho\sigma\rho^{-1} = \varphi_1$. This equation has only one solution belonging to F_1 . Since this solution coincides with ρ , we do not obtain permutations which should be added to K.

The equation $\rho \sigma \rho^{-1} = \varphi_2$ has only one solution $\rho = (145236.) \neq \varphi_1$ belonging to F_1 . We denote it by φ_4 and add to K as the solution immediately preceding φ_2 . At this instant we have the configuration (uncomplete)

$$K = \{\varphi_0, \varphi_1, \varphi_2, \varphi_{01}, \varphi_{03}, \varphi_{05}, \varphi_4\}$$

and the graph

Further we will work with the permutations φ_{01} , φ_{03} , φ_{05} , φ_4 . Equations $\rho\sigma\rho^{-1} = \varphi_{0i}$, i = 1, 3, 5, do not have solutions belonging to F_i . So, φ_{01} , φ_{03} , φ_{05} are telomeres. We denote them by $\hat{\varphi}_{01}$, $\hat{\varphi}_{03}$, $\hat{\varphi}_{05}$.

The equation $\rho \sigma \rho^{-1} = \varphi_4$ has three solutions belonging to F_1 . Namely,

$$\begin{aligned} \varphi_{41} &= \rho' \sigma = (1.6.24.35.)(123456.) = (143256.), \\ \varphi_{43} &= \rho' \sigma^3 = (1.6.24.35.)(14.25.36.) = (123654.), \\ \varphi_{45} &= \rho' \sigma^5 = (1.6.24.35.)(165432.) = (163452.). \end{aligned}$$

Since equations $\rho\sigma\rho^{-1} = \varphi_{4j}$, j = 1, 3, 5, do not have solutions belonging to F_1 , φ_{41} , φ_{43} , φ_{45} are telomeres.

Summarizing the above we obtain the configuration

$$K = \{\varphi_0, \varphi_1, \varphi_2, \hat{\varphi}_{01}, \hat{\varphi}_{03}, \hat{\varphi}_{05}, \varphi_4, \hat{\varphi}_{41}, \hat{\varphi}_{43}, \hat{\varphi}_{45}\}$$

and the graph

Example 3. Using the same flock F_1 and the same σ but selecting another φ_0 we can obtain another configuration. For example by selecting $\varphi_0 = (162435.)$ we obtain the configuration K_2 presented by the following graph:

Remark. The flock F_1 has six configurations:

- K_1 and K_2 are described in the above examples,
- K_3 induced by $\varphi_0 = (125643.)$ contains 18 permutations,
- K_4 induced by $\varphi_0 = (135624.)$ contains 42 permutations,
- K_5 induced by $\varphi_0 = (136245.)$ contains 42 permutations,
- K_6 has only two permutations: σ and σ^{-1} .

Flocks K_4 and K_5 are isomorphic as graphs.

The set \mathbb{S}_6 is divided into 11 flocks.

The author does'nt know a general method that would allow to determine the number of configurations in each flock. Neither does he know how to quickly find a telomere using stem-permutations. It is also unknown how to check if two telomeres belong to the same configuration.

6. Conclusions

The results shown were inspired by some research in genetics. Some terminology (stem-permutation, telomere) was also drawn from genetics. The author thinks that the described method of configuration can be effectively used in chemistry in researching growth of crystals.

References

[1] M. Hall, The theory of groups, Macmillan, 1959.

Received May 8, 2010

Department of Higher Mathematics and Informatics, Kremenchuk State Polytechnic University, 20 Pervomayskaya str, 39600 Kremenchuk, Ukraine E-mail: ivan.deriyenko@gmail.com