Free topological acts over a topological monoid

Behnam Khosravi

Abstract. First we present the free topological S-acts on sets, on topological spaces, and as well as on S-acts. Then, we give more concrete description of these free objects in some cases.

1. Introduction

The action of topological semigroups and their representations have a very wide usage in different branches of Mathematics like geometry, analysis, Lie groups or dynamical systems, and they are studied by many authors, see for example [4, 7, 20, 23, 24]. Furthermore, some notions are in fact topological S-acts with some extra properties, e.g., in analysis, S-flow is a compact topological S-act (see [5, 19]), or the representation of a discrete group G is in fact a topological G-act (see [2, 13, 17]). Also in geometry, flow is a smooth topological S-act, where S is $(\mathbb{R}, +)$ with its usual topology (see [7]). These kinds of topological Sacts are studied more and there are some works about their universal structures (for example see [15]). We note that, a space which a topological semigroup acts on it, sometimes has different names in different branches of Mathematics, e.g. in some text, it is called G-space where G is a topological group (e.g. see [12]), while in some others, it is called topological S-act (see for example [22]). In this note we use the latter terminology since we use theorems and terminology of [18]. Because of the importance of the universal structures and specially free structures, in this paper we study the notion of freeness which is a fruitful subject in the study of different categories (see for example [3, 8, 9, 16]). We present the free topological S-acts on sets, on topological spaces, and as well as on S-acts.

Let (S, \cdot, τ_S) be a topological monoid. In this note, we want to study different free topological S-acts. Note that since there are three forgetful functors from the category of topological S-acts to the category of topological spaces,

²⁰⁰⁰ Mathematics Subject Classification: 20M30, 54H10, 22A30, 08B20 Konwords: S act. free ten closical S act. topological semigroup

Keywords: S-act, free topological S-act, topological semigroup

the category of S-acts and the category of sets, we can define free topological S-acts on a topological space, on an S-act and on a set. In Section 2, we briefly study topological S-acts, semitopological S-acts and compare them. In Section 3, first, we introduce the free topological S-acts on a topological space, then we describe the topology of free topological S-acts more concretely and study some of its properties, like its behavior with separation axioms. Also we give a coarser and finer topology than the topology of the free topological S-act on a topological space (X, τ_X) according to the topology of topological space (X, τ_X) and the topology of the topological monoid (S, \cdot, τ_S) . Finally in Section 3, we introduce the free topological S-acts on a set. In Section 4, we study the free topological S-act on an S-act and present it. Then by using the notion of free topological S-acts on S-acts, we present some method for studying universal objects in the category of topological S-acts, using the known universal structures in the category of S-acts. To illustrate this method, we apply it to characterize projective topological S-acts by using the characterization of projective S-acts.

Now we briefly recall some definitions about S-acts needed in the sequel. For more information see [11, 18].

Recall that, for a semigroup S, a set A is a left S-act (or S-set) if there is, so called, an action $\mu : S \times A \to A$ such that, denoting $\mu(s, a) := sa, (st)a = s(ta)$ and, if S is a monoid with 1, 1a = a. Right S-acts are defined similarly. An S-act A is called *cyclic*, if there exists an $a \in A$ such that A = Sa.

Each semigroup S can be considered as an S-act with the action given by its multiplication.

The definitions of a subact A of B, written as $A \leq B$, and a homomorphism between S-acts are clear. In fact S-homomorphisms, or S-maps, are actionpreserving maps: $f: A \to B$ with f(sa) = sf(a), for $s \in S$, $a \in A$. We denote the category of S-acts with S-maps, by **S-Act**.

A topological space (X, τ_X) has Alexandroff topology, if the intersection of an arbitrary family of open sets in (X, τ_X) is open. An space with an Alexandroff topology is called an Alexandroff space.

The algebraic structure of the free topological S-act on a topological space can be characterized concretely, however, like free topological groups, the topology of free topological S-acts can not be described as concretely as its algebraic structure.

2. Topological S-acts

In this section, we briefly state the notions we need about topological S-acts. First recall the following

Definition 2.1. Let S be a semigroup and a topological space with topology τ_S . S with this topology is called a *topological semigroup* if multiplication $(s,t) \mapsto st : S \times S \to S$ is (jointly) continuous ([5, 10, 14]). We use Kelley's notation in [14], and denote a topological semigroup by (S, \cdot, τ_S)

Despite the above convention, for simplicity, we denote a topological (S, \cdot, τ_S) -act by topological S-act.

Definition 2.2. For a topological semigroup (S, \cdot, τ_S) , a (left) topological *S*act or a topological *S*-act is a left *S*-act *A* with a topology τ_A such that the action $S \times A \to A$ is (jointly) continuous. Similar to topological semigroup, we denote a topological *S*-act by (A, τ_A) . We denote the category of all topological *S*-acts with continuous *S*-maps by **S**-**Top**.

Definition 2.3. We say that a topological semigroup (S, \cdot, τ_S) has a *left ideal topology*, if each of its open sets, including the empty one, is a left ideal (sub S-act) of S. Also, a topological S-act (A, τ_A) is said to have a *subact topology* if all of its open sets, including the empty one, are subacts of A.

We use the above definition of a left ideal topology which is more general than the definition in [22].

Definition 2.4. By weak topology on a set Z, with respect to a family of functions on Z, we mean the coarsest topology on Z which makes those functions continuous. In other words, given a set Z and an indexed family $(Y_i)_{i \in I}$ of topological spaces with functions $f_i : Z \to Y_i$, the weak topology on Z is generated by the sets of the form $f_i^{-1}(U)$, where U is an open set in Y_i .

NOTATION. For any two arbitrary topological spaces (X_1, τ_{X_1}) and (X_2, τ_{X_2}) , by $\tau_{X_1 \times X_2}$ we mean the product topology on $X_1 \times X_2$. For any set Z, we denote Z with discrete topology by (Z, τ_{dis}) . For any S-act A, by |A| we mean the underlying set of A.

Remark 2.5. Recall that for a semigroup S and an S-act A, the functions λ_s and ρ_a are defined for any $s \in S$ and $a \in A$ as follows

$$\lambda_s: A \to A, y \mapsto sy \text{ and } \rho_a: S \to A, t \mapsto ta$$

In the special case A = S, we use the notation $\lambda_s^{(S)} : S \to S$, to prevent misunderstanding.

Now if S has a topology τ_S for which its multiplication $S \times S \to S$ is (separately) continuous, that is, $\lambda_s^{(S)}$ and ρ_s are continuous for all $s \in S$, then S with topology τ_S is called a *semitopological semigroup*.

Similarly, one can define a *semitopological* S-act by taking $\lambda_s : A \to A$ and $\rho_a : S \to A$ to be continuous for each $s \in S$ and $a \in A$.

Clearly any topological S-act is a semitopological S-act, because every jointly continuous function is separately continuous. But, as the following example shows, for a topological semigroup (S, \cdot, τ_S) , a semitopological S-act need not be a topological S-act. Note that clearly if S with a topology τ_S is a semitopological semigroup which is not a topological semigroup, then S with τ_S is a semitopological S-act which is not a topological S-act. However the following example shows that for a topological semigroup S, the joint continuity of the action of S-acts is independent from the joint continuity of the multiplication of S.

Example 2.6. Suppose that S = [0, 1] and τ_S is the usual topology on [0, 1] which is inherited from \mathbb{R} by subspace topology. Define for each s and t in $S, s \cdot t = 0$. It is obvious that (S, \cdot, τ_S) is a topological semigroup. Again, consider [0, 1] with topology which is inherited from \mathbb{R} . For any $s, t \in S$, define the action of S on [0, 1] by

$$\mu(s,t) = \sum_{n=1}^{\infty} (\frac{1}{2})^n f_n(s,t),$$

where

$$f_{n}(s,t) = \begin{cases} 0 & \text{if } s \leqslant s_{n} \text{ or } t \leqslant t_{n} \\ \frac{|(s-s_{n})(t-t_{n})|}{(s-s_{n})^{2}+(t-t_{n})^{2}} & \text{otherwise} \end{cases}$$

and $\{(s_n, t_n) | n = 1, 2, ...\}$ is any (non-void) subset of the product $[\frac{1}{2}, 1] \times [\frac{1}{2}, 1]$. If we take $T = [0, \frac{1}{2}]$, then by an straightforward checking, we can see that μ has the following properties:

- 1. $\mu((T \times [0,1]) \cup (S \times T)) = \{0\},\$
- 2. $\mu(S, [0, 1]) \subseteq T = [0, \frac{1}{2}].$

(For more details about the properties of the function μ , see [23, Example 5.14.]) So we have for all s, s' and t in S

$$\mu(st, s') = \mu(0, s') \in \mu(T \times [0, 1]) = \{0\},\$$

$$\mu(s, \mu(t, s')) \in \mu(S \times T) = \{0\}.$$

Therefore, [0,1] is an S-act with the action μ . Again, by direct checking, one can see that μ , the action of (S, \cdot, τ_S) on [0,1], is not continuous but all the functions $\lambda_s(-) = \mu(s, -)$ and $\rho_a(-) = \mu(-, a)$, for each s and a in S, are continuous. Hence [0,1] is not a topological S-act but it is a semitopological S-act.

Now we recall the definition of different free topological S-acts in the following definition. Since these definitions are very similar, we state them together.

Definition 2.7. A topological S-act (F, τ_F) with one-one S-map $\nu : B \to F$, (the embedding $\nu : (X, \tau_X) \to (F, \tau_F)$), (one-one function $\nu : Z \to F$) is the free topological S-act over the S-act B (over the topological space X) (over the set Z), if for every topological S-act (A, τ_A) and an S-map $f : B \to A$, (a continuous function $f : (X, \tau_X) \to (A, \tau_A)$), (a function $f : Z \to A$), there exists a unique continuous S-map $\tilde{f} : (F, \tau_F) \to (A, \tau_A)$ such that $\tilde{f} \circ \nu = f$ (for the general definition of the free objects in an arbitrary category, see [1, 6]).

The free topological space over a set Z is the set Z together with the discrete topology. The free S-act, for a monoid S, on a set Z is defined as follow. Consider the set $S \times Z$ with the action defined by t(s, z) = (ts, z) for any $t, s \in S$ and $z \in Z$, and define $\nu : Z \to S \times Z$ as follows $\nu(z) = (1, z)$. It is a known fact that $S \times Z$ with this action is an S-act. From now on, for any set Z, by F(Z) we mean this S-act which is defined on $S \times Z$. Furthermore, it is a known fact that F(Z) is the free S-act over the set Z (it means that for any S-act A and a function $f: Z \to A$, there exists a unique S-map $\tilde{f}: F(Z) \to A$ such that $\tilde{f} \circ \nu = f$ (for more details see, [11, 18])).

3. Free topological S-act on a topological space

In this section, we present the free topological S-act over a topological space and then describe it more concretely in some special instances, e.g, when τ_S is Alexandroff. First note the following remark.

Remark 3.1. Let $\{(A, \tau_i)\}_{i \in I}$ be a family of topological S-acts. Let τ_A be the topology generated by the subbasis $\bigcup_{i \in I} \tau_i$ on A. Then we show that (A, τ_A) is a topological S-act. Let $s \in S$, $a \in A$, and $U \in \tau_A$ such that $sa \in U$ and $U \in \tau_A$. As we have in section 2.18 of [21], we can and will suppose that U is an element of the subbasis $\bigcup_{i \in I} \tau_i$. So there is some $i \in I$ such that $U \in \tau_i$.

Since (A, τ_i) is a topological S-act, there exist open sets $W \in \tau_i$ and $V \in \tau_S$ which contain a and s, respectively such that $V \cdot W \subseteq U$. Since $\tau_i \subseteq \tau_A$, (A, τ_A) is a topological S-act.

Proposition 3.2. For any topological monoid (S, \cdot, τ_S) , the free topological S-act on a topological space (X, τ_X) is F(X) with the topology τ_X^* which is generated by the union of all topologies τ_i on $|F(X)| = S \times X$ which makes F(X) to a topological S-act and furthermore $\nu : (X, \tau_X) \longrightarrow (S \times X, \tau_i)$ is a topological embedding.

Proof. Let (X, τ_X) be a topological space. We first show that if τ_X^* is the topology generated by the union of all topologies τ_i on $|F(X)| = S \times X$ where $(F(X), \tau_i)$ satisfies the following conditions

- (a) the map $\nu : X \to (F(X), \tau_i)$ defined by $\nu(x) = (1, x)$ is a topological embedding.
- (b) $(F(X), \tau_i)$ is a topological S-act.

Then $(F(X), \tau_X^*)$ satisfies conditions (a) and (b). Define

 $\Gamma_{(X,\tau_X)} := \{\tau | \tau \text{ is a topology on } |F(X)| = S \times X \text{ satisfying (a) and (b)} \}.$

We show that τ_X^* belongs to $\Gamma_{(X,\tau_X)}$ and $(F(X),\tau_X^*)$ is the desired free topological S-act. (One can easily check that $\tau_{S\times X} \in \Gamma_{(X,\tau_X)}$ and so $\Gamma_{(X,\tau_X)} \neq \emptyset$.) Since τ_X^* is finer than each $\tau_i \in \Gamma_{(X,\tau_X)}$, so ν^{-1} is continuous and since τ_X^* is

Since τ_X^* is finer than each $\tau_i \in \Gamma_{(X,\tau_X)}$, so ν^{-1} is continuous and since τ_X^* is generated by all $\tau_i \in \Gamma_{(X,\tau_X)}$, so ν is continuous, therefore τ_X^* satisfies condition (a). By Remark 3.1, τ_X^* satisfies condition (b), too. Thus, $\tau_X^* \in \Gamma_{(X,\tau_X)}$. Therefore $(F(X), \tau_X^*)$ is a topological S-act.

Finally, to prove that $(F(X), \tau_X^*)$ is actually the free topological S-act on X, let $g: (X, \tau_X) \to (A, \tau_A)$ be a continuous function into a topological S-act (A, τ_A) . We claim that the function $\tilde{g}: F(X) \to A$, defined by $\tilde{g}((s, x)) := sg(x)$, is the unique continuous S-map with $\tilde{g}\nu = g$. Clearly, \tilde{g} is an S-map. Since $\tau_{S\times X} \subseteq \tau_X^*$, $(id_S, g): (S \times X, \tau_X^*) \to (S \times A, \tau_{S\times A})$ is continuous and since the action $S \times A \to A$ is also continuous, \tilde{g} is continuous.

For the uniqueness of \tilde{g} , let $\tilde{g} \circ \nu = h \circ \nu$. Therefore $h((1, x)) = \tilde{g}((1, x))$, and so $\tilde{g} = h$. Hence, the S-act F(X) with τ_X^* is the free topological S-act on the topological space (X, τ_X) .

Before we begin to describe the topology τ_X^* more concretely, we need some definitions and results which are presented in the following

Remark 3.3. Suppose that we are given a topological space (X, τ_X) and a topological monoid (S, \cdot, τ_S) . We define $\tau(S, X)$ as follows: $O \in \tau(S, X)$ if there exist open sets $Y \in \tau_X$ and $T \in \tau_S$ such that $\pi_1(O) = T$ and $\pi_2(O) = Y$ and for any $(s, x) \in O$, there exist an open set $V(O, x) \in \tau_S$ and an open set $W(O, s) \in \tau_X$ which contain s and x, respectively such that

$$\pi_1(O \cap (S \times \{x\})) = V(O, x) \text{ and } \pi_2(O \cap (\{s\} \times X)) = W(O, s).$$

One can obviously see that

$$V(O,x) = \{s \in S | (s,x) \in O\} \text{ and } W(O,s) = \{x \in X | (s,x) \in O\}.$$
 (I)

(where π_1 and π_2 are the usual projections of O onto its first and second factors, respectively). Note that for each $O \in \tau(S, X)$ and the corresponding open sets $\{V(O, x)\}_{x \in Y} \subseteq \tau_S$ and $\{W(O, s)\}_{s \in T} \subseteq \tau_X$ which are obtained by the definition of $\tau(S, X)$, we have

$$O = \bigcup_{x \in Y} (V(O, x) \times \{x\}) \text{ and } O = \bigcup_{s \in T} (\{s\} \times W(O, s)).$$
(II)

Therefore if we define for an open set $Y \in \tau_X$ and an open set $T \in \tau_S$,

$$\tau_1(T,Y) := \{ O \subseteq T \times Y | \forall (s,x) \in O, \exists V(O,x) \in \tau_S : s \in V(O,x) \text{ and} \\ \pi_1(O \cap (S \times \{x\})) = V(O,x) \} \\ \tau_2(T,Y) := \{ O \subseteq T \times Y | \forall (s,x) \in O, \exists W(O,s) \in \tau_X : x \in W(O,s) \text{ and} \\ \pi_2(O \cap (\{s\} \times X)) = W(O,s) \} \end{cases}$$

and

$$\tau_1(S,X) := \bigcup_{T \in \tau_S, \ Y \in \tau_X} \tau_1(T,Y) \quad \text{and} \quad \tau_2(S,X) := \bigcup_{T \in \tau_S, \ Y \in \tau_X} \tau_2(T,Y),$$

then by the definition of $\tau(S, X)$, one can easily see that

$$\tau(S,X) = \tau_1(S,X) \cap \tau_2(S,X)$$

By an easy check, one can see that $\tau_1(S, X)$ and $\tau_2(S, X)$ are two topologies on $|F(X)| = S \times X$ (Note that each element of $\tau_1(S, X)$ satisfies the right side of Relation (II) and each element of $\tau_2(S, X)$ satisfies the left side of Relation (II)), so $\tau(S, X)$ is a topology on F(X), too. (Since the intersection of any two topologies on a space is a topology on it.)

Lemma 3.4. Let (S, \cdot, τ_S) be a topological semigroup and (X, τ_X) be a topological space. Then $(F(X), \tau(S, X))$ is a semitopological S-act.

Proof. We prove that for any $s \in S$ and $(t, x) \in F(X)$, the functions $\lambda_s : F(X) \to F(X)$ and $\rho_{(t,x)} : S \to F(X)$ are continuous. First, we show that the function λ_s is continuous. Suppose that we are given $U \in \tau(S, X)$. We show that $\lambda_s^{-1}(U)$ is an open set in F(X). By the definition of $\tau(S, X)$ there exist open sets $T \in \tau_S$ and $Y \in \tau_X$ such that $U \subseteq T \times Y$ and for any $t' \in T$ and $x' \in Y$ such that $(t', x') \in U$, there exist open sets V(U, x') and W(U, t') which contain t' and x', respectively, such that

$$\pi_1(U \cap (S \times \{x'\})) = V(U, x') \text{ and } \pi_2(U \cap (\{t'\} \times X)) = W(U, t').$$

Note that since (S, \cdot, τ_S) is a topological monoid, the function $\lambda_s^{(S)} : S \to S$ is continuous. Now by the definition of the action of F(X), we have

$$\lambda_s^{-1}(U) = \bigcup_{y \in Y} [(\lambda_s^{(S)})^{-1}(V(U, y)) \times \{y\}].$$

To prove $\lambda_s^{-1}(U)$ is in $\tau(S, X)$, we show that it is equal to an open set which belongs to $\tau(S, X)$. Define $V_1 := (\lambda_s^{(S)})^{-1}(T)$ and $U' := \bigcup_{t' \in V_1}(\{t'\} \times W(U, st'))$ where W(U, st') is the open set which is found for the element $(st', y) \in U$ for some $y \in X$, by the assumption $U \in \tau(S, X)$. (Note that since we have $\pi_2(U \cap (\{st'\} \times X)) = W(U, st'), W(U, st')$ does not depend on the choice of $y \in X$.) We show that $\lambda_s^{-1}(U)$ equals U', and U' belongs to $\tau_1(S, X)$, since it is easy to see that $U' \in \tau_2(V_1, Y) \subseteq \tau_2(S, X)$. (Note that $U \in \tau_2(S, X)$ and recall Relation (I).) By the definition of the action of F(X), we have obviously $\lambda_s(U') \subseteq U$. Suppose that $(t_1, y) \in \lambda_s^{-1}(U)$ for some $t_1 \in S$ and $y \in X$, so we have $(st_1, y) \in U$. Therefore we have $\{st_1\} \times W(U, st_1) \subseteq U$ which by the definition of the action F(X), implies that $(t_1, y) \in \{t_1\} \times W(U, st_1)$. But $\{t_1\} \times W(U, st_1)$ is a subset of U', hence $(t_1, y) \in U'$. Therefore $U' = \lambda_s^{-1}(U)$ which implies that $\lambda_s^{-1}(U) \in \tau(S, X)$.

Now, we show the continuity of $\rho_{(t,x)}$. Consider U like the above and suppose that we are given $s' \in S$ such that $s' \in \rho_{(t,x)}^{-1}(U)$. Again note that since (S, \cdot, τ_S) is a topological monoid, the function $\rho_t : S \to S$ is continuous. Since $U \in \tau(S, X)$, there exists open set V(U, x) in τ_S which contains s't and $V(U, x) \times \{x\} \subseteq U$. Therefore $s' \in \rho_t^{-1}(V(U, x)) \in \tau_S$. We have $\rho_{(t,x)}(s') \in \rho_{(t,x)}(\rho_t^{-1}(V(U, x))) \subseteq V(U, x) \times \{x\} \subseteq U$. So $\rho_t^{-1}(V(U, x)) \subseteq \rho_{(t,x)}^{-1}(U)$. Hence $\rho_{(t,x)}^{-1}(U) \in \tau_S$. The following result shows a characterization of $\tau(S, X)$.

Proposition 3.5. Let (X, τ_X) be a topological space and (S, \cdot, τ_S) be a topological monoid. Then $\tau(S, X)$ is the finest topology on F(X) such that F(X) is a semitopological S-act and $\nu : (X, \tau_X) \to (F(X), \tau(S, X)), x \rightsquigarrow (1, x)$, is continuous.

Proof. By the above proposition and the definition of $\tau(S, X)$, $\tau(S, X)$ has the above properties. Let τ be a topology on $|F(X)| = S \times X$ with the above properties. First note that if $s(1, x) = (s, x) \in U$ and $U \in \tau$, then by the continuity of $\rho_{(1,x)}$, λ_s and ν we can conclude that

$$s \in \rho_{(1,x)}^{-1}(U)$$
 and $x \in \nu^{-1}(\lambda_s^{-1}(U))$,

where $\rho_{(1,x)}^{-1}(U) \in \tau_S$ and $\nu^{-1}(\lambda_s^{-1}(U)) \in \tau_X$. Furthermore we have obviously

$$\pi_1(U \cap (S \times \{x\})) = \rho_{(1,x)}^{-1}(U) \in \tau_S$$

and also

He

$$\pi_2(U \cap (\{s\} \times X)) = \nu^{-1}(\lambda_s^{-1}(U)) \in \tau_X$$

nce, $U \in \tau(S, X) = \tau_1(S, X) \cap \tau_2(S, X)$. Therefore $\tau \subseteq \tau(S, X)$

By the above proposition, we can explain the topology τ_X^* in another way and we can present a coarser and finer topology than it, according to the topologies τ_S and τ_X (note that any topological *S*-act is a semitopological *S*-act and note that τ_X^* satisfies condition (b) in the proof of Proposition 3.2).

Corollary 3.6. Let (S, \cdot, τ_S) be a topological monoid and (X, τ_X) be a topological space. Then, $\tau_{S \times X} \subseteq \tau_X^* \subseteq \tau(S, X)$ and τ_X^* is the finest topology which is coarser than $\tau(S, X)$ and it makes F(X) a topological S-act.

Proposition 3.7. For any Alexandroff topological monoid (S, \cdot, τ_S) and any topological space (X, τ_X) , the topology τ_X^* is the product topology on $|F(X)| = S \times X$. In fact we have $\tau_X^* = \tau_{S \times X} = \tau(S, X)$.

Proof. We first show that, in this case, τ_X^* equals to $\tau(S, X)$ and then we show that $\tau(S, X)$ equals to the product topology $\tau_{S \times X}$. Note that by Corollary 3.6, we have $\tau_X^* \subseteq \tau(S, X)$. On the other hand, since $\tau(S, X)$ obviously satisfies condition (a) by Relation (I) in Remark 3.3, to complete our proof, it is enough to prove that $(F(X), \tau(S, X))$ is a topological *S*-act. Suppose $t(s, x) = (ts, x) \in U$ and $U \in \tau(S, X)$. Hence there exists

open set $W(U,ts) \in \tau_X$ with $x \in W(U,ts)$ such that $\{ts\} \times W(U,ts) \subseteq U$. But for any $y \in W(U,ts)$, since again $U \in \tau(S,X)$, there exists open set $V(U,y) \in \tau_S$ such that $V(U,y) \times \{y\} \subseteq U$ and $ts \in V(U,y)$. Now define $V := \bigcap_{y \in V(U,y)} V(U,y) \in \tau_S$, because τ_S is Alexandroff, V contains ts and we have:

$$V \times W(U, ts) \subseteq \bigcup_{y \in W(U, ts)} (V(U, y) \times \{y\}) \subseteq U. \quad (*)$$

Now since (S, \cdot, τ_S) is a topological monoid, there exist open sets V_s and V_t which contain s and t, respectively and satisfy the relation $V_t \cdot V_s \subseteq V$. By Corollary 3.6, if we define $W := V_s \times W(U, ts)$, then $W \in \tau_{S \times X} \subseteq \tau(S, X)$ which contains (s, x) such that

$$t(s,x) \in V_t \cdot W = (V_t \cdot V_s) \times W(U,ts) \subseteq V \times W(U,ts) \subseteq U.$$

So $(F(X), \tau(S, X))$ is a topological S-act. Now suppose that $U \in \tau(S, X)$. If U is a non-empty open subset of $|F(X)| = S \times X$, then consider an arbitrary element (t, x) in U. We have clearly $t(1, x) \in U$, so by the above discussion, there exists an open set $V \in \tau_S$ which contains t such that $(t, x) = t(1, x) \in$ $V \times W(U, t) \subseteq U$. (Recall Relation (*) with s = 1.) Since $V \times W(U, t)$ belongs to the product topology on $|F(X)| = S \times X$, $\tau_{S \times X}$ is finer than $\tau(S, X)$. Therefore by Corollary 3.6 we have $\tau_X^* = \tau(S, X) = \tau_{S \times X}$.

Proposition 3.8. Suppose that (S, \cdot, τ_S) is a topological monoid. For each Alexandroff topological space (X, τ_X) , the topology τ_X^* is the product topology on $S \times X$ and more precisely $\tau_X^* = \tau_{S \times X} = \tau(S, X)$.

Proof. τ_X^* satisfies conditions (a) and (b) in Proposition 3.2 so $\tau_{S\times X} \subseteq \tau(S, X)$. Suppose that we are given $(ts, x) \in U$ for some $t, s \in S, x \in X$ and an open set $U \in \tau(S, X)$. Since $U \in \tau(S, X)$, we can choose for $(ts, x) \in U$, the open set V(U, x) such that $V(U, x) \times \{x\} \subseteq U$ and $ts \in V(U, x)$. Choose for any $s' \in V(U, x)$, an open set W(U, s') such that $\{s'\} \times W(U, s') \subseteq U$ and $x \in W(U, s')$. Define $W := \bigcap_{s' \in V(U, x)} W(U, s')$. Now, by a similar argument as in the proof of Proposition 3.7, we can get the result. \Box

Since every discrete topological space is Alexandroff, as an immediate consequence of the above proposition and Proposition 3.5, we have

Proposition 3.9. (Free topological S-act on a set) Let (S, \cdot, τ_S) be a topological monoid and Z be a set. Then the free topological S-act on the set Z is F(Z) with the topology $\tau_{S\times Z}$ where τ_Z in the definition of $\tau_{S\times Z}$ is the discrete topology. Now we discuss the properties of the free topological S-act on a topological space which satisfies some of the separation axiom, (for more details about the separation axioms, see [21].)

Proposition 3.10. Let (S, \cdot, τ_S) be a topological monoid with left ideal topology. Suppose that (X, τ_X) satisfies one of the separation axioms T_i for $i = 0, 1, 2, 3, 3\frac{1}{2}$. Then, the free topological S-act on (X, τ_X) satisfies that separation axiom if and only if $S = \{1\}$.

Proof. For the non-trivial part, let (X, τ_X) be a T_i space for some *i*. Then, by assumption, the free topological S-act on (X, τ_X) is a T_i space. Note that if a topological S-act (A, τ_A) which has subact topology, satisfies T_i , then for any $a \in A$, $Sa = \{a\}$. For, if there exist $s \in S$ and $a \in A$ such that $sa \neq a$, then any open set in the subact topology τ_A containing a, also contains sa. Thus, we have $S(s, x) = \{(s, x)\}$ for each $(s, x) \in F(X)$. In particular, $S(1, x) = \{(1, x)\}$. Therefore $S = S1 = \{1\}$.

Although Proposition 3.10 shows that for any non-trivial topological monoid (S, \cdot, τ_S) with left ideal topology, the free topological S-act on a T_i space does not satisfy any of the separation axioms T_i , but the following proposition shows that if (S, \cdot, τ_S) itself satisfies any T_i , i = 0, 1, 2 then the free topological S-act on a topological space which satisfies that T_i , satisfies that separation axiom, too.

First, note that if (X_1, τ_{X_1}) and (X_2, τ_{X_2}) are two topological spaces which satisfy T_i for some i = 0, 1, 2, then their product space satisfies that T_i , too (for more details, see [10] or [21]).

Proposition 3.11. Let (S, \cdot, τ_S) be a topological monoid which satisfies T_i for some $0 \le i < 3$. Then, the free topological S-act on a topological space which satisfies that T_i , satisfies that separation axiom, too.

Proof. suppose that the topological space (X, τ_X) satisfies T_i . Clearly $S \times X$ with product topology also satisfies T_i , too and since for any topological space (X, τ_X) , we have $\tau_{S \times X} \subseteq \tau_X^*$, then $(F(X), \tau_X^*)$ satisfies T_i .

Remark 3.12. About the preservation of $T_{3\frac{1}{2}}$, first, we prove that if we define $\Gamma'_{(X,\tau_X)}$ as follows,

 $\{\tau | \tau \text{ is a completely regular topology on } |F(X)| \text{ satisfing (a) and (b)} \}$

and let τ'_X be defined to be the generated topology by $\cup_{\tau_i \in \Gamma(X, \tau_X)} \tau_i$, then $(F(X), \tau'_X)$ is a completely regular topological S-act. Then we give a condition

such that the completely regularity is preserved. For our assertion, we just need to show the completely regularity of $(F(X), \tau'_X)$, since it is straightforward to see that τ'_X satisfies conditions (a) and (b). For this purpose, we show that the generated topology by a family of topologies $(\tau_i)_{i\in I}$ on a set C such that each τ_i is completely regular for any $i \in I$, is a completely regular topology on C. Let $(\tau_i)_{i \in I}$ be a family of completely regular topologies on a set C. Let τ be the generated topology by $\cup_{i \in I} \tau_i$. Let K be a closed set in C with the topology τ and $c \in C \setminus K$. Since $O = C \setminus K$ belongs to τ , there exists a family of open sets $\{O_j\}_{j\in J} \subseteq \bigcup_{i\in I}\tau_i$ such that O is equal to a union of their finite intersections of O_i 's. Therefore we can assume that there exists $O_1 \cap \ldots \cap O_n$ such that $K = C \setminus O \subseteq C \setminus (O_1 \cap \ldots \cap O_n)$ and $c \in O_1 \cap \ldots \cap O_n$. Since for any i, O_i is open in τ_{n_i} and since τ_{n_i} is completely regular, for closed set $C \setminus O_i$ and c, there exists a continuous real valued function $f_i : C \to \mathbb{R}$ such that $f_i(C \setminus O_i) = 1$ and $f_i(c) = 0$. Since τ is the generated topology by τ_i , all the functions f_i are continuous real valued function from C with the topology τ to \mathbb{R} such that $f_i(C \setminus O_i) = 1$ and $f_i(c) = 0$. Let f be defined by $f(x) := max\{f_1(x), \ldots, f_n(x)\}$, for any $x \in C$. Therefore τ is completely regular, since f is a continuous function from C with topology τ to $\mathbb R$ such that f is continuous and f(K) = 1 and f(c) = 0. Therefore, since τ'_X is the generated topology by $\cup_{\tau_i \in \Gamma'_{(X,\tau_X)}} \tau_i$, and since for each $\tau_i \in \Gamma'_{(X,\tau_X)}, \tau_i$ is completely regular, τ'_X is completely regular. Hence $(F(X), \tau'_X)$ is a completely regular topological S-act.

Now if for a topological semigroup (S, \cdot, τ_S) and a topological space (X, τ_X) , we have $\tau'_X = \tau^*_X$ or more specially, if $\Gamma'_{(X,\tau_X)} = \Gamma_{(X,\tau_X)}$, then the separation axiom $T_{3\frac{1}{2}}$ is preserved. For an example of a topological semigroup (S, \cdot, τ_S) and a topological space (X, τ_X) with this property, let (S, \cdot, τ_{dis}) be a topological monoid. Then for any completely regular space (X, τ_X) , clearly, by Proposition $3.7, \tau^*_X = \tau_{S \times X} = \tau'_X$. Therefore for a topological semigroup which has discrete topology, the separation axiom $T_{3\frac{1}{2}}$ is preserved.

4. The free topological S-act on an S-act

The category **S**-Act is a very well-known category and its universal structures are studied comprehensively by many authors. In this section we want to present a very useful and effective tool which enables us to study **S**-Top by using the studies in **S**-Act. First, in this section, we present the free topological S-act on an S-act, then to illustrate the application of this result, we characterize the projective topological S-acts. In fact, we show that the projective topological S-acts are exactly the free topological S-acts on projective S-acts.

Now we discuss the free topological S-act on an S-act. One might naturally expect that an S-act A with discrete topology to be the free topological S-act on A, but, as Proposition 4.1 shows, A with this topology may not be a topological S-act and if it happens to be so, then it is indeed the free topological S-act on A.

Since by the definition of topological S-acts, the proof of the following result is straightforward, we state it without proof.

Proposition 4.1. An S-act A with the discrete topology is a topological S-act if and only if for any $a \in A$ and $s \in S$, $(sa:a) := \{t \in S | ta = sa\} \in \tau_S$. \Box

Proposition 4.2. If (S, \cdot, τ_S) is a topological semigroup with a right identity, then the following statements are equivalent

- (1) All the S-acts with discrete topology are topological S-acts.
- (2) τ_S is the discrete topology.
- (3) If we define G from category S-Act to category S-Top as follows, $A \mapsto (A, \tau_{dis})$, then G is the free functor.

Proof. Since (1) and (3) are equivalent, for the non-trivial part of the proof, by Proposition 4.1, we just need to show (1) \Rightarrow (2). Since S with the discrete topology is a topological S-act, if e is the right identity of S, then the function $id_S = \rho_e : (S, \tau_S) \rightarrow (S, \tau_{dis})$ is continuous and hence $\tau_S = \tau_{dis}$.

Now, we discuss about the free topological S-act on an S-act in general.

Proposition 4.3. For any topological semigroup (S, \cdot, τ_S) , the free topological S-act on an S-act A is defined as follows

$$(A, \tau_{*A}), \qquad (A \in \mathbf{S} - \mathbf{Act})$$

in which τ_{*A} is the topology generated on A by the union of all τ_i on A, where (A, τ_i) is a topological S-act.

Proof. Let A be an arbitrary S-act and define

 $\Sigma_A := \{ \tau \mid (A, \tau) \text{ is a topological } S \text{-act} \}.$

(Note that every S-act is a topological S-act with trivial topology, so Σ_A is not empty.)

Similar to the proof of Proposition 3.2, we can show that τ_{*A} which is the topology generated by the union of all τ_i where $\tau_i \in \Sigma_A$, makes A a topological S-act.

To prove that (A, τ_{*A}) with $id_A : A \to (A, \tau_{*A})$ is the free topological S-act on A, let $f : A \to (B, \tau_B)$ be an S-map into a topological S-act (B, τ_B) . Then, the same function $f : (A, \tau_{*A}) \to (B, \tau_B)$ is claimed to be a continuous S-map.

Let $\tau_f := \{f^{-1}(U)\}_{U \in \tau_B}$. To prove the claim, first we show that (A, τ_f) is a topological S-act. Let $U \in \tau_B$, $sa \in f^{-1}(U)$ for some $a \in A$ and $s \in S$. Since $f(sa) = sf(a) \in U$ and (B, τ_B) is a topological S-act, there exists $V_s \in \tau_S$ and $W_{f(a)} \in \tau_B$ such that $s \in V_s$ and $f(a) \in W_{f(a)}$ and

$$sf(a) \in V_s \cdot W_{f(a)} \subseteq U.$$

Thus, $sa \in V_s \cdot f^{-1}(W_{f(a)}) \subseteq f^{-1}(U)$, and so (A, τ_f) is a topological *S*-act. Now, since $\{f^{-1}(U)\}_{U \in \tau_B}$ belongs to Σ_A , by the definition of τ_{*A} , we have

$$\tau_f = \{f^{-1}(U)\}_{U \in \tau_B} \subseteq \tau_{*A}.$$

So $f: (A, \tau_{*A}) \to (B, \tau_B)$ is continuous.

The rest of the proof is trivial.

Now using the concept of weak topology and the above proposition and its proof, we can explain τ_{*A} in these ways.

Proposition 4.4.

- (i) τ_{*A} is the weak topology which is induced on |A| with respect to the family of S-homomorphisms $id: A \to (A, \tau_i)$ where (A, τ_i) is a topological S-act.
- (ii) τ_{*A} is the weak topology on |A| with respect to the family of all S-homomorphisms from A to other topological S-acts.

Note that, for a topological space (X, τ_X) and any topological monoid (S, \cdot, τ_S) , since $(F(X), \tau_X^*)$ is a topological S-act, it is obvious that τ_X^* on $|F(X)| = S \times X$ is coarser than $\tau_{*F(X)}$. (See the definitions of $\Gamma_{(X,\tau_X)}$ and $\Sigma_{F(X)}$ in the proof of Propositions 3.2 and 4.3.)

But, the following example shows that τ_X^* can be a proper subset of $\tau_{*F(X)}$.

Example 4.5. Let (S, \cdot, τ_{dis}) be a topological monoid and let (X, τ_X) be a non-discrete topological space. Then $\tau_X^* \subsetneq \tau_{*F(X)}$. Because, by Proposition 4.2, $\tau_{*F(X)}$ is discrete. On the contrary, suppose that $\tau_{*F(X)}$ equals to τ_X^* . Since ν is an embedding, and since $\{1\} \times X$ with the subspace topology is the discrete topology (because $\tau_{*F(X)}$ is discrete), (X, τ_X) is a discrete space, which is impossible. So we have the result.

For all universal objects in category S-Top, we can use the free topological S-acts on S-acts to change any given diagrams in S-Act to a given diagram in S-Top. Therefore, we can study the algebraic structure of universal structures by using the known universal objects in S-Act. To illustrate this method, we apply it in the next proposition to characterize the projective topological S-acts.

Proposition 4.6. Let (S, \cdot, τ_S) be a topological monoid. Then the projective topological S-acts are the free topological S-acts on the S-acts $\sqcup_{i \in I} Se_i$, where e_i 's are idempotents in S, I is a set and $\sqcup_{i \in I} Se_i$ denote the coproduct of Se_i 's.

Proof. Let (P, τ_P) be a projective S-act. First, we show that (P, τ_P) is the free topological S-act on S-act P. For this purpose, we show that topology τ_P is the finest topology which makes P a topological S-act. Let (P,τ) be a topological S-act. We show that τ is coarser than τ_P . Consider the generated topology by the union of τ and τ_P , and denote it by τ' . Consider the identity maps $id_P : (P, \tau_P) \to (P, \tau_P)$ and $id_P : (P, \tau') \to (P, \tau_P)$. Since (P, τ_P) is a projective topological S-act, the identity map $id_P : (P, \tau_P) \to (P, \tau')$ is continuous. Therefore τ' is coarser than τ_P and therefore $\tau \subset \tau_P$. Now, to complete the proof, we show that P is a projective S-act and then we use [18, Theorem 1.5.10], to characterize the algebraic structure of (P, τ_P) . Suppose that $f: A \to B$ be a surjective S-map, where A and B are S-acts and let $g: P \to B$ be an S-map. Since the epimorphisms in category S-Act are exactly onto S-maps (see [18]), it is straightforward to see that $f: (A, \tau_{*A}) \to (B, \tau_{*B})$ is an epimorphism in S-Top and $g: (P, \tau_P) \to (B, \tau_{*B})$ is continuous (note that if C is an S-act, (D, τ_D) is a topological S-act and $h: C \to (D, \tau_D)$ is an S-map, then $\tau_1 = \{V \subseteq C | V = f^{-1}(U), \text{ where } U \text{ is an open set in } (D, \tau_D) \}$ is a topology on C such that (C, τ_1) is a topological S-act). Since (P, τ_P) is a projective topological S-act, there exists a continuous S-map $h: (P, \tau_P) \rightarrow$ (A, τ_{*A}) such that $f \circ h = g$. Since h is an S-map, P is a projective S-act. Therefore by [18, Theorem 1.5.10], there exists a family $\{e_i\}_{i \in I}$ of idempotents in S such that P is algebraically isomorphic to $\sqcup_{i \in I} Se_i$, where \sqcup denotes the coproduct of Se_i 's in S-Act. Therefore, P is the projective S-act which is a coproduct of cyclic S-acts in S-Act and (P, τ_P) is the free topological S-act on S-act P.

Finally in this paper we show that the free topological S-act on the set

For a non-empty family of S-acts, like $\{A_i\}_{i \in I}$, the coproduct of A_i 's in **S-Act** is the disjoint union of A_i 's with its natural action (see [18]).

Z is the free topological S-act on the S-act F(Z). (So if we define the free topological S-act on a set Z in this way, then the result will be the same.)

Proposition 4.7. let (S, \cdot, τ_S) be a topological monoid. The free topological S-act on the set Z equals to the free topological S-act on the S-act F(Z).

Proof. Since a discrete topological space (Z, τ_{dis}) is Alexandroff, by Proposition 3.8 we have $\tau_Z^* = \tau_{S \times Z}$. We show that the topology τ_* on F(Z) equals to τ_Z^* . For this purpose, we show that $\Sigma_{F(Z)} = \Gamma_{(Z,\tau_{dis})}$. Since obviously, $\tau_Z^* \in \Sigma_{F(Z)}$, it is enough to show that $\tau_{*F(Z)}$ belongs to $\Gamma_{(Z,\tau_{dis})}$. Clearly, $\tau_{*F(Z)}$ on F(Z)satisfies condition (a). Since $\tau_{S \times Z} = \tau_Z^* \subseteq \tau_{*F(Z)}$ and Z is a discrete space, then $\{U \cap (\{1\} \times Z) | U \in \tau_{*F(Z)}\}$ is the discrete topology on $\{1\} \times Z$. Since $\nu : Z \to \{1\} \times Z$ is a one to one, onto function from a discrete topological space to another discrete topological space, it is an embedding. Therefore $\tau_{*F(Z)}$ satisfies conditions (a) and (b) in Proposition 3.2 and hence $\tau_{*F(Z)} \in$ $\Gamma_{(Z,\tau_{dis})}$.

In fact, the proof of the above proposition shows that:

Corollary 4.8. Let (S, \cdot, τ_S) be a topological monoid. Then for each set Z, we have $\tau_{*F(Z)}$ is the product topology $\tau_{S\times Z}$ on $S\times Z$, where τ_Z in the definition of $\tau_{S\times Z}$ is the discrete topology on Z.

5. Acknowledgement

The author is highly grateful to the referees for very valuable suggestions and corrections which improve the paper essentially. The author gratefully acknowledges the financial support from Shahid Beheshti University, given to him by his supervisor, Professor Ebrahimi, and wants to express his thanks to Professor Ebrahimi for his kindness and helps and his advisor, Professor Mahmoudi. Also he is grateful to Professor Gutik, for his helpful communications.

References

- J. Adamek, H. Herlich and G. Strecker, Abstract and concrete categories, John Wiley & Sons, Inc., New York, 1990.
- [2] A. Aldroubi, D. Larson, W. Tang and E. Weber, Geometric aspects of frame representation of Abelian groups, Trans. Am. Math. Soc. 356 (2004), 4767-4786.

- [3] T. O. Banakh, I. Yo. Guran and O. V. Gutik, Free topological inverse semigroups, Mat. Stud. (Lvov) 15 (2001), 23 – 43.
- [4] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Math. 42, Springer-Verlag, Berlin-New York, 1967.
- [5] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on semigroups. Function spaces, compactifications, representations Canadian Math. Soc. Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1989.
- [6] T. S. Blyth, Categories, John Wiley & Sons, Inc., New York, 1986.
- [7] G. B. Bredon, Topology and Geometry, Springer-Verlag, New York, 1993.
- [8] S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum 71 (2005), 443 – 461.
- D. Dikranjan and M. Tkačenko, Weakly complete free topological groups, Topology Appl. 112 (2001), 259 - 287.
- [10] J. Dugundji, Topology, Reprinting of the 1966 original. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978.
- [11] M. M. Ebrahimi and M. Mahmoudi, The category of M-sets, Ital. J. Pure Appl. Math. 9 (2001), 123 – 132.
- [12] G. B. Folland, A course in abstract harmonic analysis, Studies Adv. Math., CRC Press, Boca Raton, FL, 1995.
- [13] D. Han and D. R. Larson, Frames, bases and group representations, Mem. Am. Math. Soc. 147 (2000), 697.
- [14] J. L. Kelley, General topology, Reprint of the 1955 edition. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin, 1975.
- [15] H. B. Keynes, A note on universal flows, Amer. Math. Monthly 76 (1969), 276-277.
- [16] B. Khosravi, The category of semitopological S-acts, World Appl. Sci. J. 7 (2009), 7-13.
- [17] A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C^* -modules, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 1-12.
- [18] M. Kilp, U. Knauer and A. Mikhalev, Monoids, acts and categories, Walter de Gruyter, Berlin, New York, 2000.
- [19] J. Lawson and A. Lisan, Flows, congruences, and factorizations, Topology Appl. 58 (1994), 35 – 46.

- [20] J. M. Lee, Introduction to smooth manifolds, Springer-Verlag, New York, 2003.
- [21] J. R. Munkres, Topology, Prentice-Hall, New Jersey, 2000.
- [22] P. Normak, Topological S-acts: preliminaries and problems, Transformation semigroups (Colchester, 1993), 60 – 69, Univ. Essex, Colchester.
- [23] W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lecture Notes in Math. Springer-Verlag, Berlin, 1984.
- [24] G. I. Zhitomirski, Topologically complete representations of inverse semigroups, Semigroup Forum 66 (2003), 121 – 130.

Received July 16, 2009 Revised February 28, 2010

Department of Mathematics, Shahid Beheshti University, Tehran, Iran E-email: behnam_kho@yahoo.com