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Classi�cation of loops of generalized

Bol-Moufang type

B. Coté, B. Harvill, M. Huhn and A. Kirchman

Abstract. A loop identity α = β is of Bol-Moufang type if the same 3 variables
appear on both sides of the equal sign in the same order, one of the variables appears
twice on both sides and the remaining two variables appear once on both sides. One
can generalize this de�nition by allowing di�erent variable orders on either side of the
identity, e.g. ((xx)y)z = x(y(xz)). There are 1215 nontrivial identities of this type. Loop
varieties axiomatized by a single identity of this type are said to be of generalized Bol-
Moufang type. We show that there are 48 such varieties: the 14 varieties of Bol-Moufang
type [13], the 6 varieties of commutative Bol-Moufang type, and 28 new varieties.

1. Introduction

The aim of this paper is to �nd and classify all loops that are a generalization
of loops of Bol-Moufang type [3], [4], [8], [13], and [17].

A quasigroup is a set Q with a binary operation ∗ such that the equation
a ∗ b = c has a unique solution in Q whenever two of a, b, and c are �xed
elements of Q.

A loop is a quasigroup with a two-sided neutral element, which we will
denote as 1. Standard references for loop theory are [1] and [15].

An identity α = β is of Bol−Moufang type if it satis�es the following:

1. the only operation in α and β is ∗,
2. the same 3 variables appear in α and β,

3. one of the variables appears twice in α and β,

4. the remaining two variables appear once in α and β,

2010 Mathematics Subject Classi�cation: 20N20, 20M17
Keywords: quasigroup, loop, Bol-Moufang type.
This research was supported by a National Science Foundation grant DMS-0755260
and the Wabash Summer Institute in Mathematics as part of a Research Experience
for Undergraduates.



194 B. Coté, B. Harvill, M. Huhn and A. Kirchman

5. the variables appear in the same order in α and β.
We generalize this by dropping the �fth condition, above. An identity

α = β is of generalized Bol −Moufang type if it satis�es the following:

1. the only operation in α and β is ∗,
2. the same 3 variables appear in α and β,

3. one of the variables appears twice in α and β,

4. the remaining two variables appear once in α and β.
This paper presents the classi�cation of all varieties of loops of gener-

alized Bol-Moufang type. Given the classi�cation of loops of Bol-Moufang
type [13], we examine those identities in which the variables do not appear
in the same order in α and β. We show that these identities are one of
48 varieties: the 14 varieties of Bol-Moufang type [13], the 6 varieties of
commutative Bol-Moufang type, and 28 new varieties. As 28 is a perfect
number, we name the new varieties Perfect.

For our convenience, we let x be the double variable and y and z be
the remaining two variables in this classi�cation. Also, we omit ∗ when
multiplying two elements together (e.g. x ∗ y = xy).

Throughout the course of this research, Prover9, an automated theo-
rem prover, and Mace4, a �nite model builder, were used [11]. For ease
of reading, only several distinguishing proofs and several important coun-
terexamples are found in this paper. Untranslated proofs from Prover9 are
not included.

2. Notation and de�nitions

The following scheme is used to label each identity. This is an extension of
the labeling scheme used by Phillips and Vojt¥chovský [14].

Variable Order

A xxyz G xxzy
B xyxz H xzxy
C yxxz I zxxy
D xyzx J xzyx
E yxzx K zxyx
F yzxx L zyxx

Multiplication Order

1 a(b(cd))
2 a((bc)c)
3 (ab)(cd)
4 (a(bc))d
5 ((ab)c)d

For example, the identity (x(yx))z = z((xy)x) is called B4K2.
The following terminology is used to describe the generalized Bol-Moufang

identities. The variable order of α is normal if y appears before z, i.e., α of
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variable order A−F . The remaining variable orders are created by �ipping
y and z and are thus called �ip where G is the �ip of A, and so on. An
identity α = β is normal � normal if α and β are normal. We de�ne normal

� �ip, �ip � �ip, and �ip � normal similarly. The dual of an identity is the
identity created when reading an identity from right to left. For example,
the dual of A1B2, x(x(yz)) = x((yx)z), is (z(xy))x = ((zy)x)x, or E4F5.

3. Identities of generalized Bol-Moufang type

In order to classify all varieties of loops of generalized Bol-Moufang type,
we �rst count all possible identities of generalized Bol-Moufang type. We
then �nd equivalencies among these identities, systematically examining
and eliminating �rst equivalent commutative identities and then equivalent
non-commutative identities. The remainder is the list of unique varieties,
the loops of Perfect type.

Theorem 3.1. There are 1215 non-trivial identities of generalized Bol-

Moufang type.

Proof. Note that each normal-�ip identity has an equivalent �ip-normal
identity. For example, A1H2 is equivalent to H2A1. Likewise, each normal-
normal identity has an equivalent �ip-�ip identity when the substitution
y = z is made. It is thus su�cient to count the normal-�ip identities
and normal-normal identities, i.e. identities where α has the variable order
A,B, C, D, E, or F .

Note that α and β can be 1 of 5 possible multiplication orders; each
identity of variable order α = β thus has 25 possible multiplication orders.

Consider �rst the normal-�ip identities in which β is the �ip of α; for
example, A1G3. There are 25 such identities for A,B, C, D, E, and F .
However, for each variable order, ten of the normal-�ip identities are equiv-
alent to one of the remaining 15 when the substitution y = z is made. For
example, A1G2 is equivalent to A2G1. Thus, there are 15 identities for the
normal-�ip identities in which β is the �ip of α.

Consider the remaining normal-�ip identities and the normal-normal
identities. Let A be the variable order for α. Note that AA is Bol-Moufang
and has thus been classi�ed [13], and that AG has already been accounted
for. There are 10 remaining possible variable pairings with A: AB, AC,
AD, AE, AF , AH, AI, AJ , AK, and AL. Likewise, the following are
possible variable pairings with B: BA, BC, BD, BE, BF , BG, BI, BJ ,
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BK, and BL. Note that BA is equivalent to AB and has thus already been
counted. Therefore, B has 9 possible variable pairings. Similarly, C has 8
possible variable pairings, D has 7, E has 6, and F has 5.

Multiplying the normal-�ip and normal-normal variable orders with the
possible 25 multiplication orders and adding the speci�c case of the normal-
�ip identities in which β is the �ip of α gives the total number of identities:
(10 + 9 + 8 + 7 + 6 + 5) ∗ 25 + (6) ∗ 15 = 1215

4. Commutative identities

First we examine the identities which imply commutativity. Any identity
in which letting x, y, or z = 1 yields zy = yz, xy = yx, or xz = zx will be
commutative.

Theorem 4.1. There are 1092 commutative identities of the generalized

Bol-Moufang type.

Proof. The 840 normal - �ip identities are commutative because when x = 1,
they become yz = zy.

In addition, 90 normal-normal identities were found to be commutative
by letting x, y, or z = 1: A1B1, A1B2, A1B4, A1D1, A1D2, A1D3, A1E1,
A1E3, A2B1, A2B2, A2B4, A2D1, A2D2, A2D3, A2E1, A2E3, A4B1, A4B2,
A4B4, A4D1, A4D2, B1D1, B1D2, B1D3, B1E1, B1E3, B2D1, B2D2, B2D3,
B2E1, B2E3, B3C3, B3C5, B3D1, B3D2, B3D3, B3E1, B3E3, B3E4, B3E5,
B3F4, B3F5, B5C3, B5C5, B5E3, B5E4, B5E5, B5F4, B5F5, C1D1, C1D2,
C1D3, C1E1, C1E3, C3D1, C3D2, C3D3, C3D4, C3D5, C3E1, C3E3, C5D3,
C5D4, C5D5, D3E3, D3E4, D3E5, D3F4, D3F5, D4E3, D4E4, D4E5, D4F2,
D4F4, D4F5, D5E3, D5E4, D5E5, D5F2, D5F4, D5F5, E2F2, E2F4, E2F5,
E4F2, E4F4, E4F5, E5F2, E5F4, E5F5.

Example 4.2. For the equation A4B2, (x(xy))z = x((yx)z) when setting
the variable z as the identity the equation yields x(xy) = x(yx), which is
left cancelative. The resulting equation is xy = yx, which is commutative.

162 remaining commutative identities were found using Prover9 [11]:
A1B3, A1B5, A1D4, A1D5, A1E2, A1E4, A1E5, A2B3, A2B5, A2D4, A2D5,
A2E2, A2E4, A2E5, A3B1, A3B2, A3B3, A3D1, A3D3, A3D5, A3E3, A3E4,
A3E5, A4B3, A4B5, A4D3, A4D4, A4D5, A4E1, A4E2, A4E3, A4E4, A4E5,
A5B1, A5B2, A5B3, A5D1, A5D3, A5D5, A5E3, A5E4, A5E5, B1C1, B1C2,
B1C3, B1C4, B1C5, B1D4, B1D5, B1E2, B1E4, B1E5, B1F1, B1F2, B1F3,
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B1F4, B1F5, B2C1, B2C2, B2C3, B2C4, B2C5, B2D4, B2D5, B2E2, B2E4,
B2E5, B2F1, B2F2, B2F3, B2F4, B2F5, B3C1, B3C2, B3C4, B3D4, B3D5,
B3E2, B3F1, B3F2, B3F3, B4C1, B4C3, B4C5, B4D1, B4D3, B4D5, B4E3,
B4E4, B4E5, B4F2, B4F4, B4F5, B5C1, B5D1, B5D3, B5D5, B5F2, C1D4,
C1D5, C1E2, C1E4, C1E5, C2D1, C2D3, C2D5, C2E3, C2E4, C2E5, C3E2,
C3E4, C3E5, C4D1, C4D3, C4D5, C4E3, C4E4, C4E5, C5D1, C5D2, C5E1,
C5E2, C5E3, C5E4, C5E5, D1E1, D1E2, D1E3, D1E4, D1E5, D1F1, D1F2,
D1F3, D1F4, D1F5, D2E3, D2E4, D2E5, D2F2, D2F4, D2F5, D3E1, D3E2,
D3F1, D3F2, D3F3, D5E1, D5E2, D5F1, D5F3, E1F2, E1F4, E1F5, E3F1,
E3F2, E3F3, E3F4, E3F5, E4F1, E4F3, E5F1, E5F3.

Thus, since 840+90+162 = 1092, there are 1092 commutative identities
of Bol-Moufang type.

Theorem 4.3. Any commutative identity of the generalized Bol-Moufang

type can either be commuted to be of the Bol-Moufang type (i.e. the variables

appear in the same order in α and β) or is of the commutative Moufang

variety.

Proof. Many commutative identities of the generalized Bol-Moufang type
can be commuted to be of the Bol-Moufang type and have thus been classi-
�ed [13]. Using the following table, we generated a list of the only commuta-
tive identities that cannot be commuted to the Bol-Moufang type. Letting
α have the variable order of the left-most column and the multiplication
order of the top-most row, all possible commutations of α are listed, such
that α commutes to some multiplication order of the listed variable orders.

Table 1: Possible Commutations
1 2 3 4 5

A D,F,G,J,L B,D,E,H,J,K,L F,G,L B,C,I,K,L C,I,L
B D,E,F,G,H,J,K A,D,E,H,J,K,L C,D,E,H,I,J,K A,C,I,K,L A,C,I,K,L
C E,F,G,H,I, F,G,I B,D,E,H,I,J,K A,I,L A,D,E,H,I,K,L
D B,E,F,G,H,J,K A,F,G,J,L B,C,E,H,I,J,K A,F,G,J,L A,B,E,H,J,K,L
E C,F,G,H,I C,F,G,H,I B,C,D,H,I,J,K B,D,F,G,H,J,K A,B,D,H,J,K,L
F C,G,I C,E,G,H,I A,G,L B,D,E,G,H,J,K A,D,G,J,L
G A,D,F,J,L B,D,E,F,H,J,K A,F,L C,E,F,H,I C,F,I
H A,B,D,E,J,K,L B,D,E,F,G,J,K B,C,D,E,I,J,K C,E,F,G,I C,E,F,G,I
I A,B,C,K,L A,C,L B,C,D,E,H,J,K C,F,G C,E,F,G,H
J A,B,D,E,H,K,L A,D,F,G,L B,C,D,E,H,I,K A,D,F,G,L B,D,E,F,G,H,K
K A,B,C,I,L A,B,C,I,L B,C,D,E,H,I,J A,B,D,E,J,H,L B,D,E,F,G,H,J
L A,C,I A,B,C,I,K A,F,G A,B,D,E,J,H,K A,D,F,G,J

Example 4.4. A3 = (xx)(yz), can be commuted into the variable order
F , G, or L, namely (yz)(xx), (xx)(zy), or (zy)(xx).
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Using this table, we found all generalized Bol-Moufang identities which
could not be commuted into the Bol-Moufang type and eliminated any
which did not axiomatize a commutative variety. The following identi-
ties are commutative but cannot be commuted into the Bol-Moufang type:
A2G5, A2I4, A3H3, A3I3, A3J3, A3K3, A5H2, A5J5, A5K5, B1I2, B1L1,

B2G5, B2I4, B3G3, C2H1, C2J1, C2K4, C2L4, C3G3, C3L3, C4G2, C4G2,

C4J5, C4K5, D1L1, D3G3, D3L3, D5G5, D5I4, E3G3, E3L3, E4I2, E4L1,

E5G5, E5I4, F1H1, F1J1, F1K4, F1L4, F3H3, F3I3, F3J3, F3K3, and
F4I2.

Using Prover9, we found these identities to be equivalent to the commu-
tative Moufang identity, (xx)(yz) = (xy)(xz), and have thus been classi�ed
[11]. An example of one of these proofs follows.

Theorem 4.5. A2I4 is of the commutative Moufang variety.

Proof. Letting x = 1 in A2I4, x((xy)z) = (z(xx))y, gives communtativity,
yz = zy. Similarly, by setting y = 1, we have x(xz) = z(xx). Using these,

x(z(xy)) = x((xy)z) (by commutativity)
= (z(xx))y (assumption)
= (x(xz))y
= ((xz)x)y (by commutativity)

Thus, A2I4 is commutative Moufang variety.

Similarly, it can be shown that all commutative identities that do not
commute to be of the Bol-Moufang type are of the commutative Moufang
variety. Thus, all commutative identities of the generalized Bol-Moufang
type have already been classi�ed [13].

5. Non-commutative identities

With 1092 identities that have already been classi�ed, there are 123 re-
maining non-commutative identities of the generalized Bol-Moufang type.
Using the automated theorem prover, Prover9, and the �nite model builder,
Mace4, we eliminated any identity that was equivalent to another, �nding
the following 28 Perfect varieties. The �rst identity listed is used in fu-
ture structural analysis and was chosen such that its dual is also in the
list of 28 varieties. The equivalencies are as follows, with several notable
counterexamples and proofs:
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Theorem 5.1. A4F2 is not equivalent to any identity.

Example 5.2. This is a loop that is of the A4F2 variety but is not of the
A2C3 variety.

* 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 4 5 0 6 7 3
2 2 3 0 1 6 7 4 5
3 3 0 6 7 2 4 5 1
4 4 5 1 2 7 3 0 6
5 5 6 7 4 3 0 1 2
6 6 7 3 0 5 1 2 4
7 7 4 5 6 1 2 3 0

Theorem 5.3. The following identities are not equivalent to any other

identities; A2C3, A2F4, A4C2, C3F4, C4F2.

Theorem 5.4. A4F5 and A1C5 are equivalent.

Proof. A1C5 → A4F5
Letting z = 1 in A1A4, x(x(yz)) = x(x(yz)) gives x(xy) = x(xy).

By contradiction, we assume A1 6= A4. Then, x(xy) 6= x(xy) which is a
contradiction so A1 = A4. It remains to show F5 = A4. Letting z = 1 in
((xy)y)z = y)(y(xz)) gives (xy)y = y(yx).

x(x(yz)) = ((yx)x)z
((xy)y)z) = y(y(xz)) (let x = y)
(xy)y = y(yx) (by assumption)

Similarly, letting z = 1 in ((xz)y)y = (y(yx))z gives (xy)y = y(yx). By
contradiction, assume F5 6= A4.

((yz)x)x 6= (x(xy))z
((xz)y)y 6= (y(yx))z (let x = y)
(xy)y 6= y(yx) (by assumption)

But this is a contradiction so F5 = A4. So A4 = F5 = A1 and A1 = C5
by assumption. Therefore A1C5 → A4F5

A4F5 → A1C5
Letting z = 1 in A4A1, (x(xy))z = x(x(yz)) gives x(xy) = x(xy).

By contradiction, we assume A4 6= A1. Then, x(xy) 6= x(xy) which is a
contradiction so A4 = A1. Since A4 = A1, it remains to show that C5 =
A1. Letting y = 1 in A4F5, (x(xy))z = ((yz)x)x, gives (xx)z = (zx)x.
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(x(xy))z = ((yz)x)x
(x(xz))y = ((zy)x)x (let y = z)
x(xz) = (zx)x (let y = 1)
(xx)z = x(xz) (by assumption)

Similarly, in C5 = A1,((yx)x)z = x(x(yz)), letting y = 1 gives (xx)z =
x(xz). By contradiction, we assume C5 6= A1. Then (xx)z 6= x(xz), which
is a contradiction. Therefore, C5 = A1. So C5 = A1 = A4 and A4 = F5
by assumption. Therefore A4F5 → A1C5.

Therefore, because A4F5 → A1C5 and A1C5 → A4F5, A4F5 and
A1C5 are equivalent.

Theorem 5.5. The following sets of loop varieties are equivalent;

1. C4F5 and C5F3 are equivalent.

2. A1F2 and C1F5 are equivalent.

3. A1C2 and A3C1 are equivalent.

4. A3F1, A3C2, and C2F3 are equivalent.

5. A5F1, A5C2, and C4F1 are equivalent.

6. A5F3, A3C4, and C4F3 are equivalent.

7. A5F5, A3C5, and C5F5 are equivalent.

8. B4C4, D2F3, and E1F1 are equivalent.

9. B5C4, D4F3, and E2F1 are equivalent.

10. C1F1, A4C4, and A1F3 are equivalent.

11. A1F5, C1F2, and A4C5 are equivalent.

12. A1F1, C1F3, and A1C1 are equivalent.

13. C2E1, A5B4, and A3D2 are equivalent.

14. C2E2, A5B5, and A3D4 are equivalent.

15. A3F3, A5C4, and C2F1 are equivalent.

16. A5C5, A3F5, and C2F2 are equivalent.

17. A3F2, A5F2, C2F5, C5F1, and C5F2 are equivalent.

18. A4F1, A5C1, A1C4, A4C1 and A4F3 are equivalent.

19. A4F4, A2C1, A2C2, A3C3, A1C3, A2F1, A2F2, A5F4, C3F3,
C3F5, C4F4, and C5F4 are equivalent.

20. A4C3, A2C4, A2C5, A5C3, A1F4, A2F3, A2F5, A3F4, C1F4,
C2F4, C3F1, and C3F2 are equivalent.
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21. A5D4, A5E1, A3E2, A5D2, A5E2, A3E1, A3B4, A3B5, B4C2,
B5C2, B4D2, B4D4, B5D2, B5D4, B4E1, B4E2, B5E1, B5E2,
B4F1, B4F3, B5F1, B5F3, C2D2, C2D4, C4D2, C4D4, C4E1,
C4E2, D2E1, D2E2, D4E1, D4E2, D2F1, D4F1, E1F3, and
E2F3 are equivalent.

Example 5.6. This is a loop that is of the A4F5 variety but is not of the
A4F4 variety.

* 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 9 8 7 6
2 2 3 0 1 6 8 4 9 5 7
3 3 2 1 0 7 9 8 4 6 5
4 4 5 6 7 0 1 2 3 9 8
5 5 4 8 9 1 0 7 6 2 3
6 6 9 4 8 2 7 0 5 3 1
7 7 8 9 4 3 6 5 0 1 2
8 8 7 5 6 9 2 3 1 0 4
9 9 6 7 5 8 3 1 2 4 0

This loop is not of the A4F4 variety since (1 · (1 · 2)) · 4 6= (2 · (4 · 1)) · 1.

This demonstrates that there are 28 varieties of the Perfect type which
axiomatize the 123 non-commutative identities. It should be noted that 28
is a perfect number. It should also be noted that 6 (also a perfect num-
ber) of these identities are not equivalent to any identity of generalized
Bol-Moufang type. Three of these 6, A2C3, A2F4 and C3F4, have already
been classi�ed as Cheban I, Cheban II and the dual of Cheban I respectively
[2].

6. Varieties of loops of Bol-Moufang, commutative

and perfect type

The following are the 14 varieties of loops of Bol-Moufang type, the 6 com-
mutative varieties, and the 28 varieties of the Perfect type.
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Varieties of Bol-Moufang type
variety abbrev. de�ning identity its name ref.

Groups GR x(yz) = (xy)z A1A2 [14]
Extra EL x(y(zx)) = ((xy)z)x D1D5 [14]

Moufang ML (xy)(zx) = (x(yz))x D3D4 [14]
Left Bol LB x(y(xz)) = (x(yx))z B1B4 [14]
Right Bol RB y((xz)x) = ((yx)z)x E2E5 [14]
C-loops CL y(x(xz)) = ((yx)x)z C1C5 [14]
LC-loops LC (xx)(yz) = (x(xy))z A3A4 [14]
RC-loops RC y((zx)x) = (yz)(xx) F2F3 [14]

Left Alternative LA x(xy) = (xx)y A4A5 [14]
Right Alternative RA y(xx) = (yx)x C4C5 [14]
Flexible Loops FL x(yx) = (xy)x B4B5 [14]

Middle Nuclear Square MN y((xx)z) = (y(xx))z C2C4 [14]
Right Nuclear Square RN y(z(xx)) = (yz)(xx) F1F3 [14]
Left Nuclear Square LN ((xx)y)z = (xx)(yz) A5A3 [14]

Varieties of commutative Bol-Moufang type
variety abbrev. de�ning identity its name

Comm. Moufang CM (xy)(xz) = (xx)(zy) B3G3
Abelian Group AG x(yz) = (yx)z A1B2
Comm. C-loop CC (y(xy))z = x(y(yz)) B4C1

Comm. Alternative CA ((xx)y)z = z(x(yx)) A5K1
Comm. Nuclear square CN ((xx)y)z = (xx)(zy) A5G3

Comm. loops CP ((yx)x)z = z(x(yx)) C5K1

New varieties (presented below) are primarily named according to the
number of Perfect identities that axiomatize them; i.e. Lonely for a single
identity, Mate for two, and Triad for three. The six cancellative identities
are named 2can as they are cancellative and leave two variables. The Frute
variety is an acronym of the structural properties of A4F4, discussed later.
A4C3 is named because it implies all of the Bol-Moufang varieties, which
some may consider crazy. There are historical references to the name as well.
Moldova is known for both Valentin Danilovitsch Belousov, who introduced
quasigroup and loop theory to much of Eastern Europe, and a musical
artist who goes by �Crazy Loop" [16]. A5D4 is named Krypton because the
variety is axiomatized by 36 identities of the Perfect type and the atomic
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number of Krypton is 36.

Varieties of Perfect type
variety abbrev. de�ning identity its name

Cheban 1 C1 x((xy)z) = (yx)(xz) A2C3
Cheban 2 C2 x((xy)z) = (y(zx))x A2F4
Lonely I L1 (x(xy))z = y((zx)x) A4F2

Cheban I Dual CD (yx)(xz) = (y(zx))x C3F4
Lonely II L2 (x(xy))z = y((xx)z) A4C2
Lonely III L3 (y(xx))z = y((zx)x) C4F2
Mate I M1 (x(xy))z = ((yz)x)x A4F5
Mate II M2 (y(xx))z = ((yz)x)x C4F5
Mate III M3 x(x(yz)) = y((zx)x) A1F2
Mate IV M4 x(x(yz)) = y((xx)z) A1C2
Triad I T1 (xx)(yz) = y(z(xx)) A3F1
Triad II T2 ((xx)y)z = y(z(xx)) A5F1
Triad III T3 ((xx)y)z = (yz)(xx) A5F3
Triad IV T4 ((xx)y)z = ((yz)x)x A5F5
Triad V T5 x(x(yz)) = y(z(xx)) A1F1
Triad VI T6 (xx)(yz) = (yz)(xx) A3F3
Triad VII T7 ((xx)y)z = ((yx)x)z A5C5
Triad VIII T8 (xx)(yz) = y((zx)x) A3F2
Triad IX T9 (x(xy))z = y(z(xx)) A4F1
2can I 2C1 x(yx) = y(xx) B4C4
2can II 2C2 (xy)x = y(xx) B5C4
2can III 2C3 x(xz) = z(xx) C1F1
2can IV 2C4 x(xz) = (zx)x C1F2
2can V 2C5 (xx)z = x(zx) C2E1
2can VI 2C6 (xx)z = (xz)x C2E2
Frute FR (x(xy))z = (y(zx))x A4F4

Crazy Loop CR (x(xy))z = (yx)(xz) A4C3
Krypton KL ((xx)y)z = (x(yz))x A5D4

7. Structure of the 28 non-commutative perfect

identities

Six Perfect varieties are axiomatized by an identity which is left or right
cancellative:
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Cancellative identities axiomatizing Perfect varieties

B4C4 (x(yx))z = (y(xx))z x(yx) = y(xx)
B5C4 ((xy)x)z = (y(xx))z (xy)x = y(xx)
C1F1 y(x(xz)) = y(z(xx)) x(xz) = z(xx)
C1F2 y(x(xz)) = y((zx)x) x(xz) = (zx)x
C2E1 y((xx)z) = y(x(zx)) (xx)z = x(zx)
C2E2 y((xx)z) = y((xz)x) (xx)z = (xz)x

For the purpose of this paper, the structures of the six cancellative
varieties have not been examined, as they are structurally less interesting.

Cheban I, Cheban II, and the dual of Cheban I, C3F4, have not been
examined, as they have been already classi�ed [2].

The following chart demonstrates which Perfect varieties imply which
Bol-Moufang varieties. None of the Bol-Moufang varieties implied the Per-
fect varieties.

Bol-Moufang varieties implied by Perfect varieties
Groups (⇐) A4C3
Extra (⇐) A4C3
Moufang (⇐) A4C3, A4F4
Left Bol (⇐) A4C3, A4F4
Right Bol (⇐) A4C3, A4F4
C-loops (⇐) A4C3
LC-loops (⇐) A4C3, A4F1, A4F5
RC-loops (⇐) A4C3, A1F2, A3F2
L. Alt. (⇐) A4C3, A3C1, A4F1, A4F4, A4F5
R. Alt. (⇐) A4C3, A1F2, A3F2, A4F4, C4F5
Flexible (⇐) A4C3, A4F4, A5D4
L. Nuclear (⇐) A4C3, A3F2, A4F1, A4F5, A5D4, A5F3, A5F5, C4F5
M. Nuclear (⇐) A4C3, A3F2, A4C2, A4F1, A4F2, A4F5, A5D4, A5F1, C4F2
R. Nuclear (⇐) A4C3, A1F2, A3C1, A3F1, A3F2, A4F1, A5D4, C1F3
3-Power (⇐) A4C3, A1F2, A3C1, A3F1, A3F2, A3F3, A4F1,

A4F4, A4F5, A5D4, A5F1, A5F3, B5C4, C1F2, C2E1, C4F5

Theorem 7.1. A4C3 implies groups.

Proof. Letting y = y/x and z = 1 in A4C3 gives x(x(y/x)) = ((y/x))x)x.
Since y = (y/x)x, x(x(y/x)) = yx. Furthermore, letting x = y and z = 1
in A4C3 gives (xy)y = y(yx). We prove by contradiction, assuming group,
(xy)z = x(yz), is not true.

(xy)z 6= x(yz)
(yx)z 6= y(xz) (let y = x)
(((y/x)x)x)z 6= ((y/x)x)(xz) (let y = (y/x)x)
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((tx)x)z 6= (tx)(xz) (let t = (y/x))
(x(xt))z 6= (tx)(xz) (by assumption)
(x(x(y/x))z 6= ((y/x)x)(xz) (let t = (y/x))
(x(x(y/x))z 6= y(xz) (by assumption)
x(x(y/x)) 6= yx (let z = 1)

This is a contradiction. Thus, A4C3 implies (xy)z = x(yz), all groups.

Example 7.2. This is a loop that is of the C4F2 variety but is not an
extra loop because 1 · (2 · (3 · 1)) 6= ((1 · 2) · 3) · 1.

* 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 0 3 4 5 2
2 2 4 0 5 3 1
3 3 5 1 0 2 4
4 4 2 5 1 0 3
5 5 3 4 2 1 0

In addition to the implications, some Perfect varieties satis�ed other
structural properties. Recall the following de�nitions:

A loop is right conjugacy closed (RCC-loop) if it satis�es z(yx) =
((zy)/z)(zx). A loop is left conjugacy closed (LCC-loop) if it satis�es
(xy)z = (xz)(z\(yz)). A loop is conjugacy closed if it is both RCC and
LCC. A loop is Osborn if it satis�es x((yz)x) = (x\y)(zx). The center of a
loop L, Z(L), is the set such that y ∈ Z(L) implies xy = yx for all x ∈ L.
A loop L is nilpotent of class 2 if L/Z(L) is abelian.

Using Prover9, we found that these are the only Perfect varieties to
satisfy such conditions:

Theorem 7.3. A4C3 is conjugacy closed and Osborn, A4F4 is Osborn,

A4C3 is nilpotent of class 2.

A4F4 contains the most interesting structural properties of any variety
of Perfect type. We call A4F4 the Frute variety since A4F4 is F lexible,
Right bol and left bol, Unity of R. Alt and L. Alt, Three-power associative
and Entails both Osborn and Moufang properties. Loops of the Frute
variety will be examined further by the authors of this paper and our advisor
Dr. J.D. Phillips in a future paper.

Historical Remarks. The classi�cation of varieties of loops of the Bol-
Moufang type was initiated by Fenyves and continued by Phillips and Vo-
jt¥chovský [6], [7], [13], [14]. In classifying loops of generalized Bol-Moufang
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type, we partially respond to Drápal and Jedli£ka's call to classify all vari-
eties of loops that include all quasigroup binary operations, *, /, and \ of
generalized Bol-Moufang type [5].

We would especially like to thank our advisor, Dr. J.D. Phillips, for his
invaluable assistance and guidance in our research.
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