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A characterization of binary invertible

algebras linear over a group

Sergey S. Davidov

Abstract. In this paper we define linear over a group and an abelian group binary
invertible algebras and characterize the class of such algebras by second-order formulae,
namely the V3(V)-identities.

1. Introduction
A quasigroup, (Q;-), of the form,
xy = pxr + a + Yy,

where (Q;+) is a group, ¢, ¥ are automorphisms (antiautomorphisms) of
(Q;+), and a is a fixed element of @, is called linear (alinear) quasigroup
over the group, (Q;+), [2, 6].

All primitive linear (alinear) quasigroups form a variety |[6].

A linear quasigroup over an abelian group is called a T-quasigroup [10].
An important subclass of the T-quasigroups is the class of medial quasi-
groups. A quasigroup (Q);-) is called medial, if the following identity holds:
xy - uv = xu - yv. Any medial quasigroup is a T-quasigroup by Toyoda
theorem, [3] — [8], with the condition, @i = V.

Medial quasigroups have been studied by many authors, namely R.H.
Bruck [8], T. Kepka, P. Nemec and J. Jezek [9]-[11], D.S. Murdoch [16],
A.B. Romanowska and J.D.H. Smith [17], K. Toyoda [21] and others and
this class plays a special role in the theory of quasigroups. T-quasigroups
were introduced by T. Kepka and P. Nemec [10, 11]. Later G.B. Belyavskaya
characterized the class of T-quasigroups by a system of two identities [5, 7].

A binary algebra (Q;3) is called invertible, if (Q; A) is a quasigroup
for any operation, A € ¥. The invertible algebras first were considered by
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R. Schauffler in touch with coding theory [19, 20]. Later such algebras were
investigated by J. Aczel [1], V.D. Belousov |2, 3], Yu.M. Movsisyan [12] -
[15], A. Sade [18] and others.

By analogy with linear (alinear) quasigroups we introduce the notion of
a linear (alinear) invertible algebra.

Definition 1.1. An invertible algebra (Q;X) is called linear (alinear) over
the group (Q;+) if every operation A € ¥ has the form:

A(z,y) = pax +ta + Yay, (1)

where ¢4, 14 are automorphisms (antiautomorphisms) of (Q;+) for all
A €Y, and t4 are fixed elements of Q.

A linear invertible algebra over an abelian group is called an invertible
T-algebra.
Let us recall, that the following absolutely closed second-order formulae:

VX1, X Ve, ooz, (w1 = w2),
VXl,...,Xkan+1...,XmVl'l,...,a?n (W1:UJ2),

where wy, wy are words (terms) written in the functional variables X7, ..., X,
and in the objective variables, x1, ..., z,, are called V(V)-identity or hyper-
identity and V3(V)-identity. The satisfiability (truth) of these second or-
der formulae in the algebra (Q;X) is understood in the sense of functional
quantifiers, (VX;) and (3X;), meaning: "for every value X; = A € ¥ of
the corresponding arity" and "there exists a value X; = A € ¥ of the cor-
responding arity". It is assumed that such a replacement is possible, that
is:

where | S| is the arity of S. Generally, hyperidentities are written without a
quantifier prefix: w; = wo. For details about such formulae see [12] - [15].

The binary algebra, (Q;X), is called medial (abelian) if the following
hyperidentity holds:

X(Y(SC, y)? Y(u7v)) = Y(X(:c,u), X(ya U))

Yu.M. Movsisyan proved that medial invertible algebras are a special class
of invertible T-algebras, namely all automorphisms of the group (Q;+),
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which correspond the operations from ¥ are permutable:

DA PB=PB PA, Ya-YB=1vp Ya, pa-Yp =1y forall A,BeX.

In the present paper we characterize the class of invertible linear (alin-
ear) algebras and the class of invertible T-algebras by second-order formulae,
namely, V3(V)-identities. For proofs of these results we use the methods of
the papers, [6, 5.

2. Linear and alinear invertible algebras

We denote by Ly, and R4, the left and right translations of the binary
algebra (Q;X): Lag : o — A(a,x), Rag @ ¢ — A(z,a). If the algebra
(Q;X) is an invertible algebra, then the translations, L4, and R4, are
bijections for all a € @) and all A € X.

The unique solution of the equality B(a,z) = a (B(z,a) = a) is denoted
by eZ (fB), ie., eB (fB) is the right (left) local identity of the element a
with respect to the operation B.

It is well known [3] that with each quasigroup A the next five quasigroups
are connected:

14—17 _IA, —1(14—1)7 (_IA)_I, A*,

where A*(z,y) = A(y,x). These quasigroups are called inverse quasigroups
or parastrophies. Like this, with each invertible algebra (Q;X) the next five
invertible algebras are connected:

(@7, (@7'D), (@ E), (@), (@),
where
yl={A"YAecx},
“ln={t4lA e},
ET)={TATh)4es),
')t ={"A) A ez,
Yr={A%A e}
Each of these invertible algebras are called parastrophies of (Q;X).

Lemma 2.1. If an invertible algebra (Q; %) satisfies the following equality:

A(B(z,y), B(u,v)) = A(B(z, u), B(ay, v)), (2)
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where « is a mapping from @ into QQ and A, B are some operations from
Y, then a depends on u, A, B and on their inverse operations and has the
form:

oy = By ==1 B(A™ Y (u, A(B("'B(u,u),y),u)), B~ (u,u)) . (3)
Proof. If in (2) x = fB and v = B, we obtain:
A(B(f,9), B(u,e))) = A(B(f,u), Blay, ef))
A(B(ff,y),u) = A(u,B(ay,ef)) ,
A(LBJuBy,u) = A(u, RByegay) ,
RauLp gpy = LauRp pay,
ay = R;egLZ,IuRAuLB,ffy'
We have
ay = R5' p L3 RauB (1Y) = R\ p La, A(B(f7,y),u) =
Ry A (u, A(B(f ) w)) =
7lB(A*1 (u, A(B(_IB(U, u), y) , u)) .~ B(u, u)),

since e = B~ Y(u,u), fB ="' B(u,u), R;yx =—1 B(xz,y), Lg}yx =

B~ (y, x). O
Lemma 2.2. If an invertible algebra (Q; %) satisfies the following equality:
A(B(z,y), B(u,v)) = A(B(Bv,y), B(u,z)), (4)

where 3 1s a mapping from Q into QQ and A, B are some operations from
Y, then B depends on x, A, B and on their inverse operations and has the
form:

Bv = ﬂf’Bv ="1 B(flA(A(a:,B( B(x,x),v)),x),Bil(x,a:)) . (5)

Proof. If in (4) y = €2 and u = f2, then we obtain as in Lemma 2.1. [

-1

Theorem 2.1. The binary algebra (Q;X) is an invertible linear algebra iff
the following second order formula:

XY (z,y),Y(u,v)) = X(Y(m, u), Y(aff’yy, v)), (6)
where

XYy =1 Y(X_l(u, X(Y(_lY(u, u), y),u)),Y_l(u, u)) (7)

u

is valid in the algebra (Q; X UL L UL Y) for all X,Y € 3.
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Proof. Let (Q;X) be an invertible linear algebra, then for every X € ¥ we
have:

X(z,y) = pxa +cx +Pxy,
where px, 1x are automorphisms of the group (Q;+) and cx € Q. We

prove that equality (6) is valid in the algebra (Q;X U X! U™ %) for all

X,Y € 3, when

XY XY
aff’yy:—ao utaoay” y+tu,

where ozg(’yy = go;li,b;(lic_ylﬁc)(goxwyy, icyx =cy+z, Ry = 2+ cx.

Indeed,

XY (z,y),Y(u,v))=px(pyz + cy +¥yy) + cx +Ux(oyu +cy +Yyv)=
= pxpyr + oxcy + ox¥yy +cx +Uxoyu +xcy +Yxiyv,

on the other hand, using the expressions for a())(’y, we obtain

X (Y (z,u), Y(auX’Yy, v)) = px(pyz + ey +Yyu) + cx+
+x (pyay Yy + oy +1yv) = oxeyT + oxcy + oxtyu+ ex+
+xpy (—ag u+agy +u) +Pxey +vxyo = pxoya + pxey+
+oxyu+cx — ¢X<PY<P;71¢;(1£E;RcX oxyu+
+Uxpy ey U Lot Reyox vy + Yxovu + dxey + Yxidyv =
= QOxPyT + pxcy +oxPyu +cx — I:C_YIRCX pxvyu+ ic_ylfzcx oxyy+
Foxpyu+ vxcy + Uxihyv = pxpyr + pxcy + oxyu+cex—
—(—cy +pxtyu+ex) —cy + oxt¥yy + cx +Pxpyu+ xey+
+YxPyv = oxpyT + oxcy + oxtyy +cx —cx — pxPyu + cy —
—¢y + ox¥yy +cx +Yxpyu+xey +Pxyv =
=oxpyx +pxcy + exhyy +ex +Yxoyu+ xey + pxipyv.
Thus, the right and left sides of equality (6) are equal. According to
Lemma 2.1 we obtain that aj® has the form of (7).
Conversely, let formula (6) be valid in the algebra (Q; X U X1 U™l %)
for all X,Y € ¥. We prove that the algebra (@Q;X) is an invertible linear

algebra. Let us fix (in (6)) the element v = a and the operations X = A,
Y = B, where A, B € X, then we obtain:

A(B(z,y), B(a,v)) = A(B(z,a), B(aiPy,v)),
A(B(z,y), Lpqv) = A(RB@a:, B(af’By,v)),
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or
A1(Az(z,y),v) = As(x, Aa(y,v)),
where Ay (z,y) = A(xﬂLB,ay)7 As(z,y) = B(z,y), As(z,y) = A(RB,am)y)a
AB
A4($7 y) = B(aa z, y)

From the last equality, according to Belousov’s theorem about four
quasigroups which are connected through the associative law [18], all the
operations A; (i = 1,2, 3,4) are isotopic to the same group. Hence, the op-
erations, A and B, are isotopic to the same group, and since the operations
A and B are arbitrary we obtain that all the operations from X are isotopic
to the same group (Q;*).

For every X € X, let us define the operations:

Ty = X(Ry,o L), (8)

where a, b are some elements from (). These operations are loops with the
identity element Ox = X (b, a) 3], and they are isotopic to the group (Q; *).
Hence, by Albert’s theorem [3], they are groups for every X € ¥.

Let us rewrite equality (6) (where X = A, Y = B), (in terms of the

operations + and +) in the following way:
A B

Rao(Rpox JBr Lpyy) ﬂ; Lap(Rpau g Lpyv) =
Ra.o(RB,av ; Lpyu) ﬂz LA,b(RB,aOéf’By ﬂg Lppv),
Raa(z+y) + Lap(u+v) =
B A B
_ A _
Ryq (:c —g LB,bRB,laU) j;_ Lay (RB,GO‘R;aLB,lby E v).
If we take u = 0p and v = L;‘lbOA in the last equality, then we have:
-1
Raa(w+y) + Lap(0n + L}1304) =
- A,B - _
Raa(z E LB7bRB,1aOB) j Lap (RB,aO‘R;laoBLB,lby ‘g LA,lbOA)>

Ra(z 1 y) = aa B " BA,BY, (9)
where
QA BT = RAﬂ (.%' —g LB,bRé}aOB)a

AB _ -
Ba,BY = LA,b(RB,aOéR’ LB,lby JBF LA,lbOA)'

-1
B,aOB
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Since the operations A and B are arbitrary, we can take A = B in (9),
then we obtain:

Raa(x " Y) = aa Az " Ba,AY- (10)
From (9) and (10), we have:
vy = Raa(ogaw + 834y),
T4y = Raa(0spr + Balpy),

—1 —1 —1 —1
Qg AT j“ Baay=a,pe E BaBY

thus, we obtain:
T4y =748+ 0A,BY; (11)

where y4 B = oy BaAA and 04,8 = B4 BﬂAA are the permutations of the
set (. Hence, from (9), according to (11) we get:

Raa(z JBr Y) = YA,BOA,BT JBr 04,B84,BY,

i.e., Raq is a quasiautomorphism of the group (Q + ) and since the op-
eratlon A is arbitrary, we have that R4, is the quasfhiutomorphism of the

group (Q, + ) for all operations A from Y. We fix the operation + and
B B

further will be denote it by +.
According to (8), for the operations A € ¥ we have:

A(z,y) = Rao ji Lapy.

According to (11), from the last equality, we get:
Az,y) = 0P + 058y, (12)

where 0’4 =4 BRA}?% and 0 = 04,8L 4 are the permutations of Q.

We prove that 0 and 9 ’B are quasiautomorphisms of the group
(Q;4). To do it we take v = a, u = fP, X = A, Y = B in equality

a
(6) and rewrite this equality in terms of the operation +:

AB
A(B(w,y),0) = A(B(s,£7), B(a4y,0)).
Qf’B(RB,aJ) + Lppy) + Of’Ba = Qf’BRB’ffas + 054’3 (RB,aa%By + Lppa),

017 (Rp at + L) = 03 "Ry gpx + 05" (Rp iy + Lipa) — 65"
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07"% (@ +y) = 0{"" Ry ;s Ryl o + 057 (RB,aa;‘fBL;}by + Lppa) — 05",

A
0;°%(x +y) = 04T + pa,BY

where
A,B — A,B A,Br— A,B
oa,Br=0]" RB,ffRB,la‘T and pa py=0;" (RB,aO[faé LB}by-FLB,bG) —0,"a

are the permutations of () and therefore 0{1’3 is a quasiautomorphism of the
group (Q;+).
Now, we take 2 = fZ, u=1b, X = A, Y = B in (6) and rewrite this
equality in terms of the operation +:
A,B
A(B(£y,y), B(b,v)) = A(b, B(ay "y, v)),
01 F Ly ppy + 05" Lpyv = 6,770+ 6577 (Rp 0y "y + L po),

A,B AB A,B A,B AB

05" (Rpacy, "y + Lpyv) = —07""b+ 607" Lppy+ 07" L pv,
A,B

057 (y +v) = 0y gy + 1a g,

/ _ pAB A,B AB\—1 -1 ’ _ pAB
where OuBY = —0777b+0; LBJbB (ab ) Rp .Yy and WGl 05" v are

the permutations of the set ) and therefore 6’54 Plis a quasiautomorphism
of the group (Q;+).
According to [3, lemma 2.5] we have:

07"z = paz + sa,
AB
927 $:tA+wAy7
where 4, 14 are automorphisms of the group (Q;+) and t4, s4 are some
elements of the set (). Hence, from (12), it follows that

A(z,y) = paz +ca +Yay, (13)

where cq = s4 + t4.
Since the operation A is arbitrary, we obtain that all the operations
from ¥ can be presented in the form of (13) through the operation +. [

Theorem 2.2. The binary algebra (Q;X) is an invertible alinear algebra
iff the following second order formula:

X(Y(2,9), Y (u,0) = X (Y (XY 0,9),Y (u, 2), (14)

where

B0 =Y (X (X (2,Y ('Y (2,2),0)),2), Y T (w,2)) (1)

is valid in the algebra (Q; X UL L UL Y) for all X,V € 3.



A characterization of binary algebras 215

Proof. Let (Q;X) be an invertible alinear algebra, then for every X € 3

X(may):(pr+cX+¢Xy7

where px, ¥ x are antiautomorphisms of the group (Q;+) and cx € Q. We
prove that equality (14) is valid in the algebra (Q; X U X~ U™l X) for all
XY €3, if:

XY XY XY
Brlv=ax+06y v—-0" x,

where ﬁé(’yv = go;lc,o;(léc_)}f@x¢x@byv, Rcyx = x + cy, f/CXsc =cx + x.
Indeed,

X(Y(x,y),Y (u,v))=¢x(pyx +cy +yy) + cx + Ux(pyu+ cy +hyv)=
= oxYPyy +pxcy +oxpyr +cx +YxPyv +Pxey +vxpyu,

on the other hand, using the expressions for ﬁ()f ’Y, and taking into account
that @ x ¢y is an automorphism of the group (Q;+) we obtain:

X(Y (85 0,9), Y (u, 7)) = ox(oy B v+ ey +hyy) +ex+
+Yx (pyu—+ ey +¥ya) = extyy + oxey + oxey B v+ ex+
+xyyx +xey +Yxpyu = pxPyy + oxcy+
toxoy (x4 85 v — BT @) + ex + Uxbyar +dxey + dxpyu =
= oxyy + pxcy + pxevT + exey By v — oxey T @+ ex+
+xtyr +bxey +Pxoyu = pxtbyy + oxcy + pxpyr+
+<PX90Y¢§190}1RZ;£CX Yxyv — cpxsow;lsz?}lé;}icx Yxpyr+
+ex +Yxvyx +Pxey +Yxpyu = oxyy + pxcy + pxpyr +cex+
+Yxpyv—cy—(cx +Yxthyr—cy) + ex + Pxyx + Pxcy + Pxpyu=
= pxVPyy +oxcy + oxpyT +cx +YxPyv —cy + oy — Yxyr—
—cx +ex HYxyr +Yxey +Yxpoyu =
= oxPyy +pxcy + oxpyr +cx + YxPyv +dxey +Pxpyu.

Thus, the right and left sides of equality (14) are equal. According to
Lemma 2.2, we get that 357 has the form of (15).

Conversely, let the formula (14) be valid in the algebra (Q; SUX~1U~1Y)
for all X, Y € X. We prove that the algebra (Q;3) is an invertible alinear
algebra. Fixing the element x = p and the operations X = A, Y = B,
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where A, B € ¥ in (14), we obtain:

A(B(p,y), B(u,v)) = A(B(8;"5v,y), B(u,p)),
A(Lpyy, B(u,v)) = A(B(8;""v,y), R pu),
A (B(ua ’U), LB,py) = A" (RB,pu’ B(/B;:LB’LU y))
or
AI(A2(U7 ’U), y) = A3(ua A4(1}, y))a
where Al(l‘, y) = A*(IL‘, LB,py)a A2($7 y) = B(.fL', y)7 Ag(l’, y) = A*(RB,pmv y):
A,B
A4<x7y) = B(/Bp ' x7y)

From the last equality, according to Belousov’s theorem about four
quasigroups which are connected with the associative law [18], all the oper-
ations A; (i = 1,2,3,4) are isotopic to the same group. Since the operation
B is arbitrary, we obtain that all the operations from 3 are isotopic to the

same group (Q; *).
For every X € ¥ let us define the operations:

x ; y = X(R;(}ax, L;(}by), (16)

where a, b are some elements from (). These operations are loops with the
identity element Ox = X (b, a) 3], and they are isotopic to the group (Q; *).
Hence by Albert’s theorem [3] they are groups for every X € 3.
Let us rewrite the equality (14) (where X = A, Y = B) in terms of the
operations + and +
A B
Ra(Rpax JBr Lpyy) ﬂ; Lap(RBqu g Lppv) =

RA,a(RB,aﬂf’Bv vg L) jx_ Lay(Rpau }; Lppx).
If we take y = a and x = R;lab = d in the last equality, we have:
Raa(RpaRgl,b + Lppa) + Lay(RBau + Lpyw) =
Raa(Rpafy v + L) + Lap(Rpau + Lpyd),
RA,a(b + 03) + LAJ,(RB,au + LBJ,U) =
B A B
Raa(Rpafy "0 + 0p) + LayB(u,d),

A
Raab+ Lap(Rpau -BF Lpyv) = RaoRpafy Py j{ LapRpau,
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Lay(Rpau ﬂg Lpyv) = RA,aRB,aﬂdA’BU j LapRpqu,

or
LA,b(u—gv) :aA,BUj;ﬁA,BU (17)

where
A,B r— -1
QA B = RA aRB a,B L and BA,B = LAbeB,dRB,a

are permutations of the set Q.
Since the operations A and B are arbitrary, we can take A = B in (17),
and get:
LA,b(U‘J;U) :aAAvjﬁA,Au. (18)

From (17) and (18) we have:
v j;— u=1Layp (ﬁX}Bu —g aZ}Bv),
v —: u=Layp (ﬁ;‘}Au 4A; aZ}Av),
Bapt 4 aalpy = Byau 4 ayyw,
and thus, we obtain:

U+ v = 7y4,BU + 04 BV, (19)
A B

where y4 5 = @ZlgﬂA,A and 04 B = a;llBaA’A are the permutations of the

set Q.
According to (16), for the operations A € ¥, we have:

A(z,y) = Rgo + Lapy.

According to (19), from the last equality, we get:
Al y) = 0,z + 0,7y, (20)

where Of’B = v4,BR4,, and the 6’;"3 = 04,8L Ay are the permutations of
the set Q). Thus, we can represent every operations from X by the operation
—|— We fix the operation —|— and further denote it by + .

We shall prove that HAB and 9 are antiquasiautomorphisms of the
group (Q;+). To do it we take z = a, u = fB, X = A, Y = B, in equality
(14) and rewrite this equality in terms of the operation, +:
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A(B(a,y), B(f7v)) = A(B( 2 Pu.y),a),

0% (Rpaa + L py) + 0575 Ly JBU = 0;"" (Rp.oB2Pv + Lpy) + 65 a
aA B(RB BBu+ Lpyy) = 017 (Rpaa+ Lppy) + 03" L v — 03P a
Plo+y) =00 (Rpaa+y) + 67§4’BLB,faB (ﬁf’B)ilREe,lav —03"Pa,

P+ y) = oapy + papo,

where
O‘A7By:9fl’B (RBea+y) and ,uABv:%"BLB’ff (ﬁf’B)_le}av - GQA’Ba are
the permutations of the set () and therefore, HIA’B is an antiquasiautomor-
phism of the group (Q;+).
If we take = = a, y =eB X = A, Y = B in the equality (14), we can
similarly prove that 9 B is an antiquasiautomorphism of the group (Q;+).
Thus, we have |2]

0P = paz + 524,
AB
92’ ',B:tA—i_wAya

where ¢4, 14 are antiautomorphisms of the group (Q;+) and t4, s4 are
some elements of the set (). Hence, from (20) we get that:

A(z,y) = paz +ca+ay, (21)
where cq = s4 + t4.
Since the operation A is arbitrary, we obtain that all the operations
from ¥ can be presented in the form of (21). O
3. Invertible T-algebras

It is known [10, 11| that T-quasigroups are invariant under parastrophies.
We have the same result for parastrophies of invertible T-algebras.

Proposition 3.1. Let (Q;X) be an invertible T-algebra. Then all parastro-
phies of the algebra, (Q;X), are invertible T-algebras.

Also, as in the case of quasigroups [6], we have the following result:

Proposition 3.2. If an invertible algebra is linear and alinear then it is
T-algebra.
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Lemma 3.1. If the algebra (Q; UL 1UTIY), where (Q; X) is an invertible
T-algebra, satisfies equality (6) for all X,Y € X, then this equality is also
valid in the algebra (Q;X U™ S US U (TIE)tuTt (ST UEY) for all
X yexulzuzstuiy)tut(zhuzn

Proof. We must check equalities for all A, B € YU !X uy-tu(-ty)-tut
(X71). For example, let us check the following equality:

A(_lB(l‘, y),_1 B(u, v)) = A(_lB(x, u),_1 B(ozA’_lBy, v))

In this case, we have:
ot Py = B(A™ (w, AT B(B(u,u),y),w), (' B) (u,w)).
It follows from (1):

ANz, y) = ¢y (—ca — paz +y),

“'B(x,y) = ¢5 (x — Yy — cB),

(T'B)Mx,y) = v5' (—cB — pBY + ).
Let us calculate af’ilBy:

ATYB -1 -1 -1
o Ty =ty (paps vBu — 0apn ¥BY + Yau) +u— ppu—cp +cp

= B PaPE VBU — BV AP By + PBu +u — ppu
= oYl eary (Vpu — YpY) + u.

Therefore
A(_lB(az, u), ! B(af}’ilBy, v))
= A(¢p'(z — Ypu—cp), 05" (af’_lBy —¢pv —cp))

-1
= papp (@ — Ypu—cp) +Yapp (ol Py — v —cp) +ca

= 0APE'T — AP VU — appies + Yapg opY i vars (Veu — YY)
e u — Yaps vy — Yapptcs +ca

= APE T —pAas cB— AP UBY+aE u— Yaps vBv— Yaps'cptea

On the other hand

A(_lB(:E, u),_lB(u,v)) = cpAgpgl(x—v/)By—cB) + wAcpgl(u—va—cB)—l—cA

= PAPR T PAP R VBY— APy et A u— YA v —Yapg catca.

Thus, the right and left sides are equal. Similarly, we can check the
other cases. O
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Lemma 3.2. Let (Q;X) be an invertible T-algebra. If the algebra, (Q; % U
YL Ut Y), satisfies equality (14) for all X,Y € X, then this equality is
valid in the algebra (Q;X U™ S UL U (TIE)tuTt (ST UEY) for all
Xyexulzustuiy)tut(zhuzsn

Proof. Similarly as Lemma 3.1. O

Theorem 3.1. (Q;X) is an invertible T-algebra iff (6) and (14) are valid
in the algebra (Q;XUTISUNT U (TIE)TTUTH(ETHUSH) forall XY €
suttzuzTtu i) tutt(zThu s

Proof. As in the proof of Theorems 2.1 and 2.2, the invertible T-algebra
satisfies formulae (6) and (14). The rest follows from Lemmas 3.1 and 3.2.
The converse statement is a consequence of Proposition 3.2. 0

Corollary 3.1. Let (Q;X) be an invertible T-algebra. If (Q;X) satisfies
the following second-order formula:

VX1, Xo Ve, w9, w3 14
(Xl (XQ(xlv x2)7 X2($47 1‘3)) =Xy (XQ(:UI? .%'4), X2(x27 .’Bg))), (22)

then in (Q;X) the following hyperidentity is valid:

X1 (Xg(l‘l, .’L‘Q), XQ(SL’4, 1'3)) = X1 (XQ(SL’l, l’4), Xg(l‘g, 133))

Proof. Let (Q;X) be an invertible T-algebra. Then it satisfies (6). If we
rewrite (6), in terms of the operation +, then after cancellations we obtain

Yxeyu+oxtyy = pxtyu+ Pxeye "y, (23)
which for u = 0 gives px 9y = ¢ chyozéf’y. This together with (23) implies

U+ ag(’yy = aé(’yu + auX’Yy , (24)

where ag( Y is the permutation which corresponds to the identity element

of the group, (Q;+).
If (22) is valid in (Q;X), then for every X, Y € 3 and every z,y,v € Q
there exists an element h € @ such that the following equality is valid:

XY (x,y,Y(h,v)) = X(Y(z,h),Y(y,v)).
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Therefore, aff’y is the identity permutation of the set Q).
From the proof of Theorem 2.1, it follows that the loops =z + y =
X

X (R)_(lax, L)_(lby) are groups for all a,b € @ and all operations X € 3 and
also, we can take any of the groups, + (X € X) as a group +.
X

Let us choose the elements a, b such that h = Y (b,a) is an identity

element of the group (Q;+), then aff’y is the identity permutation of the

set Q. Therefore, from (24), we have auX’Yy = y since aé(’y = af’y is the

identity permutation. Hence oY is the identity permutation for all u € @)
and all X, Y € X, ]

Corollary 3.2. The quasigroup, (Q;-), is a T-quasigroup iff formulae (6)
and (14) are valid in the quasigroup, (Q;-, /,\), for all X, Y € {-)\,/}.
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