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A characterization of binary invertible

algebras linear over a group

Sergey S. Davidov

Abstract. In this paper we de�ne linear over a group and an abelian group binary
invertible algebras and characterize the class of such algebras by second-order formulae,
namely the ∀∃(∀)-identities.

1. Introduction

A quasigroup, (Q; ·), of the form,

xy = ϕx+ a+ ψy,

where (Q; +) is a group, ϕ, ψ are automorphisms (antiautomorphisms) of
(Q; +), and a is a �xed element of Q, is called linear (alinear) quasigroup

over the group, (Q; +), [2, 6].
All primitive linear (alinear) quasigroups form a variety [6].
A linear quasigroup over an abelian group is called a T -quasigroup [10].

An important subclass of the T -quasigroups is the class of medial quasi-
groups. A quasigroup (Q; ·) is called medial, if the following identity holds:
xy · uv = xu · yv. Any medial quasigroup is a T -quasigroup by Toyoda
theorem, [3] � [8], with the condition, ϕψ = ψϕ.

Medial quasigroups have been studied by many authors, namely R.H.
Bruck [8], T. Kepka, P. Nemec and J. Ježek [9]-[11], D.S. Murdoch [16],
A.B. Romanowska and J.D.H. Smith [17], K. Toyoda [21] and others and
this class plays a special role in the theory of quasigroups. T -quasigroups
were introduced by T. Kepka and P. Nemec [10, 11]. Later G.B. Belyavskaya
characterized the class of T -quasigroups by a system of two identities [5, 7].

A binary algebra (Q; Σ) is called invertible, if (Q;A) is a quasigroup
for any operation, A ∈ Σ. The invertible algebras �rst were considered by
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R. Schau�er in touch with coding theory [19, 20]. Later such algebras were
investigated by J. Aczel [1], V.D. Belousov [2, 3], Yu.M. Movsisyan [12] �
[15], A. Sade [18] and others.

By analogy with linear (alinear) quasigroups we introduce the notion of
a linear (alinear) invertible algebra.

De�nition 1.1. An invertible algebra (Q; Σ) is called linear (alinear) over
the group (Q; +) if every operation A ∈ Σ has the form:

A(x, y) = ϕAx+ tA + ψAy, (1)

where ϕA, ψA are automorphisms (antiautomorphisms) of (Q; +) for all
A ∈ Σ, and tA are �xed elements of Q.

A linear invertible algebra over an abelian group is called an invertible

T -algebra.

Let us recall, that the following absolutely closed second-order formulae:

∀X1, . . . , Xm∀x1, . . . , xn (ω1 = ω2),
∀X1, . . . , Xk∃Xk+1 . . . , Xm∀x1, . . . , xn (ω1 = ω2),

where ω1, ω2 are words (terms) written in the functional variablesX1, ..., Xm,
and in the objective variables, x1, . . . , xn, are called ∀(∀)-identity or hyper-
identity and ∀∃(∀)-identity. The satis�ability (truth) of these second or-
der formulae in the algebra (Q; Σ) is understood in the sense of functional
quanti�ers, (∀Xi) and (∃Xj), meaning: "for every value Xi = A ∈ Σ of
the corresponding arity" and "there exists a value Xj = A ∈ Σ of the cor-
responding arity". It is assumed that such a replacement is possible, that
is:

{|X1|, . . . , |Xm|} ⊆ {|A| |A ∈ Σ} ,

where |S| is the arity of S. Generally, hyperidentities are written without a
quanti�er pre�x: ω1 = ω2. For details about such formulae see [12] � [15].

The binary algebra, (Q; Σ), is called medial (abelian) if the following
hyperidentity holds:

X(Y (x, y), Y (u, v)) = Y (X(x, u), X(y, v)).

Yu.M. Movsisyan proved that medial invertible algebras are a special class
of invertible T -algebras, namely all automorphisms of the group (Q; +),
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which correspond the operations from Σ are permutable:
ϕA · ϕB = ϕB · ϕA, ψA · ψB = ψB · ψA, ϕA · ψB = ψBϕA for all A,B ∈ Σ.

In the present paper we characterize the class of invertible linear (alin-
ear) algebras and the class of invertible T -algebras by second-order formulae,
namely, ∀∃(∀)-identities. For proofs of these results we use the methods of
the papers, [6, 5].

2. Linear and alinear invertible algebras

We denote by LA,a and RA,a the left and right translations of the binary
algebra (Q; Σ): LA,a : x 7→ A(a, x), RA,a : x 7→ A(x, a). If the algebra
(Q; Σ) is an invertible algebra, then the translations, LA,a and RA,a are
bijections for all a ∈ Q and all A ∈ Σ.

The unique solution of the equality B(a, x) = a (B(x, a) = a) is denoted
by eBa (fB

a ), i.e., eBa (fB
a ) is the right (left) local identity of the element a

with respect to the operation B.
It is well known [3] that with each quasigroupA the next �ve quasigroups

are connected:

A−1, −1A, −1(A−1), (−1A)−1, A∗,

where A∗(x, y) = A(y, x). These quasigroups are called inverse quasigroups

or parastrophies. Like this, with each invertible algebra (Q; Σ) the next �ve
invertible algebras are connected:

(Q; Σ−1), (Q;−1 Σ), (Q;−1 (Σ−1)), (Q; (−1Σ)−1), (Q; Σ∗),

where

Σ−1 = {A−1|A ∈ Σ},
−1Σ = {−1A|A ∈ Σ},

−1(Σ−1) = {−1(A−1)|A ∈ Σ},
(−1Σ)−1 = {(−1A)−1|A ∈ Σ},

Σ∗ = {A∗|A ∈ Σ}.

Each of these invertible algebras are called parastrophies of (Q; Σ).

Lemma 2.1. If an invertible algebra (Q; Σ) satis�es the following equality:

A(B(x, y), B(u, v)) = A(B(x, u), B(αy, v)), (2)
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where α is a mapping from Q into Q and A, B are some operations from

Σ, then α depends on u, A, B and on their inverse operations and has the

form:

αy = αA,B
u y =−1 B

(
A−1(u,A(B(−1B(u, u), y), u)), B−1(u, u)

)
. (3)

Proof. If in (2) x = fB
u and v = eBu , we obtain:

A
(
B

(
fB

u , y
)
, B

(
u, eBu

))
= A

(
B

(
fB

u , u
)
, B

(
αy, eBu

))
,

A
(
B

(
fB

u , y
)
, u

)
= A

(
u,B

(
αy, eBu

))
,

A
(
LB,fB

u
y, u

)
= A

(
u,RB,eB

u
αy

)
,

RA,uLB,fB
u
y = LA,uRB,eB

u
αy ,

αy = R−1
B,eB

u
L−1

A,uRA,uLB,fB
u
y .

We have

αy = R−1
B,eB

u
L−1

A,uRA,uB
(
fB

u , y
)

= R−1
B,eB

u
L−1

A,uA
(
B

(
fB

u , y
)
, u

)
=

R−1
B,eB

u
A−1

(
u,A

(
B

(
fB

u , y
)
, u

))
=

−1B
(
A−1

(
u,A

(
B

(−1
B(u, u), y

)
, u

))
,−1B(u, u)

)
,

since eBu = B−1(u, u), fB
u =−1 B(u, u), R−1

B,yx =−1 B(x, y), L−1
B,yx =

B−1(y, x).

Lemma 2.2. If an invertible algebra (Q; Σ) satis�es the following equality:

A(B(x, y), B(u, v)) = A(B(βv, y), B(u, x)), (4)

where β is a mapping from Q into Q and A, B are some operations from

Σ, then β depends on x, A, B and on their inverse operations and has the

form:

βv = βA,B
x v =−1 B

(−1
A

(
A

(
x,B

(−1
B(x, x), v

))
, x

)
, B−1(x, x)

)
. (5)

Proof. If in (4) y = eBx and u = fB
x , then we obtain as in Lemma 2.1.

Theorem 2.1. The binary algebra (Q; Σ) is an invertible linear algebra i�

the following second order formula:

X(Y (x, y), Y (u, v)) = X
(
Y (x, u), Y

(
αX,Y

u y, v
))
, (6)

where

αX,Y
u y =−1 Y

(
X−1

(
u,X

(
Y

(−1
Y (u, u), y

)
, u

))
, Y −1(u, u)

)
(7)

is valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ) for all X,Y ∈ Σ.
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Proof. Let (Q; Σ) be an invertible linear algebra, then for every X ∈ Σ we
have:

X(x, y) = ϕXx+ cX + ψXy ,

where ϕX , ψX are automorphisms of the group (Q; +) and cX ∈ Q. We
prove that equality (6) is valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ) for all
X,Y ∈ Σ, when

αX,Y
u y = −αX,Y

0 u+ αX,Y
0 y + u ,

where αX,Y
0 y = ϕ−1

Y ψ−1
X L̃−1

cY
R̃cXϕXψY y, L̃cY x = cY + x, R̃cXx = x + cX .

Indeed,

X(Y (x, y), Y (u, v))=ϕX(ϕY x+ cY + ψY y) + cX + ψX(ϕY u+ cY + ψY v)=
= ϕXϕY x+ ϕXcY + ϕXψY y + cX + ψXϕY u+ ψXcY + ψXψY v ,

on the other hand, using the expressions for αX,Y
0 , we obtain

X
(
Y (x, u), Y

(
αX,Y

u y, v
))

= ϕX(ϕY x+ cY + ψY u) + cX+

+ψX

(
ϕY α

X,Y
u y + cY + ψY v

)
= ϕXϕY x+ ϕXcY + ϕXψY u+ cX+

+ψXϕY

(
− αX,Y

0 u+ αX,Y
0 y + u

)
+ ψXcY + ψXψY v = ϕXϕY x+ ϕXcY +

+ϕXψY u+ cX − ψXϕY ϕ
−1
Y ψ−1

X L̃−1
cY
R̃cXϕXψY u+

+ψXϕY ϕ
−1
Y ψ−1

X L̃−1
cY
R̃cXϕXψY y + ψXϕY u+ ψXcY + ψXψY v =

= ϕXϕY x+ ϕXcY + ϕXψY u+ cX − L̃−1
cY
R̃cXϕXψY u+ L̃−1

cY
R̃cXϕXψY y+

+ψXϕY u+ ψXcY + ψXψY v = ϕXϕY x+ ϕXcY + ϕXψY u+ cX−
−(−cY + ϕXψY u+ cX)− cY + ϕXψY y + cX + ψXϕY u+ ψXcY +

+ψXψY v = ϕXϕY x+ ϕXcY + ϕXψY y + cX − cX − ϕXψY u+ cY −
−cY + ϕXψY y + cX + ψXϕY u+ ψXcY + ψXψY v =

= ϕXϕY x+ ϕXcY + ϕXψY y + cX + ψXϕY u+ ψXcY + ψXψY v.

Thus, the right and left sides of equality (6) are equal. According to
Lemma 2.1 we obtain that αX,Y

u has the form of (7).
Conversely, let formula (6) be valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ)

for all X,Y ∈ Σ. We prove that the algebra (Q; Σ) is an invertible linear
algebra. Let us �x (in (6)) the element u = a and the operations X = A,
Y = B, where A,B ∈ Σ, then we obtain:

A(B(x, y), B(a, v)) = A
(
B(x, a), B

(
αA,B

a y, v
))
,

A(B(x, y), LB,av) = A
(
RB,ax,B

(
αA,B

a y, v
))
,
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or
A1(A2(x, y), v) = A3(x,A4(y, v)),

where A1(x, y) = A(x, LB,ay), A2(x, y) = B(x, y), A3(x, y) = A(RB,ax, y),
A4(x, y) = B

(
αA,B

a x, y
)
.

From the last equality, according to Belousov's theorem about four
quasigroups which are connected through the associative law [18], all the
operations Ai (i = 1, 2, 3, 4) are isotopic to the same group. Hence, the op-
erations, A and B, are isotopic to the same group, and since the operations
A and B are arbitrary we obtain that all the operations from Σ are isotopic
to the same group (Q; ∗).

For every X ∈ Σ, let us de�ne the operations:

x +
X
y = X

(
R−1

X,ax, L
−1
X,by

)
, (8)

where a, b are some elements from Q. These operations are loops with the
identity element 0X = X(b, a) [3], and they are isotopic to the group (Q; ∗).
Hence, by Albert's theorem [3], they are groups for every X ∈ Σ.

Let us rewrite equality (6) (where X = A, Y = B), (in terms of the
operations +

A
and +

B
) in the following way:

RA,a

(
RB,ax +

B
LB,by

)
+
A
LA,b

(
RB,au +

B
LB,bv

)
=

RA,a

(
RB,ax +

B
LB,bu

)
+
A
LA,b

(
RB,aα

A,B
u y +

B
LB,bv

)
,

RA,a

(
x +

B
y
)

+
A
LA,b

(
u +

B
v
)

=

RA,a

(
x +

B
LB,bR

−1
B,au

)
+
A
LA,b

(
RB,aα

A,B

R−1
B,a

L−1
B,by +

B
v
)
.

If we take u = 0B and v = L−1
A,b0A in the last equality, then we have:

RA,a

(
x +

B
y
)

+
A
LA,b

(
0B +

B
L−1

A,b0A

)
=

RA,a

(
x +

B
LB,bR

−1
B,a0B

)
+
A
LA,b

(
RB,aα

A,B

R−1
B,a0B

L−1
B,by +

B
L−1

A,b0A

)
,

RA,a

(
x +

B
y
)

= αA,Bx +
A
βA,By, (9)

where

αA,Bx = RA,a

(
x +

B
LB,bR

−1
B,a0B

)
,

βA,By = LA,b

(
RB,aα

A,B

R−1
B,a0B

L−1
B,by +

B
L−1

A,b0A

)
.
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Since the operations A and B are arbitrary, we can take A = B in (9),
then we obtain:

RA,a

(
x +

A
y
)

= αA,Ax +
A
βA,Ay. (10)

From (9) and (10), we have:

x +
A
y = RA,a

(
α−1

A,Ax +
A
β−1

A,Ay
)
,

x +
A
y = RA,a

(
α−1

A,Bx +
B
β−1

A,By
)
,

α−1
A,Ax +

A
β−1

A,Ay = α−1
A,Bx +

B
β−1

A,By,

thus, we obtain:
x +

A
y = γA,Bx +

B
δA,By, (11)

where γA,B = α−1
A,BαA,A and δA,B = β−1

A,BβA,A are the permutations of the
set Q. Hence, from (9), according to (11), we get:

RA,a

(
x +

B
y
)

= γA,BαA,Bx +
B
δA,BβA,By,

i.e., RA,a is a quasiautomorphism of the group
(
Q; +

B

)
and since the op-

eration A is arbitrary, we have that RA,a is the quasiautomorphism of the
group

(
Q; +

B

)
for all operations A from Σ. We �x the operation +

B
and

further will be denote it by +.
According to (8), for the operations A ∈ Σ we have:

A(x, y) = RA,ax +
A
LA,by.

According to (11), from the last equality, we get:

A(x, y) = θA,B
1 x+ θA,B

2 y, (12)

where θA,B
1 = γA,BRA,a and θA,B

2 = δA,BLA,b are the permutations of Q.
We prove that θA,B

1 and θA,B
2 are quasiautomorphisms of the group

(Q; +). To do it we take v = a, u = fB
a , X = A, Y = B in equality

(6) and rewrite this equality in terms of the operation + :

A(B(x, y), a) = A
(
B

(
x, fB

a

)
, B

(
αA,B

fB
a
y, a

))
,

θA,B
1 (RB,ax+ LB,by) + θA,B

2 a = θA,B
1 RB,fB

a
x+ θA,B

2

(
RB,aα

A,B
fB

a
y + LB,ba

)
,

θA,B
1 (RB,ax+ LB,by) = θA,B

1 RB,fB
a
x+ θA,B

2

(
RB,aα

A,B
fB

a
y + LB,ba

)
− θA,B

2 a,
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θA,B
1 (x+ y) = θA,B

1 RB,fB
a
R−1

B,ax+ θA,B
2

(
RB,aα

A,B
fB

a
L−1

B,by + LB,ba
)
− θA,B

2 a,

θA,B
1 (x+ y) = σA,Bx+ µA,By,

where
σA,Bx=θ

A,B
1 RB,fB

a
R−1

B,ax and µA,By=θ
A,B
2

(
RB,aα

A,B
fB

a
L−1

B,by+LB,ba
)
−θA,B

2 a

are the permutations of Q and therefore θA,B
1 is a quasiautomorphism of the

group (Q; +).
Now, we take x = fB

b , u = b, X = A, Y = B in (6) and rewrite this
equality in terms of the operation + :

A
(
B

(
fB

b , y
)
, B(b, v)

)
= A

(
b, B

(
αA,B

b y, v
))
,

θA,B
1 LB,fB

b
y + θA,B

2 LB,bv = θA,B
1 b+ θA,B

2

(
RB,aα

A,B
b y + LB,bv

)
,

θA,B
2

(
RB,aα

A,B
b y + LB,bv

)
= −θA,B

1 b+ θA,B
1 LB,fB

b
y + θA,B

2 LB,bv,

θA,B
2 (y + v) = σ′A,By + µ′A,Bv,

where σ′A,By = −θA,B
1 b+ θA,B

1 LB,fB
b

(
αA,B

b

)−1
R−1

B,ay and µ
′
A,Bv = θA,B

2 v are

the permutations of the set Q and therefore θA,B
2 is a quasiautomorphism

of the group (Q; +).
According to [3, lemma 2.5] we have:

θA,B
1 x = ϕAx+ sA,

θA,B
2 x = tA + ψAy,

where ϕA, ψA are automorphisms of the group (Q; +) and tA, sA are some
elements of the set Q. Hence, from (12), it follows that

A(x, y) = ϕAx+ cA + ψAy, (13)

where cA = sA + tA.
Since the operation A is arbitrary, we obtain that all the operations

from Σ can be presented in the form of (13) through the operation + .

Theorem 2.2. The binary algebra (Q; Σ) is an invertible alinear algebra

i� the following second order formula:

X(Y (x, y), Y (u, v)) = X
(
Y

(
βX,Y

x v, y
)
, Y (u, x)

)
, (14)

where

βX,Y
x v =−1 Y

(−1
X

(
X

(
x, Y

(−1
Y (x, x), v

))
, x

)
, Y −1(x, x)

)
(15)

is valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ) for all X,Y ∈ Σ.
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Proof. Let (Q; Σ) be an invertible alinear algebra, then for every X ∈ Σ

X(x, y) = ϕXx+ cX + ψXy ,

where ϕX , ψX are antiautomorphisms of the group (Q; +) and cX ∈ Q. We
prove that equality (14) is valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ) for all
X,Y ∈ Σ, if:

βX,Y
x v = x+ βX,Y

0 v − βX,Y
0 x ,

where βX,Y
0 v = ϕ−1

Y ϕ−1
X R̃−1

cY
L̃cXψXψY v, R̃cY x = x + cY , L̃cXx = cX + x.

Indeed,

X(Y (x, y), Y (u, v))=ϕX(ϕY x+ cY + ψY y) + cX + ψX(ϕY u+ cY + ψY v)=
= ϕXψY y + ϕXcY + ϕXϕY x+ cX + ψXψY v + ψXcY + ψXϕY u ,

on the other hand, using the expressions for βX,Y
0 , and taking into account

that ϕXϕY is an automorphism of the group (Q; +) we obtain:

X
(
Y

(
βX,Y

x v, y
)
, Y (u, x)

)
= ϕX(ϕY β

X,Y
x v + cY + ψY y) + cX+

+ψX

(
ϕY u+ cY + ψY x

)
= ϕXψY y + ϕXcY + ϕXϕY β

X,Y
x v + cX+

+ψXψY x+ ψXcY + ψXϕY u = ϕXψY y + ϕXcY +

+ϕXϕY

(
x+ βX,Y

0 v − βX,Y
0 x

)
+ cX + ψXψY x+ ψXcY + ψXϕY u =

= ϕXψY y + ϕXcY + ϕXϕY x+ ϕXϕY β
X,Y
0 v − ϕXϕY β

X,Y
0 x+ cX+

+ψXψY x+ ψXcY + ψXϕY u = ϕXψY y + ϕXcY + ϕXϕY x+

+ϕXϕY ϕ
−1
Y ϕ−1

X R̃−1
cY
L̃cXψXψY v − ϕXϕY ϕ

−1
Y ϕ−1

X R̃−1
cY
L̃cXψXψY x+

+cX + ψXψY x+ ψXcY + ψXϕY u = ϕXψY y + ϕXcY + ϕXϕY x+ cX+
+ψXψY v−cY −(cX + ψXψY x−cY ) + cX + ψXψY x+ ψXcY + ψXϕY u=

= ϕXψY y + ϕXcY + ϕXϕY x+ cX + ψXψY v − cY + cY − ψXψY x−
−cX + cX + ψXψY x+ ψXcY + ψXϕY u =

= ϕXψY y + ϕXcY + ϕXϕY x+ cX + ψXψY v + ψXcY + ψXϕY u.

Thus, the right and left sides of equality (14) are equal. According to
Lemma 2.2, we get that βX,Y

x has the form of (15).

Conversely, let the formula (14) be valid in the algebra (Q; Σ∪Σ−1∪−1Σ)
for all X,Y ∈ Σ. We prove that the algebra (Q; Σ) is an invertible alinear
algebra. Fixing the element x = p and the operations X = A, Y = B,
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where A,B ∈ Σ in (14), we obtain:

A(B(p, y), B(u, v)) = A
(
B

(
βA,B

p v, y
)
, B(u, p)

)
,

A(LB,py,B(u, v)) = A
(
B

(
βA,B

p v, y
)
, RB,pu

)
,

A∗(B(u, v), LB,py) = A∗(RB,pu,B
(
βA,B

p v, y
))

or
A1(A2(u, v), y) = A3(u,A4(v, y)),

whereA1(x, y) = A∗(x, LB,py), A2(x, y) = B(x, y), A3(x, y) = A∗(RB,px, y),
A4(x, y) = B

(
βA,B

p x, y
)
.

From the last equality, according to Belousov's theorem about four
quasigroups which are connected with the associative law [18], all the oper-
ations Ai (i = 1, 2, 3, 4) are isotopic to the same group. Since the operation
B is arbitrary, we obtain that all the operations from Σ are isotopic to the
same group (Q; ∗).

For every X ∈ Σ let us de�ne the operations:

x +
X
y = X

(
R−1

X,ax, L
−1
X,by

)
, (16)

where a, b are some elements from Q. These operations are loops with the
identity element 0X = X(b, a) [3], and they are isotopic to the group (Q; ∗).
Hence by Albert's theorem [3] they are groups for every X ∈ Σ.

Let us rewrite the equality (14) (where X = A, Y = B) in terms of the
operations +

A
and +

B

RA,a

(
RB,ax +

B
LB,by

)
+
A
LA,b

(
RB,au +

B
LB,bv

)
=

RA,a

(
RB,aβ

A,B
x v +

B
LB,by

)
+
A
LA,b

(
RB,au +

B
LB,bx

)
.

If we take y = a and x = R−1
B,ab = d in the last equality, we have:

RA,a

(
RB,aR

−1
B,ab +

B
LB,ba

)
+
A
LA,b

(
RB,au +

B
LB,bv

)
=

RA,a

(
RB,aβ

A,B
d v +

B
LB,ba

)
+
A
LA,b

(
RB,au +

B
LB,bd

)
,

RA,a

(
b +

B
0B

)
+
A
LA,b

(
RB,au +

B
LB,bv

)
=

RA,a

(
RB,aβ

A,B
d v +

B
0B

)
+
A
LA,bB(u, d),

RA,ab+ LA,b

(
RB,au +

B
LB,bv

)
= RA,aRB,aβ

A,B
d v +

A
LA,bRB,du,
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LA,b

(
RB,au +

B
LB,bv

)
= RA,aRB,aβ

A,B
d v +

A
LA,bRB,du,

or
LA,b

(
u +

B
v
)

= αA,Bv +
A
βA,Bu (17)

where

αA,B = RA,aRB,aβ
A,B
d L−1

B,b and βA,B = LA,bRB,dR
−1
B,a

are permutations of the set Q.
Since the operations A and B are arbitrary, we can take A = B in (17),

and get:
LA,b

(
u +

A
v
)

= αA,Av +
A
βA,Au. (18)

From (17) and (18) we have:

v +
A
u = LA,b

(
β−1

A,Bu +
B
α−1

A,Bv
)
,

v +
A
u = LA,b

(
β−1

A,Au +
A
α−1

A,Av
)
,

β−1
A,Bu +

B
α−1

A,Bv = β−1
A,Au +

A
α−1

A,Av,

and thus, we obtain:
u +

A
v = γA,Bu +

B
δA,Bv, (19)

where γA,B = β−1
A,BβA,A and δA,B = α−1

A,BαA,A are the permutations of the
set Q.

According to (16), for the operations A ∈ Σ, we have:

A(x, y) = RA,ax +
A
LA,by.

According to (19), from the last equality, we get:

A(x, y) = θA,B
1 x +

B
θA,B
2 y, (20)

where θA,B
1 = γA,BRA,a and the θA,B

2 = δA,BLA,b are the permutations of
the set Q. Thus, we can represent every operations from Σ by the operation
+
B
. We �x the operation +

B
and further denote it by + .

We shall prove that θA,B
1 and θA,B

2 are antiquasiautomorphisms of the
group (Q; +). To do it we take x = a, u = fB

a , X = A, Y = B, in equality
(14) and rewrite this equality in terms of the operation, + :
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A
(
B(a, y), B

(
fB

a , v
))

= A
(
B

(
βA,B

a v, y
)
, a

)
,

θA,B
1 (RB,aa+ LB,by) + θA,B

2 LB,fB
a
v = θA,B

1

(
RB,aβ

A,B
a v + LB,by

)
+ θA,B

2 a,

θA,B
1 (RB,aβ

A,B
a v + LB,by) = θA,B

1

(
RB,aa+ LB,by

)
+ θA,B

2 LB,fB
a
v − θA,B

2 a,

θA,B
1 (v + y) = θA,B

1

(
RB,aa+ y

)
+ θA,B

2 LB,fB
a

(
βA,B

a

)−1
R−1

B,av − θA,B
2 a,

θA,B
1 (v + y) = σA,By + µA,Bv,

where
σA,By=θ

A,B
1

(
RB,aa+ y

)
and µA,Bv=θ

A,B
2 LB,fB

a

(
βA,B

a

)−1
R−1

B,av− θ
A,B
2 a are

the permutations of the set Q and therefore, θA,B
1 is an antiquasiautomor-

phism of the group (Q; +).
If we take x = a, y = eBa , X = A, Y = B in the equality (14), we can

similarly prove that θA,B
2 is an antiquasiautomorphism of the group (Q; +).

Thus, we have [2]

θA,B
1 x = ϕAx+ sA,

θA,B
2 x = tA + ψAy,

where ϕA, ψA are antiautomorphisms of the group (Q; +) and tA, sA are
some elements of the set Q. Hence, from (20) we get that:

A(x, y) = ϕAx+ cA + ψAy, (21)

where cA = sA + tA.
Since the operation A is arbitrary, we obtain that all the operations

from Σ can be presented in the form of (21).

3. Invertible T -algebras

It is known [10, 11] that T -quasigroups are invariant under parastrophies.
We have the same result for parastrophies of invertible T -algebras.

Proposition 3.1. Let (Q; Σ) be an invertible T -algebra. Then all parastro-

phies of the algebra, (Q; Σ), are invertible T -algebras.

Also, as in the case of quasigroups [6], we have the following result:

Proposition 3.2. If an invertible algebra is linear and alinear then it is

T -algebra.
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Lemma 3.1. If the algebra (Q; Σ∪Σ−1∪−1Σ), where (Q; Σ) is an invertible

T -algebra, satis�es equality (6) for all X,Y ∈ Σ, then this equality is also

valid in the algebra
(
Q; Σ ∪−1 Σ ∪ Σ−1 ∪ (−1Σ)−1 ∪−1 (Σ−1) ∪ Σ∗) for all

X,Y ∈ Σ ∪−1 Σ ∪ Σ−1 ∪ (−1Σ)−1 ∪−1 (Σ−1) ∪ Σ∗.

Proof. We must check equalities for all A,B ∈ Σ∪−1 Σ∪Σ−1∪(−1Σ)−1∪−1

(Σ−1). For example, let us check the following equality:

A
(−1

B(x, y),−1B(u, v)
)

= A
(−1

B(x, u),−1B
(
αA,−1B

u y, v
))
.

In this case, we have:

αA,−1B
u y = B

(
A−1

(
u,A(−1B(B(u, u), y), u)

)
, (−1B)−1(u, u)

)
.

It follows from (1):

A−1(x, y) = ψ−1
A (−cA − ϕAx+ y),

−1B(x, y) = ϕ−1
B (x− ψBy − cB),

(−1B)−1(x, y) = ψ−1
B (−cB − ϕBy + x).

Let us calculate αA,−1B
u y:

αA,−1B
u y = ϕBψ

−1
A

(
ϕAϕ

−1
B ψBu− ϕAϕ

−1
B ψBy + ψAu

)
+ u− ϕBu− cB + cB

= ϕBψ
−1
A ϕAϕ

−1
B ψBu− ϕBψ

−1
A ϕAϕ

−1
B ψBy + ϕBu+ u− ϕBu

= ϕBψ
−1
A ϕAϕ

−1
B (ψBu− ψBy) + u.

Therefore

A
(−1

B(x, u),−1B
(
αA,−1B

u y, v
))

= A
(
ϕ−1

B (x− ψBu− cB), ϕ−1
B

(
αA,−1B

u y − ψBv − cB
))

= ϕAϕ
−1
B (x− ψBu− cB) + ψAϕ

−1
B

(
αA,−1B

u y − ψBv − cB
)

+ cA

= ϕAϕ
−1
B x− ϕAϕ

−1
B ψBu− ϕAϕ

−1
B cB + ψAϕ

−1
B ϕBψ

−1
A ϕAϕ

−1
B

(
ψBu− ψBy

)
+ψAϕ

−1
B u− ψAϕ

−1
B ψBv − ψAϕ

−1
B cB + cA

=ϕAϕ
−1
B x−ϕAϕ

−1
B cB− ϕAϕ

−1
B ψBy+ψAϕ

−1
B u− ψAϕ

−1
B ψBv− ψAϕ

−1
B cB+cA

On the other hand

A
(−1

B(x, u),−1B(u, v)
)

= ϕAϕ
−1
B (x−ψBy−cB) + ψAϕ

−1
B (u−ψBv−cB)+cA

= ϕAϕ
−1
B x−ϕAϕ

−1
B ψBy−ϕAϕ

−1
B cB+ψAϕ

−1
B u−ψAϕ

−1
B ψBv−ψAϕ

−1
B cB+cA.

Thus, the right and left sides are equal. Similarly, we can check the
other cases.
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Lemma 3.2. Let (Q; Σ) be an invertible T -algebra. If the algebra, (Q; Σ ∪
Σ−1 ∪−1 Σ), satis�es equality (14) for all X,Y ∈ Σ, then this equality is

valid in the algebra
(
Q; Σ ∪−1 Σ ∪ Σ−1 ∪ (−1Σ)−1 ∪−1 (Σ−1) ∪ Σ∗) for all

X,Y ∈ Σ ∪−1 Σ ∪ Σ−1 ∪ (−1Σ)−1 ∪−1 (Σ−1) ∪ Σ∗.

Proof. Similarly as Lemma 3.1.

Theorem 3.1. (Q; Σ) is an invertible T -algebra i� (6) and (14) are valid

in the algebra
(
Q; Σ∪−1 Σ∪Σ−1 ∪ (−1Σ)−1 ∪−1 (Σ−1)∪Σ∗) for all X,Y ∈

Σ ∪−1 Σ ∪ Σ−1 ∪ (−1Σ)−1 ∪−1 (Σ−1) ∪ Σ∗.

Proof. As in the proof of Theorems 2.1 and 2.2, the invertible T -algebra
satis�es formulae (6) and (14). The rest follows from Lemmas 3.1 and 3.2.
The converse statement is a consequence of Proposition 3.2.

Corollary 3.1. Let (Q; Σ) be an invertible T -algebra. If (Q; Σ) satis�es

the following second-order formula:

∀X1, X2 ∀x1, x2, x3 ∃x4(
X1

(
X2(x1, x2), X2(x4, x3)

)
= X1

(
X2(x1, x4), X2(x2, x3)

))
, (22)

then in (Q; Σ) the following hyperidentity is valid:

X1

(
X2(x1, x2), X2(x4, x3)

)
= X1

(
X2(x1, x4), X2(x2, x3)

)
.

Proof. Let (Q; Σ) be an invertible T -algebra. Then it satis�es (6). If we
rewrite (6), in terms of the operation +, then after cancellations we obtain

ψXϕY u+ ϕXψY y = ϕXψY u+ ψXϕY α
X,Y
u y , (23)

which for u = 0 gives ϕXψY = ψXϕY α
X,Y
0 . This together with (23) implies

u+ αX,Y
0 y = αX,Y

0 u+ αX,Y
u y , (24)

where αX,Y
0 is the permutation which corresponds to the identity element

of the group, (Q; +).
If (22) is valid in (Q; Σ), then for every X,Y ∈ Σ and every x, y, v ∈ Q

there exists an element h ∈ Q such that the following equality is valid:

X(Y (x, y, Y (h, v)) = X(Y (x, h), Y (y, v)).
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Therefore, αX,Y
h is the identity permutation of the set Q.

From the proof of Theorem 2.1, it follows that the loops x +
X
y =

X
(
R−1

X,ax, L
−1
X,by

)
are groups for all a, b ∈ Q and all operations X ∈ Σ and

also, we can take any of the groups, +
X
(X ∈ Σ) as a group +.

Let us choose the elements a, b such that h = Y (b, a) is an identity
element of the group (Q; +), then αX,Y

h is the identity permutation of the

set Q. Therefore, from (24), we have αX,Y
u y = y since αX,Y

0 = αX,Y
h is the

identity permutation. Hence αX,Y
u is the identity permutation for all u ∈ Q

and all X,Y ∈ Σ.

Corollary 3.2. The quasigroup, (Q; ·), is a T -quasigroup i� formulae (6)
and (14) are valid in the quasigroup, (Q; ·, /, \), for all X,Y ∈ {·, \, /}.
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