Indicators of quasigroups

Ivan I. Deriyenko

Abstract. We present some useful conditions which are necessary for isotopy of two quasigroups of the same finite order.

Let $Q = \{1, 2, 3, ..., n\}$ be a finite set, S_n – the set of all permutations of Q. The multiplication (composition) of permutations φ and ψ of Q is defined as $\varphi \psi(x) = \varphi(\psi(x))$. All permutations will be written in the form of cycles and cycles will be separated by points, e.g.

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix} = (132.45.6.)$$

By a cyclic type of a permutation $\varphi \in S_n$ we mean the sequence l_1, l_2, \ldots, l_n , where l_i denotes the number of cycles of the length *i*. In this case we will write

$$C(\varphi) = \{l_1, l_2, ..., l_n\}.$$

Obviously, $\sum_{i=1}^{n} i \cdot l_i = n$.

Definition 1. By the *indicator* of a permutation φ of type $C(\varphi) = \{l_1, l_2, ..., l_n\}$ we mean the polynomial

$$w(\varphi) = x_1^{l_1} x_2^{l_2} \cdots x_n^{l_n} .$$

For example, for $\varphi = (123.45.6.)$ we have $C(\varphi) = \{1, 1, 1, 0, 0, 0\}$ and $w(\varphi) = x_1 x_2 x_3$; for $\psi = (1.2536.47.80.9.), C(\psi) = \{2, 2, 0, 1, 0, 0, 0, 0, 0, 0\}$ and $w(\psi) = x_1^2 x_2^2 x_4.$

As it is well-known, two permutations $\varphi, \psi \in S_n$ are *conjugate* if there exists a permutation $\rho \in S_n$ such that

$$\rho\varphi\rho^{-1} = \psi.$$

²⁰¹⁰ Mathematics Subject Classification: 20N20, 05B15 Keywords: quasigroup, isotopy, autotopy.

Theorem 1. (Theorem 5.1.3 in [4]) Two permutations are conjugate if and only if they have the same cyclic type. \Box

As a consequence we obtain

Corollary 1. Conjugated permutations have the same indicators. \Box

As it is well-known, two quasigroups $Q(\circ)$ and $Q(\cdot)$ are *isotopic* if there are three permutations α, β, γ of Q such that

$$\gamma(x \circ y) = \alpha(x) \cdot \beta(y) \,. \tag{1}$$

In the case $\alpha = \beta = \gamma$ we say that quasigroups are *autotopic*.

A track (or a right middle translation) of a quasigroup $Q(\cdot)$ is a permutation φ_i of Q satisfying the identity

$$x \cdot \varphi_i(x) = i,$$

where $i \in Q$. Each quasigroup can be identified with the set $\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ of all its tracks (cf. [2]).

Tracks of $Q(\cdot)$ will be denoted by φ_i , track of $Q(\circ)$ by ψ_1 . Similarly, left and right translations of $Q(\cdot)$ will be denoted by L_a and R_a , left and right translations of $Q(\circ)$ by L_a° and R_a° .

Proposition 1. (cf. [2]) Tracks of isotopic quasigroups satisfying (1) are connected by the formula

$$\varphi_{\gamma(i)} = \beta \psi_i \alpha^{-1}. \tag{2}$$

Similar results hold for left and right translations.

Theorem 2. Left and right translations of isotopic quasigroups satisfying (1) are connected by the conditions

$$L_{\alpha(a)} = \gamma L_a^{\circ} \beta^{-1}, \qquad R_{\beta(b)} = \gamma R_b^{\circ} \alpha^{-1}.$$
(3)

Proof. Indeed, putting x = a we obtain $\gamma L_a^{\circ}(y) = L_{\alpha(a)}\beta(y)$ for every $y \in Q$, which implies $\gamma L_a^{\circ}\beta^{-1} = L_{\alpha(a)}$. Similarly, putting in (1) y = b we obtain $R_{\beta(b)} = \gamma R_b^{\circ}\alpha^{-1}$.

Corollary 2. For autotopic quasigroups we have

$$\varphi_{\alpha(i)} = \alpha \psi_i \alpha^{-1}, \quad L_{\alpha(a)} = \alpha L_a^{\circ} \alpha^{-1}, \quad R_{\alpha(b)} = \alpha R_b^{\circ} \alpha^{-1}.$$
(4)

Consider the following three matrices:

 $\Phi = \left[\varphi_{ij}\right], \quad L = \left[L_{ij}\right], \quad R = \left[R_{ij}\right],$

where $\varphi_{ij} = \varphi_i \varphi_j^{-1}$, $L_{ij} = L_i L_j^{-1}$, $R_{ij} = R_i R_j^{-1}$ for all $i, j \in Q$. Obviously, $\varphi_{ii}(x) = L_{ii}(x) = R_{ii}(x) = x$ and $\varphi_{ij}(x) \neq x$, $L_{ij}(x) \neq x$, $R_{ij}(x) \neq x$ for all $i, j, x \in Q$ and $i \neq j$.

Theorem 3. For isotopic quasigroups $Q(\circ)$ and $Q(\cdot)$ with the isotopy of the form (1) we have

$$\varphi_{\gamma(i)\gamma(j)} = \beta \psi_{ij}\beta^{-1}, \quad L_{\alpha(i)\alpha(j)} = \gamma L_{ij}^{\circ}\gamma^{-1}, \quad R_{\beta(i)\beta(j)} = \gamma R_{ij}^{\circ}\gamma^{-1}.$$

Proof. Indeed, using (2) we obtain

$$\varphi_{\gamma(i)\gamma(j)} = \varphi_{\gamma(i)}\varphi_{\gamma(j)}^{-1} = (\beta\psi_i\alpha^{-1})(\beta\psi_j\alpha^{-1})^{-1} = \beta\psi_i\psi_j^{-1}\beta^{-1} = \beta\psi_{ij}\beta^{-1}.$$

In a similar way, using (3), we obtain the other two equations.

Definition 2. By the *indicator of the matrix* Φ we mean the polynomial

$$w(\Phi) = \sum_{i=1}^{n} w(\Phi_i),$$

where $\Phi_i = \{\varphi_{i1}, \varphi_{i2}, \dots, \varphi_{in}\}$ and $w(\Phi_i) = \sum_{j=1, j \neq i}^{n} w(\varphi_{ij}).$

Indicators of the matrices L and M are defined analogously.

Example 1. Consider two quasigroups defined by the following tables:

•	1 1	2	3	4	5	6	0	1	2	3	4	5	6
1	4	1	6	2	5	3	1	1	2	3	4	5	6
2	5	3	2	6	4	1	2	2	1	5	6	4	3
3	2	6	5	3	1	4	3	3	5	4	2	6	1
4	3	5	1	4	6	2	4	4	6	2	3	1	5
5	6	2	4	1	3	5	5	5	4	6	1	3	2
6	1	4	3	5	2	6	6	6	3	1	5	2	4

For the quasigroup $Q(\cdot)$ we have:

$$\varphi_1 = (126.354.)$$
 $\varphi_2 = (146523.)$ $\varphi_3 = (1634.2.5.)$
 $\varphi_4 = (1.2536.4.)$ $\varphi_5 = (15642.3.)$ $\varphi_6 = (13245.6.)$

Thus,

$$\begin{aligned}
\varphi_{11} &= (1.2.3.4.5.6.) & \varphi_{12} &= (15.24.36.) & \varphi_{13} &= (13.26.45.) \\
\varphi_{14} &= (12.34.56.) & \varphi_{15} &= (164.235.) & \varphi_{16} &= (146.253.).
\end{aligned}$$

Consequently,

$$w(\varphi_{11}) = x_1^6, \quad w(\varphi_{12}) = w(\varphi_{13}) = w(\varphi_{14}) = x_2^3, \quad w(\varphi_{15}) = w(\varphi_{16}) = x_3^2.$$

Hence $w(\Phi_1) = 3x_2^3 + 2x_3^2$.

By analogous computations we can see that for this quasigroup

$$w(\Phi) = w(L) = w(R) = 6(3x_2^3 + 2x_3^2).$$

For the second quasigroup we obtain:

$$w(\Phi) = (2x_2x_4 + x_2^3 + 2x_6) + (x_2^3 + 2x_3^2 + 2x_6) + 2(x_2x_4 + x_3^2 + 3x_6) + 2(2x_3^2 + 3x_6),$$

$$w(L) = w(R) = 2(x_2x_4 + 4x_6) + 4(2x_2x_4 + x_3^2 + 2x_6).$$

As a consequence of our Theorem 3 and Corollary 1 we obtain

Theorem 4. Isotopic quasigroups have the same indicators of the matrices Φ , L and R.

This theorem shows that quasigroups from the above example are not isotopic.

Corollary 3. For quasigroups of order n isotopic to a group we have $w(\Phi) = w(\Phi_1)$.

Proof. In [2] it is proved that for a quasigroup isotopic to a group all its Φ_i are groups isomorphic to Φ_1 . Hence $w(\Phi_i) = w(\Phi_1)$ for every $i \in Q$. \Box

There are examples proving that the converse statement is not true.

References

- I.I. Deriyenko, Necessary conditions of the isotopy of finite quasigroups, (Russian), Mat. Issled. 120 (1991), 51 - 63.
- [2] I.I. Deriyenko, On middle translations of finite quasigroups, Quasigroups and Related Systems 16 (2008), 17 – 24.
- [3] I.I. Deriyenko, Configurations of conjugate permutations, Quasigroups and Related Systems 18 (2010), 17 – 24.
- [4] M. Hall, The theory of groups, Macmillan, 1959.

Received December 2, 2011

Department of Higher Mathematics and Informatics, Kremenchuk National University, 20 Pervomayskaya str, 39600 Kremenchuk, Ukraine E-mail: ivan.deriyenko@gmail.com