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Geometry of semiabelian n-ary groups

Yurii I. Kulazhenko

Abstract. Semiabelian n-ary groups are characterized by their parallelograms and sym-
metries of points with respect to the vertices of tetragons.

1. Introduction

If the standard (a�ne) geometry has a �xed point O, then any point P of

this geometry is uniquely determined by the vector ~p =
−→
OP, and conversely,

the vector
−→
OP uniquely determines the point P. Any interval PQ may be

interpreted as the vector ~q − ~p or as the vector ~p− ~q. In the second case,

AB = CD ⇐⇒ ~a−~b + ~d = ~c ,

or, in the other words

AB = CD ⇐⇒ f(a, b, d) = c ,

where any vector ~v is treated as an element v of a commutative group
(G, +). Then the operation f has the form f(x, y, z) = x− y + z. Groups
(also non-commutative) with a ternary operation de�ned in this way were
considered by J. Certaine (cf. [3]) as a special case of ternary heaps studied
earlier by H. Prüfer (cf. [25]). Ternary heaps have interesting applications
to projective geometry (cf. [1]), a�ne geometry (cf. [2]), theory of nets
(webs), theory of knots and even to the di�erential geometry.

On the other hand, a�ne geometries may be treated as geometries de-
�ned by some ternary relations (cf. for example [31]). Such geometries may
be de�ned also by some n-ary (n > 3) relations (cf. [32]). Basic properties
of a�ne geometries de�ned by ternary groups were described by Vakarelov
(cf. [34]). Rusakov extended these results to the case of a�ne geometries
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de�ned by n-ary groups (cf. [28] and [29]). Later, a�ne geometries in-
duced by n-ary groups and various properties of n-ary groups connected
with a�ne geometries were studied by many authors (see for example [7],
[12], [14], [27]).

2. Preliminaries

We will use the following abbreviated notation: the sequence xi, . . . , xj

will be denoted by xj
i (for j < i it will be the empty symbol). In the case

xi+1 = . . . = xi+k = x instead of xi+k
i+1 we will write

(k)
x . In this convention

the formula f(x1, . . . , xi, x, x, . . . , x, xi+k+1, . . . , xn) will be written in the

form f(xi
1,

(k)
x , xn

i+k+1).
If m = k(n− 1) + 1, then the m-ary operation g of the form

g(xk(n−1)+1
1 ) = f(f(..., f(f︸ ︷︷ ︸

k

(xn
1 ), x2n−1

n+1 ), ...), xk(n−1)+1
(k−1)(n−1)+2)

is denoted by f(k). In certain situations, when the arity of g does not play
a crucial role, or when it will di�er depending on additional assumptions,
we write f(.) , to mean f(k) for some k = 1, 2, . . .

By an n-ary group (G, f) we mean a non-empty set G together with one
n-ary operation f : Gn → G satisfying for all i = 1, 2, . . . , n the following
two conditions:

10 the associative law:

f(f(xn
1 ), x2n−1

n+1 ) = f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i )

20 for all a1, a2, ..., an, b ∈ G there exits a unique xi ∈ G such that

f(ai−1
1 , xi, a

n
i+1) = b .

Such n-ary groups may also be considered as algebras with two or more
operations (see for example [6]). In particular, an n-ary group may be
treated as an algebra with one associative n-ary operation and one unary
operation satisfying some identities.
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Theorem 2.1. An algebra (G, f,¯) with one associative n-ary (n > 2)
operation f and one unary operation ¯ : x 7→ x is an n-ary group if and

only if the identities

f(
(i−2)
x , x,

(n−i)
x , y) = f(y,

(n−j)
x , x,

(j−2)
x ) = y (1)

are satis�ed for some i, j ∈ {2, . . . , n}. �

Theorem 2.2. An algebra (G, f, [−2] ) with one associative n-ary (n > 2)
operation f and one unary operation [−2] : x 7→ x[−2] is an n-ary group if

and only if the identities

f(x[−2],
(n−2)

x , f(
(n−1)

x , y)) = f(f(y,
(n−1)

x ),
(n−2)

x , x[−2]) = y (2)

are satis�ed. �

The �rst theorem is proved in [10], the second in [26]. Useful modi�ca-
tions of Theorem 2.1 one can �nd in [4, 6, 9].

An element x satisfying the identities (1) is called skew to x. It is

uniquely determined as a solution of the equation f(
(n−1)

x , z) = x. In general
x 6= x, but there are n-ary groups in which x = x for all or only for some x
(cf. [5] and [8]). In some n-ary groups we have

f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn), (3)

which means that in some n-ary groups the operation x → x is an endomor-
phism (cf. [8, 11, 13, 30]). This situation take place in semiabelian n-ary
groups, i.e., in n-ary groups satisfying the identity

f(xn
1 ) = f(x1, x

n−1
2 , xn), (4)

for example (cf. [13]). The class of all semiabelian n-ary groups coincides
with the class of medial n-ary groups, i.e., n-ary groups in which

f(f(x1n
11 ), f(x2n

21 ), . . . , f(xnn
n1 )) = f(f(xn1

11 ), f(xn2
12 ), . . . , f(xnn

1n )) (5)

holds for all xij ∈ G (cf. [13]). This condition means that the value of the
operation f applied to the matrix [xij ]n×n is the same if we apply it to rows
(from left) or to columns (from top).

As a simple consequence of results proved in [4] we obtain the following
lemma.
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Lemma 2.3. For n > 3 an n-ary group (G, f) is semiabelian if and only if

there exists a ∈ G such that

f(x, a,
(n−3)

a , y) = f(y, a,
(n−3)

a , x) (6)

holds for all x, y ∈ G.

In the theory of n-ary groups an important role is played by the Post's
coset theorem which says that any n-ary group (G, f) can be embedded (as
a coset) into some ordinary group G∗ called the covering group for (G, f)
(cf. [24]). But theory of n-ary groups can not be reduced to the theory of
such groups [9]. A nice construction of a covering group is presented in [22].

Theorem 2.4. (Post's coset theorem)
For any n-ary group (G, f) there exists a binary group (G∗, ·) such that

G ⊂ G∗ and

f(xn
1 ) = x1 · x2 · x3 · . . . · xn

for all x1, x2, . . . , xn ∈ G. In this group x = x2−n.

3. Geometry of semiabelian n-ary groups

In the a�ne geometry de�ned on an n-ary group (G, f) (for details see [27]
or [28]) elements of G are called points. Four points a, b, c, d ∈ G de�ne a
parallelogram if and only if

f(f(a, b[−2],
(n−2)

b ),
(n−2)

b , c) = d.

Two points a and c are symmetric if and only if there exists a uniquely
determined point x ∈ G such that

f(f(a, x[−2],
(n−2)

x ),
(n−2)

x , c) = x.

Since the operation f is associative identities (2) used in Theorem 2.2
can be written in the form

f(f(x[−2],
(n−1)

x ),
(n−2)

x , y) = f(y,
(n−2)

x , f(
(n−1)

x , x[−2])) = y,

which together with Theorem 2.1 implies

f(x[−2],
(n−1)

x ) = f(
(n−1)

x , x[−2]) = x , (7)

where x denotes the element skew to x. Thus for n > 3 the above two
de�nitions can be presented in the following more useful form (cf. [7]):
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De�nition 3.1. Four points a, b, c, d of an n-ary group (G, f), where n > 3,

de�ne a parallelogram if and only if f(a, b,
(n−3)

b , c) = d.

De�nition 3.2. Two elements a and c of an n-ary group (G, f) are sym-

metric if there exists a uniquely determined point x ∈ G such that

f(a, x,
(n−3)

x , c) = x. (8)

Since for symmetric points a and c of G the element x is uniquely deter-
mined we can consider the map Sx : G → G with the property Sx(a) = c.
This map will be called the symmetry.

De�nition 3.3. The point x of an n-ary group (G, f) is self-returning with
respect to the �nite sequence of points a, b, c, . . . , v ∈ G if

Sv(. . . Sc(Sb(Sa(x)))) = x.

From the de�nition of an n-ary group it follows that in (8) an element c
is uniquely determined by elements a and x. Thus, using the same method
as in [4] and [10], we can prove that for n > 3 the symmetry Sx has the
form:

Sx(a) = f(x, a,
(n−3)

a , x).

The point

Sa(b) = (a, b,
(n−3)

b , a)

is called symmetrical to the point b with respect to the point a. The sequence
of k arbitrary elements from G is called a k-gon (cf. [29]).

In view of Theorem 2.4 the symmetry of points of an n-ary group can be
considered as an external symmetry in the corresponding covering group.
Namely, two points a and c of an n-ary group (G, f) are symmetric if there

exists a uniquely determined point x ∈ G such that ax−1c = x in the cov-

ering group G∗ of (G, f). Note that in general x−1 is not an element of
G.

In this case, the symmetry Sa has the form

Sa(x) = ax−1a. (9)

Moreover, as a consequence of Lemma 2.3 we obtain
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Corollary 3.4. An n-ary group (G, f) is semiabelian if and only if its

covering group we have

ax−1b = bx−1a (10)

for all a, b ∈ G and some �xed x ∈ G.

Lemma 3.5. Let a1, a2, a3, . . . , am be arbitrary points of a semiabelian n-
ary group (G, f). Then the composition Sam(...Sa4(Sa3(Sa2(Sa1(x))))...) is

equal to

f(m)(x, a1,
(n−3)
a1 , a2︸ ︷︷ ︸
2

, a3,
(n−3)
a3 , a4︸ ︷︷ ︸
2

, . . . , am−1,
(n−3)
am−1, am︸ ︷︷ ︸
2

)

if m is even, or to

f(m)(Sa1(x), a2,
(n−3)
a2 , a3︸ ︷︷ ︸
2

, a4,
(n−3)
a4 , a5︸ ︷︷ ︸
2

, . . . , am−1,
(n−3)
am−1, am︸ ︷︷ ︸
2

)

if m is odd.

Proof. Indeed, for points a, b, x ∈ G we have

SbSa(x) = Sb(Sa(x))
(9)
= b(ax−1a)−1b = ba−1xa−1b

(10)
= xa−1ba−1b

(9)
= f(2)(x, a,

(n−3)
a , b, a,

(n−3)
a , b).

Similarly,

Sc(SbSa(x))
(9)
= c(xa−1ba−1b)−1c = cb−1ab−1ax−1c

(10)
= ax−1ab−1cb−1c

(9)
= f(3)(a, x,

(n−3)
x , a, b,

(n−3)

b , c, b,
(n−3)

b , c)

= f(3)(Sa(x), b,
(n−3)

b , c, b,
(n−3)

b , c).

Consequently,

Sd(Sc(SbSa(x))) = Sd(Sc(xa−1ba−1b)) = (xa−1ba−1b)c−1dc−1d

= f(4)(x, a,
(n−3)

a , b, a,
(n−3)

a , b, c,
(n−3)

c , d, c,
(n−3)

c , d)

= f(4)(x, a,
(n−3)

a , b︸ ︷︷ ︸
2

, c,
(n−3)

c , d︸ ︷︷ ︸
2

)

and so on.
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Proposition 3.6. In any semiabelian n-ary group (G, f) for all elements

a1, a2, . . . , am, x ∈ G, where m is odd, we have

Tam
1

(Tam
1

(x)) = x , (11)

where Tam
1

(x) = Sam(. . . Sa3(Sa2(Sa1(x)))...).

Proof. According to Lemma 3.5 and (9) for odd m we have

Tam
1

(x) = a1x
−1a1a

−1
2 a3a

−1
2 a3a

−1
4 a5a

−1
4 a5 . . . a−1

m−1ama−1
m−1am ,

which together with (10) implies (11).

Corollary 3.7. Each point of a semiabelian n-ary group is self-returning

with respect to double symmetry with respect to the vertex of an arbitrary

its polygon with odd number of vertex.

These results give the possibility to make new short proofs of the theo-
rems proved in [15− 21]. Below we give some of them.

Theorem 3.8. An n-ary group (G, f) is semiabelian if and only if

Sb(Sc(Sd(Sa(x)))) = x (12)

for any parallelogram 〈a, b, c, d〉 of (G, f) and an arbitrary x ∈ G.

Proof. From the above results it follows that points a, b, c, d form a parallel-
ogram of an n-ary group (G, f) if and only if ab−1c = d holds in a covering
group of (G, f). This together with (9) reduces (12) to the form

bc−1ab−1ca−1x = x.

Thus bc−1a = (b−1ca−1)−1 = ac−1b. So, f(b, c,
(n−3)

c , a) = f(a, c,
(n−3)

c , b),
which by Lemma 2.3 means that (G, f) is semiabelian.

The converse statement is obvious.

Theorem 3.9. An n-ary group (G, f) is semiabelian if and only if

Sd(Sc(Sb(Sa(x)))) = x

for any parallelogram 〈a, b, c, d〉 of (G, f) and an arbitrary x ∈ G.

Proof. The proof is analogous to the proof of Theorem 3.8.
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Corollary 3.10. An n-ary group is semiabelian if and only if each its point

is self-returning with respect to the vertex of each its parallelogram.

Theorem 3.11. An n-ary group (G, f) is semiabelian if and only if for

any three points a, b, c ∈ G the tetragon 〈a, Sb(a), Sc(a), Sd(a)〉, where d =

f(a, b,
(n−3)

b , c), is a parallelogram.

Proof. Indeed, in the covering group G∗ of (G, f) we have Sd(a) = ab−1cb−1c
and a(Sb(a))−1Sc(a) = ab−1ab−1ca−1c. Thus a(Sb(a))−1Sc(a) = Sd(a) if
and only if ab−1c = cb−1a. Corollary 3.4 completes the proof.

Analogously we can prove the following two theorems.

Theorem 3.12. An n-ary group is semiabelian if and only if for any three

its points a, b, c (at least) one of the following tetragons 〈a, b, Sc(a), Sc(b)〉,
〈Sb(a), Sc(a), Sc(b), b〉, 〈SSc(b)(a), Sc(b), b, Sc(a)〉 is a parallelogram.

Theorem 3.13. An n-ary group (G, f) is semiabelian if and only if for

each a, b, c ∈ G all points x ∈ G are self-returning with respect to the vertex

of the hexagon 〈Sb(a), Sc(a), Sc(b), Sa(b), Sa(c), Sb(c)〉.

4. Vectors of semiabelian n-ary groups

According to [28] an ordered pair 〈a, b〉 of points a, b ∈ G is called a directed

segment of an n-ary group (G, f).In the set of all directed segments of an
n-ary group we introduce the binary relation = by putting

〈a, b〉 = 〈c, d〉 ⇐⇒ f(a, b,
(n−3)

b , c) = d ,

i.e., 〈a, b〉 = 〈c, d〉 if and only if 〈a, b, c, d〉 is a parallelogram of G. Such
de�ned relation is an equivalence and divides the set of all directed seg-
ments into disjoint classes 〈a, b〉= . The class 〈a, b〉= is called a vector and

is denoted by
−→
ab. Hence

−→
ab =

−→
cd ⇐⇒ f(a, b,

(n−3)

b , c) = d ⇐⇒ ab−1c = d (13)

in the covering group of (G, f).
On the set V (G) of all vectors de�ned on an n-ary group (G, f) one can

de�ne the addition + of vectors (cf. [28]). It is not di�cult to verify that
(V (G),+) is a group. It is Abelian if and only if an n-ary group (G, f) is
semiabelian (for details see [28] or [29]).
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Lemma 4.1. In an n-ary group (G, f) for any four points a, b, c, d of G we

have −→
a b +

−→
c d = −→a g =

−→
h d ,

where g = f(b, c,
(n−3)

c , d) and h = f(c, b,
(n−3)

b , a).

Proof. Since in the covering group g = f(b, c,
(n−3)

c , d) = bc−1d, thus

f(c, b,
(n−3)

b , g) = cb−1g = cb−1(bc−1d) = d .

So, 〈c, b, g, d〉 is a parallelogram. Hence
−→
cd =

−→
bg. Consequently,

−→
ab +

−→
cd =

−→
ab +

−→
bg = −→ag.

The proof of the second identity is analogous.

Corollary 4.2. In an n-ary group (G, f) we have

−→
ab +

−→
cd =

−−−−−→
a(bc−1d) (14)

for all a, b, c, d of G.

Theorem 4.3. An n-ary group (G, f) is semiabelian if and only if

−→
ab +

−→
cd =

−→
ad +

−→
cb (15)

for all a, b, c, d ∈ G.

Proof. Indeed, by Lemma 4.1

−→
ab +

−→
cd = −→ag1,

−→
ad +

−→
cb = −→ag2 ,

where g1 = f(b, c,
(n−3)

c , d), g2 = f(d, c,
(n−3)

c , b). Thus −→ag1 = −→ag2 if and only

if 〈a, a, g1, g2〉 is a parallelogram, i.e., if and only if f(a, a,
(n−3)

a , g1) = g2.
The last means that g1 = g2. This, by Lemma 2.3, means that an n-ary
group (G, f) is semiabelian.

Theorem 4.4. An n-ary group (G, f) is semiabelian if and only if

−−−−−−−→
Sb(a)Sd(c) = 2

−→
bd +−→ca (16)

for all a, b, c, d ∈ G.
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Proof. Indeed, if an n-ary group (G, f) is semiabelian, then

−−−−−−−→
Sb(a)Sd(c)

(9)
=
−−−−−−−−−−→
(ba−1b)(dc−1d)

(14)
=

−−−−−→
(ba−1b)d +

−→
cd

(14)
= (

−→
ba +

−→
bd) +

−→
cd

=
−→
bd + (

−→
ba +

−→
cd)

(15)
=

−→
bd + (

−→
bd +−→ca) = 2

−→
bd +−→ca ,

which proves (16).

Conversely, if (16) holds for all points a, b, c, d ∈ G, then

2
−→
bd +−→ca =

−−−−−−−→
Sb(a)Sd(c) =

−→
ba +

−→
bd +

−→
cd ,

which, in view of (14), implies

−−−−−→
b(db−1d) +−→ca =

−−−−−→
b(ab−1d) +

−→
cd .

Thus −−−−−−−−−→
b(db−1dc−1a) =

−−−−−−−−−→
b(ab−1dc−1d) .

So, that the tetragon 〈b, b, (db−1dc−1a), (ab−1dc−1d)〉 is a parallelogram.
Hence bb−1(db−1dc−1a) = ab−1dc−1d. From this, for c = d, we obtain

db−1a = ab−1d .

This by Lemma 2.3 means that an n-ary group (G, f) is semiabelian.

Using the above method we can give a short proof of the following two
theorems proved in [21].

Theorem 4.5. An n-ary group (G, f) is semiabelian if and only if for each

its parallelogram 〈a, b, c, d〉 and each point x ∈ G we have

−→x a +
−−−−→
Sa(x) b +

−−−−−−→
SbSa(x) c +

−−−−−−−−→
ScSbSa(x) d =

−→
0 . (17)

Proof. For any four pints a, b, c, d ∈ G we have

−→x a +
−−−−→
Sa(x) b +

−−−−−−→
SbSa(x) c +

−−−−−−−−→
ScSbSa(x) d

(9)
= −→x a +

−−−−−−→
(ax−1a) b +

−−−−−−−−−→
(ba−1xa−1b) c +

−−−−−−−−−−−−−→
(cb−1ax−1ab−1c) d

(14)
=

−−−−−−→
x (xa−1b) +

−−−−−−−−−→
(ba−1xa−1b) c +

−−−−−−−−−−−−−→
(cb−1ax−1ab−1c) d

(14)
=

−−−−−−→
x (ab−1c) +

−−−−−−−−−−−−−→
(cb−1ax−1ab−1c) d

(14)
=

−−−−−−−−−−→
x (xa−1bc−1d) .
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So, according to (13),

−−−−−−−−−−→
x (xa−1bc−1d) =

−→
0 = −→xx ⇐⇒ xd−1cb−1a = x ⇐⇒ d = cb−1a .

Hence any four points a, b, c, d satisfying (17) form a parallelogram if and
only if d = cb−1a = ab−1c. Corollary 3.4 completes the proof.

Theorem 4.6. An n-ary group (G, f) is semiabelian if and only if

−→x a+
−−−−→
Sa(x) b+

−−−−−−→
SbSa(x) c+

−−−−−−−−→
ScSbSa(x) d+

−−−−−−−−−−→
SdScSbSa(x) e+

−−−−−−−−−−−−→
SeSdScSbSa(x) a =

−→
0

(18)

for all points a, b, c, d, x ∈ G, where e = f(d, c,
(n−3)

c , b).

Proof. Similarly as in the previous proof

−→xa +
−−−−→
Sa(x) b +

−−−−−−→
SbSa(x) c +

−−−−−−−−→
ScSbSa(x) d +

−−−−−−−−−−→
SdScSbSa(x) e +

−−−−−−−−−−−−→
SeSdScSbSa(x) a

=
−−−−−−−−−−→
x (xa−1bc−1d) +

−−−−−−−−−−→
SdScSbSa(x) e +

−−−−−−−−−−−−→
SeSdScSbSa(x) a

=
−−−−−−−−−→
x (ab−1cd−1e) +

−−−−−−−−−−−−→
SeSdScSbSa(x) a =

−−−−−−−−−−−−−→
x (xa−1bc−1de−1a) .

Hence −−−−−−−−−−−−−→
x (xa−1bc−1de−1a) = −→xx ⇐⇒ xa−1ed−1cb−1a = x .

The last means that a−1e = (d−1cb−1a)−1 = a−1bc−1d, i.e., e = bc−1d. But
by the assumption e = dc−1b. So, (18) holds if and only if bc−1d = dc−1b
for all a, b, c ∈ G.

5. Flocks

Flocks are ternary quasigroups with a para-associative operation, i.e., alge-
bras of the form (G, [ ]), where [[x, y, z], u, v] = [x, [u, z, y], v] = [x, y, [z, u, v]]
for all x, y, z, u, v ∈ G, and for all a, b ∈ G there are uniquely determined
x, y, z ∈ G such that [x, a, b] = [a, y, b] = [a, b, z] = c.

Such �ocks are a special case of heaps and semiheaps considered by
Vagner [33]. Similar structures are investigated also by Prüfer [25]. Baer
(cf. [1]) has investigated a connection linking Brandt groupoids and mixed
groups with idempotent �ocks, i.e., �ocks satisfying the identity [x, x, x] = x.

As it was observed in [7] �ocks and ternary groups have very similar
properties. Moreover, the a�ne geometry induced by n-ary groups (n > 3)
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can be described by �ocks. Namely, if (G, f) is an n-ary group with n > 3
then G with the operation

[x, y, z] = f(x, y,
(n−3)

y , z)

is a �ock. Thus, in the covering group of (G, f) we have [x, y, z] = xy−1z.
This means that �ocks induced by semiabelian n-ary groups are idempotent
ternary group.

Theorem 5.1. Let 〈a, b, c, d〉 be a parallelogram on an n-ary group (G, f).
Then for all p, q, x, y ∈ G

(1) 〈b, p, q, c〉 is a parallelogram if and only if 〈a, p, q, d〉 is a parallelogram.

(2) 〈d, c, x, y〉 is a parallelogram if and only if 〈a, b, x, y〉 is a parallelogram.

The geometrical sense of this theorem is illustrated by the picture:

�
�
��

�
�
��

a b

cd

p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p
p p p p

p
p

q

This theorem is a consequence of Proposition 5.5 proved in [7]. Below
we give the equivalent proof based on the above connections.

Proof. Let 〈a, b, c, d〉 and 〈b, p, q, c〉 be parallelograms. Then d = [a, b, c] =
ab−1c and c = [b, p, q] = bp−1q. Thus [a, p, q] = (ab−1b)p−1q = ab−1(bp−1q)
= d. Hence 〈a, p, q, d〉 is a parallelogram.

Conversely, if 〈a, b, c, d〉 and 〈a, p, q, d〉 are parallelograms, then ab−1c =
d and ap−1q = d. Thus, [b, p, q] = (ba−1a)p−1q = ba−1(ap−1q) = ba−1d = c,
which completes the proof of (1). The proof of (2) is analogous.
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