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Geometry of semiabelian n-ary groups

Yurii . Kulazhenko

Abstract. Semiabelian n-ary groups are characterized by their parallelograms and sym-
metries of points with respect to the vertices of tetragons.

1. Introduction

If the standard (affine) geometry has a fixed point O, then any point P of
this geometry is uniquely determined by the vector p =0 P, and conversely,

the vector OP uniquely determines the point P. Any interval PQ may be

—

interpreted as the vector ¢ — p or as the vector p — ¢. In the second case,
AB=CD < G—-b+d=2¢,

or, in the other words
AB=CD < f(a,b,d) =c,

where any vector v is treated as an element v of a commutative group
(G,+). Then the operation f has the form f(x,y,z) = x —y + z. Groups
(also non-commutative) with a ternary operation defined in this way were
considered by J. Certaine (cf. [3]) as a special case of ternary heaps studied
earlier by H. Priifer (cf. [25]). Ternary heaps have interesting applications
to projective geometry (cf. [1]), affine geometry (cf. [2]), theory of nets
(webs), theory of knots and even to the differential geometry.

On the other hand, affine geometries may be treated as geometries de-
fined by some ternary relations (cf. for example [31]). Such geometries may
be defined also by some n-ary (n > 3) relations (cf. [32]). Basic properties
of affine geometries defined by ternary groups were described by Vakarelov
(cf. |34]). Rusakov extended these results to the case of affine geometries
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defined by m-ary groups (cf. [28] and [29]). Later, affine geometries in-
duced by m-ary groups and various properties of n-ary groups connected
with affine geometries were studied by many authors (see for example [7],
[12], [14], [27]).

2. Preliminaries

We will use the following abbreviated notation: the sequence x;,...,x;

will be denoted by x (for j < i it will be the empty symbol). In the case
. k

Titl = ... = T+, = < instead of xsz we will write (x). In this convention

the formula f(x1,..., 2,2, 2,..., %, Tivks1,-.-,2Ty) Will be written in the

(k)
form f(xy, @', 27, )

If m =k(n—1)+1, then the m-ary operation g of the form

k(n— n mn— k(n—
@I = G P @D, 2200, ) 2 o )
k

is denoted by f(1). In certain situations, when the arity of g does not play
a crucial role, or when it will differ depending on additional assumptions,
we write f(), to mean f) for some k=1,2,...

By an n-ary group (G, f) we mean a non-empty set G together with one
n-ary operation f : G"™ — G satisfying for all ¢ = 1,2,...,n the following
two conditions:

19 the associative law:
2n—1 i—1 i—1y . .2n—1
FF@D), 25t = flay fa ™), 20050
20 for all ay,as, ...,an,b € G there exits a unique x; € G such that
F@ iy aly) = b
Such n-ary groups may also be considered as algebras with two or more
operations (see for example [6]). In particular, an n-ary group may be

treated as an algebra with one associative n-ary operation and one unary
operation satisfying some identities.
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Theorem 2.1. An algebra (G, f,”) with one associative n-ary (n > 2)
operation f and one unary operation ~ : x — T iS an n-ary group if and
only if the identities

(i—2) _ (n—i) (n—j) _
fCz" 7, © y) = fly, =7, )=y (1)

are satisfied for some i,j € {2,...,n}. O

(J=2)
x

Theorem 2.2. An algebra (G, f,172)) with one associative n-ary (n > 2)
operation f and one unary operation "2 : z — 252 is an n-ary group if
and only if the identities

(n—2) (n—1) (n—1), (n—2)

f(x[_ﬂ) z 7f( €z 7y)):f(f(ya Z )a T ,x[_2])=y (2)
are satisfied. O

The first theorem is proved in [10], the second in [26]. Useful modifica-
tions of Theorem 2.1 one can find in [4, 6, 9].
An element T satisfying the identities (1) is called skew to z. It is

~1
uniquely determined as a solution of the equation f ((nas ), z) = x. In general
T # x, but there are n-ary groups in which T = x for all or only for some x
(cf. [5] and [8]). In some n-ary groups we have

f(.%'l,$2,---,$n):f(jl,EQ,---,Tn), (3)

which means that in some n-ary groups the operation x — 7 is an endomor-
phism (cf. [8, 11, 13, 30]). This situation take place in semiabelian n-ary
groups, i.e., in n-ary groups satisfying the identity

f(a?) = fla, 257" @), (4)

for example (cf. [13]). The class of all semiabelian n-ary groups coincides
with the class of medial n-ary groups, i.e., n-ary groups in which

FUF @), F@30), - flant) = F(F(@l), f(@13), .., f(ai)  (5)

holds for all z;; € G (cf. |13]). This condition means that the value of the
operation f applied to the matrix [xi;]nxn is the same if we apply it to rows
(from left) or to columns (from top).

As a simple consequence of results proved in [4] we obtain the following
lemma.
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Lemma 2.3. Forn > 3 an n-ary group (G, f) is semiabelian if and only if
there exists a € G such that
_ (n=3) _ (n=3)
f(x’ a/’ a ) y) = f(y7 a7 a ) x) (6)
holds for all x,y € G. O

In the theory of n-ary groups an important role is played by the Post’s
coset theorem which says that any n-ary group (G, f) can be embedded (as
a coset) into some ordinary group G* called the covering group for (G, f)
(cf. |24]). But theory of n-ary groups can not be reduced to the theory of
such groups [9]. A nice construction of a covering group is presented in [22].

Theorem 2.4. (Post’s coset theorem)

For any n-ary group (G, f) there exists a binary group (G*,-) such that
G C G* and

f@})=x1 22 -23-... 2y

or all 1,22, ...,2, € G. In this group T = >~ ". O
f group

3. Geometry of semiabelian n-ary groups

In the affine geometry defined on an n-ary group (G, f) (for details see [27]
or [28]) elements of G are called points. Four points a,b,c,d € G define a
parallelogram if and only if
(n=2)  (n—2)
F(f(a b0 70), b e) = d.
Two points a and ¢ are symmetric if and only if there exists a uniquely
determined point x € G such that

(n—2), (n—2)

f(f(a,x[*z}, x ), x ,c)==x.

Since the operation f is associative identities (2) used in Theorem 2.2
can be written in the form

_o1 (n—=1)_ (n—2) (n=2)  (n—=1) _
FUEEA ), T ) = fly, w2l =y,

which together with Theorem 2.1 implies

£,y = (T2 o) = (7)

where T denotes the element skew to x. Thus for n > 3 the above two
definitions can be presented in the following more useful form (cf. [7]):
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Definition 3.1. Four points a, b, ¢, d of an n-ary group (G, f), where n > 3,

_ (n=3)
define a parallelogram if and only if f(a,b, b ,c)=d.

Definition 3.2. Two elements a and ¢ of an n-ary group (G, f) are sym-
metric if there exists a uniquely determined point z € G such that

a7 "2 0) = a. (8)

Since for symmetric points a and ¢ of G the element z is uniquely deter-
mined we can consider the map S, : G — G with the property S;(a) = c.
This map will be called the symmetry.

Definition 3.3. The point x of an n-ary group (G, f) is self-returning with
respect to the finite sequence of points a,b,c,...,v € G if

Su(.. . Se(Sy(Sa(x)))) = =

From the definition of an n-ary group it follows that in (8) an element ¢
is uniquely determined by elements a and x. Thus, using the same method
as in [4] and [10], we can prove that for n > 3 the symmetry S, has the

form:
Sx((l) = f(x7a7 (nag)ax)

The point

is called symmetrical to the point b with respect to the point a. The sequence
of k arbitrary elements from G is called a k-gon (cf. [29]).

In view of Theorem 2.4 the symmetry of points of an n-ary group can be
considered as an external symmetry in the corresponding covering group.
Namely, two points a and ¢ of an n-ary group (G, f) are symmetric if there
exists a uniquely determined point x € G such that ax~'c = x in the cov-
ering group G* of (G, f). Note that in general =1 is not an element of

G.

In this case, the symmetry S, has the form
Sa(z) = ax™'a. (9)

Moreover, as a consequence of Lemma 2.3 we obtain
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Corollary 3.4. An n-ary group (G, f) is semiabelian if and only if its
covering group we have

ax™'b = bz ta (10)
for all a,b € G and some fized x € G. O
Lemma 3.5. Let ai,a9,as,...,a, be arbitrary points of a semiabelian n-

ary group (G, f). Then the composition S, (...Sa, (Sas(Say(Sa; (2))))...) is

equal to

_ (n=3) _ (n=3) _ (n—3)
f(m)(‘raah ai ,CL%,QE}, as 7a47"'7am—17am—17am)
2 2 2
if m is even, or to
_ (n=3) _ (n=3) _ (n—3)

f(m)(Sal(‘T)?a27 az ,a3,04, Q4 7a57"'7am—17am—17am)
———

2 2 2

if m is odd.

Proof. Indeed, for points a, b,z € G we have

~
=

SpSa(x) = Sp(Sa(z)) = blar™ta)~tb = ba~tza='h 1 ra=tba=1
3)

_f(,,( ba( 3),1)).

Similarly,

Se(SpSa(x)) © c(xa=tba=1b)"te = cb~tab taz e 1) e tableb e
_ (n 3) (n=3) _ (n=3)
_f(3( €, (Ib b va7 b 7C)
_ (n 3)
:f(B)( ( ) b ,¢b b 70)'

Consequently,

Sa(S:(SpSa(z))) = Sy(Sc(xa=tba=1b)) = (xa=tba='b)c tdc1d
(n3) (n3) (n—3) (n—3)

:f(4)($7 bvia abvéa c 7d367 c 7d)
_ (” 3) (n 3)
:f(4)(x7a7 b C, 7d)
2 2

and so on. 0
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Proposition 3.6. In any semiabelian n-ary group (G, f) for all elements
a1,a9,...,am,x € G, where m is odd, we have

Tom (Tap () = (11)
where Tym (x) = Sa,, (- - Saz(Say (Sa, (7))).)-

Proof. According to Lemma 3.5 and (9) for odd m we have

_ B S [ [ [ | -1 -1
Tom () = 17 a1ay azay agay asay as...G, 1 Gpd, " 1 Gm,

which together with (10) implies (11). O

Corollary 3.7. Fach point of a semiabelian n-ary group is self-returning
with respect to double symmetry with respect to the vertex of an arbitrary
its polygon with odd number of vertex. O

These results give the possibility to make new short proofs of the theo-
rems proved in [15 — 21]. Below we give some of them.

Theorem 3.8. An n-ary group (G, f) is semiabelian if and only if
Sp(Sc(5a(Sa(2)))) = = (12)
for any parallelogram {(a,b,c,d) of (G, f) and an arbitrary xz € G.

Proof. From the above results it follows that points a, b, ¢, d form a parallel-
ogram of an n-ary group (G, f) if and only if ab~!'c = d holds in a covering
group of (G, f). This together with (9) reduces (12) to the form

be tab tea = .
1 1, —1y-1 1 _ (n=3) ~
Thus be 'a = (b~ 'ca™)"" = ac™'b. So, f(b,e, ¢ ,a) = f(a,¢, c ',b),
which by Lemma 2.3 means that (G, f) is semiabelian.
The converse statement is obvious. O

Theorem 3.9. An n-ary group (G, f) is semiabelian if and only if
Sa(5e(Sp(Sa(2)))) = =
for any parallelogram {(a,b,c,d) of (G, f) and an arbitrary xz € G.

Proof. The proof is analogous to the proof of Theorem 3.8. O
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Corollary 3.10. An n-ary group is semiabelian if and only if each its point
18 self-returning with respect to the vertex of each its parallelogram. O

Theorem 3.11. An n-ary group (G, f) is semiabelian if and only if for

any three points a,b,c € G the tetragon (a, Sy(a),Sc(a),S4(a)), where d =
_ (n-3)

fla,b, b ,c), is a parallelogram.

Proof. Indeed, in the covering group G* of (G, f) we have Sy(a) = ab~tcb~lc

and a(Sy(a))"1S.(a) = ab~tab~lca=lc. Thus a(Sy(a))~1S.(a) = Sy(a) if

and only if ab~'c = cb~'a. Corollary 3.4 completes the proof. 0

Analogously we can prove the following two theorems.

Theorem 3.12. An n-ary group is semiabelian if and only if for any three
its points a,b,c (at least) one of the following tetragons (a,b, S.(a), Sc(D)),
(Sp(a), Sc(a), Sc(b),b), (Ss.@)(a), Sc(b),b, Sc(a)) is a parallelogram. O

Theorem 3.13. An n-ary group (G, f) is semiabelian if and only if for
each a,b,c € G all points x € G are self-returning with respect to the vertex
of the hezagon (Sy(a), Sc(a), Se(b), Sa(b), Sa(c), Sb(c))- O

4. Vectors of semiabelian n-ary groups

According to [28] an ordered pair (a,b) of points a,b € G is called a directed
segment of an n-ary group (G, f).In the set of all directed segments of an
n-ary group we introduce the binary relation = by putting

(@,8) = {e,d) <= f(a,B, b se) = d.,

ie., (a,b) = (¢,d) if and only if (a,b,c,d) is a parallelogram of G. Such
defined relation is an equivalence and divides the set of all directed seg-
ments into disjoint classes (a,b)—. The class (a,b)= is called a vector and
is denoted by ab. Hence

(n—3)

— — -
ab=cd < f(a,b, b ,¢)=d<=ablc=d (13)

in the covering group of (G, f).

On the set V(G) of all vectors defined on an n-ary group (G, f) one can
define the addition + of vectors (cf. [28]). It is not difficult to verify that
(V(G),+) is a group. It is Abelian if and only if an n-ary group (G, f) is
semiabelian (for details see [28] or [29]).
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Lemma 4.1. In an n-ary group (G, f) for any four points a,b,c,d of G we
have N .
ab+cd=ag=hd,
_ (n—3) — (n=3)
where g = f(b,¢, ¢ ,d) and h = f(e,b, b ,a).

-3
Proof. Since in the covering group g = f(b,¢, (nc ), d) = bc~d, thus

_ (n=3)
fle,b, b ,9)=cb lg=cb  (bc'd) =d.

— — — —
So, {(¢,b,g,d) is a parallelogram. Hence c¢d = bg. Consequently, ab + cd =
— = N
ab+ bg = ag.

The proof of the second identity is analogous. O

Corollary 4.2. In an n-ary group (G, f) we have

-  — —_1>

ab + cd = a(bc™"d) (14)
for all a,b,c,d of G. O
Theorem 4.3. An n-ary group (G, f) is semiabelian if and only if

- = — =

ab + cd = ad + cb (15)
for all a,b,c,d € G.
Proof. Indeed, by Lemma 4.1

ab+cd = agi,  ad+ cb = ags,

n—3 n—3
where g1 = f(b,E,( c ),d), go = f(d,E,( c ),b). Thus agi = ags if and only

-3
if (a,a,g1,92) is a parallelogram, i.e., if and only if f(a,a, (na ),gl) = ¢o.
The last means that g; = go. This, by Lemma 2.3, means that an n-ary
group (G, f) is semiabelian. O

Theorem 4.4. An n-ary group (G, f) is semiabelian if and only if
e —— -
Sp(a)Sq(c) =2bd + ca (16)

for all a,b,c,d € G.
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Proof. Indeed, if an n-ary group (G, f) is semiabelian, then

—

cd 2 (ba + bd) + cd

which proves (16).
Conversely, if (16) holds for all points a, b, ¢, d € G, then

- B ——— — = —
2bd + ca = Sp(a)Sy(c) = ba + bd + cd ,

which, in view of (14), implies

_

b(db~1d) + @@ = b(ab~'d) + cd..

Thus

b(dbtdela) = blabtded).

So, that the tetragon (b, b, (db~tdc™'a), (ab~dc™1d)) is a parallelogram.
Hence bb~!(db~'dc™'a) = ab~'dc='d. From this, for ¢ = d, we obtain

dbta =ab"'d.
This by Lemma 2.3 means that an n-ary group (G, f) is semiabelian. [

Using the above method we can give a short proof of the following two
theorems proved in [21].

Theorem 4.5. An n-ary group (G, f) is semiabelian if and only if for each
its parallelogram {(a,b,c,d) and each point x € G we have

—

Ta+ Sa(z) b+ SpSa(x) ¢+ SeSySa(z)d = 0. (17)

Proof. For any four pints a, b, ¢,d € G we have

Td+ Se(x) b+ SpSa(x) c+ S.S8S,(x) d

—~
=

bPa
= za+ (ar ta)b+ (batza"tb) c + (b lax tablc) d

W (xa=1b) + (ba"tza='b) c + (cb~lax~lab™1c) d
(

x (ab~1c) + (cb~tar—tabte) d W (ra=tbetd).

=
=
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So, according to (13),

—_—
z (za e d) = 0 =72 <> ad b la=2<>d=cbla.

Hence any four points a, b, ¢, d satisfying (17) form a parallelogram if and
only if d = cb~'a = ab~'c. Corollary 3.4 completes the proof. O

Theorem 4.6. An n-ary group (G, f) is semiabelian if and only if

TG+Sa(2) b+SySa(7) c+505,Sa (%) d+S3S0SySa () €+5eS45:5ySa(x) a = 0
(18)

n—3
for all points a,b,c,d,z € G, where e = f(d, E,( c ),b).

Proof. Similarly as in the previous proof

za + Sy () b+ SpSa(x) ¢ + SeSpSa(x) d + S3S:SpSa(x) € + SeS45.9,54() a
-
=z (xa"1bc™1d) + S3S5:5pS. () € + SeS4S.SpSa() a
-
=z (ab~tedte) + S.S84S.SpSu(x) a = x (wa~tbe tdeta) .

Hence

_ _ _ — _ _ _
z(za"tbetde o) =77 <= za " ted b la =z

The last means that a e = (d~'cb~ta)~! = a=lbcd, i.c., e = bc~1d. But
by the assumption e = dc™'b. So, (18) holds if and only if bc~'d = dc™1b
for all a,b,c € G. O

5. Flocks

Flocks are ternary quasigroups with a para-associative operation, i.e., alge-
bras of the form (G, []), where [[z,y, 2], u,v] = [z, [u, 2, y],v] = [z, ¥, [, u, V]|
for all z,y,z,u,v € G, and for all a,b € G there are uniquely determined
x,y,z € G such that [z, a,b] = [a,y,b] = [a,b, 2] = c.

Such flocks are a special case of heaps and semiheaps considered by
Vagner [33]. Similar structures are investigated also by Priifer [25]. Baer
(cf. [1]) has investigated a connection linking Brandt groupoids and mixed
groups with idempotent flocks, i.e., flocks satisfying the identity [z, z, z] = =.

As it was observed in [7] flocks and ternary groups have very similar
properties. Moreover, the affine geometry induced by n-ary groups (n > 3)
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can be described by flocks. Namely, if (G, f) is an n-ary group with n > 3
then G with the operation

_ (n-3)
[aj7 y? Z] = f('I‘? y? y 7Z)

is a flock. Thus, in the covering group of (G, f) we have [z,y,2] = zy~!z.

This means that flocks induced by semiabelian n-ary groups are idempotent
ternary group.

Theorem 5.1. Let (a,b,c,d) be a parallelogram on an n-ary group (G, f).
Then for all p,q,x,y € G
(1) (b,p,q,c) is a parallelogram if and only if (a,p, q,d) is a parallelogram.
(2) (d,c,z,y) is a parallelogram if and only if (a,b,z,y) is a parallelogram.

The geometrical sense of this theorem is illustrated by the picture:

.'q

a b
This theorem is a consequence of Proposition 5.5 proved in |7]. Below

we give the equivalent proof based on the above connections.

Proof. Let (a,b,c,d) and (b,p, q,c) be parallelograms. Then d = [a, b, c] =
ab~'c and ¢ = [b,p,q] = bp~'q. Thus [a,p,q] = (ab~'b)p~tq = ab= (bp~1q)
= d. Hence (a,p, q,d) is a parallelogram.

Conversely, if (a,b,c,d) and {(a, p, q,d) are parallelograms, then ab~!c =
dand ap~tq = d. Thus, [b,p,q] = (ba ta)p~tq =ba(ap~lq) = ba"1d = c,
which completes the proof of (1). The proof of (2) is analogous. O
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