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Transversals in loops. 2.

Structural theorems

Eugene A. Kuznetsov

Abstract. An investigation of a new notion of a transversal in a loop to its subloop
is continued in the present article. This notion generalized a well-known notion of a
transversal in a group to its subgroup and can be correctly de�ned only in the case,
when some speci�c condition (condition A) for a loop and its subloop is ful�lled. The
connections between transversals in some loop to its subloop and transversals in multi-
plicative group of this loop to suitable subgroup are studied in this work.

1. Introduction

In the present work we continue the study of a variant of natural general-
ization of a notion of transversal in a group to its subgroup [1, 5, 6, 11] at
the class of loops, begun in [10]. As the elements of a left (right) transversal
in a group to its subgroup are the representatives of every left (right) coset
to the subgroup, then a notion of a left (right) transversal in a loop to its
subloop can be well de�ned only in the case when this loop admits a left
(right) coset decomposition by its subloop (see Condition A, De�nition 2.4,
[10]).

In the part 2 the di�erent structural theorems are proved. They demon-
strate the correspondence between transversals in a loop to its subloop and
transversals in a multiplicative group of this loop to its suitable subgroup.
Also, we demonstrate the necessity of Condition A when we generalize a
notion of transversal at the class of loops.

Further, we shall use the following notations: 〈L, ·, e〉 is an initial loop
with the unit e; 〈R, ·, e〉 is its proper subloop; E is a set of indexes (1 ∈ E)
of the left (right) cosets Ri in L to R, where R1 = R.

All necessary de�nitions and preliminary statements may be found in
[10].
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2. The Condition A and included subgroups

The following lemma is an explanation of the necessity of the Condition A
in the investigation of transversals in loops.

Lemma 2.1. Let G be a group, H be its proper subgroup. Let K be a

subgroup of group G such that H ⊆ K ⊂ G. If T = {ti}i∈E is a left

transversal G to H, then:

1. T1 = T |K = {tj}j∈E1 , where E1 = {x ∈ E | tx ∈ K}, is a left trans-

versal K to H,

2. < E1,
(T1)
· , 1 >⊂< E,

(T )
· , 1 >,

3. The left Condition A is ful�lled in the left loop < E,
(T )
· , 1 > to its

left subloop < E1,
(T )
· , 1 > : for every a, b ∈< E,

(T )
· , 1 > and every

u ∈< E1,
(T )
· , 1 > there exist c ∈< E,

(T )
· , 1 > and u1 ∈< E1,

(T )
· , 1 >

such that a
(T )
· (b

(T )
· u) = c

(T )
· u1.

Proof. 1. Let us denote E1 = {x ∈ E | tx ∈ K}. Then the transversal
T1 = {tj}j∈E1 consists of those elements of the transversal T which belong to
the subgroup K. Let us take an arbitrary element g ∈ K; since T = {ti}i∈E

is a transversal G to H, then g = ti0 · h, ti0 ∈ T, h ∈ H. But g ∈ K,
h ∈ H ⊆ K , so we obtain that ti0 ∈ K. Then every element g ∈ K can be
represented in the form g = tx · h, where h ∈ H and

x ∈ E1 = {z ∈ E | tz ∈ K ∩ T}.

This representation is unique for every g ∈ K, because it is the same for
the transversal T in G to H.

2. Let us consider the set E1 introduced in 1. Let ta, tb ∈ K (is equal
ta, tb ∈ T1), then K 3 ta · tb = (tch) h ∈ H. As tc ∈ K, then tc ∈ T1 and we

obtain: c ∈ E1. Thus a
(T1)
· b = c. But tatb ∈ K ⊂ G, and G 3 ta · tb = (tch),

h ∈ H, so a
(T )
· b = c. Therefore

(
(T1)
· ) ≡ (

(T )
· )|E1 ,

and �nally < E1,
(T1)
· , 1 >⊂< E,

(T )
· , 1 > .

3. Let a, b ∈ E and x ∈ E1 (is equal ta, tb ∈ G and tx ∈ K), then

ta · tb · tx = tat
b
(T )
· x

h′ = t
a
(T )
· (b

(T )
· x)

h′′,

ta · tb · tx = t
a
(T )
· b

h1tx, h1 ∈ H, h′, h′′ ∈ H.
(1)
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But K 3 h1tx = (tuh′
1), h′

1 ∈ H, u = t̂u(1) = t̂uĥ′
1(1) = ĥ1t̂x(1) = ĥ1(x),

h1tx = (tĥ1(x)h
′
1) ∈ K, tĥ1(x) ∈ K, ĥ1(x) ∈ E1. So, (1) can be rewritten in

the form
t
a
(T )
· (b

(T )
· x)

h′′ = t
a
(T )
· b

tĥ1(x)h
′
1 = t

(a
(T )
· b)

(T )
· ĥ1(x)

h′′
1.

Hence

a
(T )
· (b

(T )
· x) = (a

(T )
· b)

(T )
· ĥ1(x).

Then for the left loop < E,
(T )
· , 1 > and its left subloop < E1,

(T1)
· , 1 > the

left Condition A is ful�lled.

Lemma 2.2. Let H ⊆ K ⊂ G be groups and let T ∗ = {tx}x∈E0 be a left

transversal G to K. Then T ∗ (as a set) can be always supplemented up to

some left transversal T = {tx}x∈E of G to H.

Proof. If T ∗ = {tx}x∈E0 is the left transversal G to K, then

(txK) ∩ (tyK) = ∅ ∀x, y ∈ E0, x 6= y.

Since H ⊆ K, we have (txH) ∩ (tyH) = ∅ for all x, y ∈ E0, x 6= y.
If K ≡ H then everything is proven. Let H ⊂ K and we shall consider

a union
S0 = ∪

x∈E0

(txH).

Since
S0 = ∪

x∈E0

(txH) ⊂ ∪
x∈E0

(txK) = G,

then S0 is a subset in G consisting of a collection of left cosets in G to
H. Supplementing S0 up to G by left cosets in G to H, which consists in
(G−S0), and choosing in every coset an unique representative, we obtain a
required left transversal T = {tx}x∈E . Moreover, T ∗ ⊂ T and E0 ⊆ E.

Lemma 2.3. Let the assumptions of Lemma 2.2 be satis�ed. Let T ∗ =
{tx}x∈E0 be a left transversal G to K, and T = {tx}x∈E be a such left

transversal G to H, for which T ∗ ⊆ T and E0 ⊆ E. Then T1 = T ∩ K =
{tx}x∈E1 is a left transversal K to H and the following statements are true:

1. All elements of the subset E0 form a left transversal the left loop

< E,
(T )
· , 1 > to its left subloop < E1,

(T )
· , 1 >.

2. The operations < E0,
(T ∗)
· , 1 > and < E0,

(E0)
· , 1 > are isomorphic

(the �rst operation is a transversal operation that corresponds to the
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left transversal T ∗ in G to K, the second corresponds to a left transver-

sal E0 in the left loop < E,
(T )
· , 1 > to its left subloop < E1,

(T )
· , 1 >).

Proof. According to Lemma 2.1 T1 = T ∩K is a left transversal K to H.
1. Let g be an arbitrary element of G. Then

g = txk, tx ∈ T ∗ ⊆ T, k ∈ K, x ∈ E0,

and, on the other hand,

g = tyh1, ty ∈ T, h1 ∈ H, y ∈ E.

Also k = tzh2, tz ∈ T1 ⊂ T, z ∈ E1, h2 ∈ H. Using the above we obtain

tyh1 = g = txk = txtzh2 = t
x
(T )
· z

h′
2, h′

2 ∈ H,

and so

y = x
(T )
· z. (2)

Since g ∈ G is arbitrary, (2) means that for every y ∈ E there exist x ∈ E0

and z ∈ E1 such that y = x
(T )
· z. So, it is su�cient to show the uniqueness

of the representation (2).
Let us assume, that this representation is not unique, then there exists

y ∈ E such that

y = x1
(T )
· z1 = x2

(T )
· z2, x1, x2 ∈ E0, z1, z2 ∈ E1.

Then
ty = t

x1
(T )
· z1

= tx1tz1h
′ = tx1(tz1h

′) ∈ tx1K,

ty = t
x2

(T )
· z2

= tx2tz2h
′′ = tx2(tz2h

′′) ∈ tx2K,
(3)

(where h′, h′′ ∈ H). Since T ∗ = {tx}x∈E0 is the left transversal G to K,
then x1 = x2. Thus (3) may be rewritten in the form

tx1tz1h
′ = ty = tx2tz2h

′′, tz1h
′ = tz2h

′′.

Since T1 = {tz}z∈E1 is the left transversal K to H, we have z1 = z2. Hence
the representation (2) is unique, and elements of the set E0 form a left

transversal < E,
(T )
· , 1 > to < E1,

(T )
· , 1 >.
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2. Let < E0,
(T ∗)
· , 1 > be a transversal operation corresponding to a left

transversal T ∗ = {tx}x∈E0 the group G to its subgroup K. Then

a
(T ∗)
· b = c ⇒ tatb = tck, ta, tb, tc ∈ T ∗ ⊂ T, a, b, c ∈ E0, k ∈ K,

and k = tzh, tz ∈ T1 ⊂ T, z ∈ E1, h ∈ H.
From the above we have tatb = tck = tctzh, i,e., t

a
(T )
· b

h′ = t
c
(T )
· z

h′′h,

h′, h′′ ∈ H. Thus a
(T )
· b = c

(T )
· z. Since a, b, c ∈ E0, z ∈ E1, from 1 we obtain

a
(E0)
· b = c, (see also (8) from [10]). Consequently, a

(T ∗)
· b = c = a

(E0)
· b,

which completes the proof.

Corollary 2.4. Let H ⊆ K ⊂ G be groups. Then there exists a one-

to-one correspondence between each left transversal T ∗ = {tx}x∈E0 of G

to K and some left transversal E0 the left loop < E,
(E0)
· , 1 > to its left

subloop < E1,
(E0)
· , 1 > (where T is a left transversal G to H, T ∗ ⊂ T ,

and T1 = {tz}z∈E1 is a left transversal K to H, T1 = T ∩ K) such that

corresponding transversal operations
(T ∗)
· and

(E0)
· are isomorphic. �

This correspondence can be converted, as it will be shown further in the
next paragraph.

Analogous results may be proved for the right transversals and two-sided
transversals in loops to its proper subloops.

3. Semidirect products of loops

Let us remind a de�nition of semidirect product of a left loop L =< E, ·, 1 >
with two-sided unit 1 and a suitable permutation group H acting on the
set E (H ⊆ St1(SE)) (see [8], [13]).

De�nition 3.1. Let the following two conditions be ful�lled for some left
loop L =< E, ·, 1 > and the permutation group H:

1. ∀a, b ∈ E : la, b = (L−1
a·bLaLb) ∈ H,

2. ∀u ∈ E and ∀h ∈ H : ϕ(u, h) = (L−1
h(u)h Luh−1) ∈ H, where La is a

left translation in < E, ·, 1 >.

Then the set E ×H with the operation

(u, h1) ∗ (v, h2)=(u · h1(v), lu,h1(v)ϕ(v, h1)h1h2)
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is a group denoted by L h H =< E×H, ∗, (1, id) > and called a semidirect

product of L and H. The group H is called a transassociant of L.

It is easy to show (see [8, 13]) that for the left multiplicative group

LM(L) and the left inner permutation group LI(L) of L we have

LI(L) = St1(LM(L)) ⊂ LM(L) and LM(L) = L× LI(L).

Lemma 3.2. Let L =< E, ·, 1 > be a loop and R =< E1, ·, 1 > be its

proper subloop, and the left Condition A be ful�lled. If T = {tx}x∈E0 is a

left transversal L to R and H ⊆ St1(SL) is a permutation group such that

LI(L) ⊆ H and ϕ(u, h) ∈ H for all u ∈ L and all h ∈ H, then

1. a semidirect product G = L h H can be de�ned,

2. K = {(r, h) | r ∈ R, h ∈ H} is a subgroup of the group G and H ⊂ K,

3. T ∗ = {(tx, id) | tx ∈ T0, x ∈ E0} is a left transversal the group G to

its subgroup K,

4. the transversal operations < E0,
(T )
· , 1 > and < E0,

(T ∗)
· , 1 > (corres-

ponding to the left transversal T the loop L to its subloop R , and

to the left transversal the group G to its subgroup K, respectively)
coincide.

Proof. 1. If the conditions of the Lemma are satis�ed, then we can de�ne
the semidirect product G = L h H = {(a, h) | a ∈ L, h ∈ H}, where
H = {(1, h) | h ∈ H} ⊆ {(a, h) | a ∈ L, h ∈ H} = G.

2. Since R ⊆ L, then according to the assumptions of our lemma, we
have la,b ∈ LI(L) ⊆ H for all a, b ∈ R. This implies

ϕ(u, h) ∈ {ϕ(u, h) |u ∈ R, h ∈ H} ⊆ {ϕ(u, h) |u ∈ L, h ∈ H} ⊆ H

for all u ∈ R and h ∈ H. Thus, we can de�ne a semidirect product

K = R h H = {(r, h) | r ∈ R, h ∈ H}.

Clearly, H = {(1, h) | h ∈ H} ⊂ K ⊆ {(a, h) | a ∈ L, h ∈ H} = G.

3. Let T = {tx}x∈E0 be a left transversal L to R and let

T ∗ = {(tx, id) | tx ∈ T, x ∈ E0} ⊂ G.

For an arbitrary element x ∈ E0 we consider the set

Kx = (tx, id) ∗K = {(tx, id) ∗ (r, h) | r ∈ R, h ∈ H} ⊂ G. (4)
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Kx is a left coset in G to K. Indeed, any g ∈ G can be written in the
form g = (u0, h0), where u0 ∈ L, h0 ∈ H. Since T = {tx}x∈E0 is a left
transversal L to R, we have u0 = tx0 · r0 for some tx0 ∈ T0 and r0 ∈ R.
Thus for h1 = (l−1

tx0 ,r0
h0) ∈ H we have

(tx0 , id) ∗ (r0, h1) = (tx0 · r0, ltx0 ,r0h1) = (u0, h0) = g,

which gives g ∈ (tx0 , id) ∗K. Since tx · R = {tx · r|r ∈ R} is a left coset in
L to R, in view of (4), for x1 6= x2 we obtain tx1 ·R)∩ (tx2 ·R) = ∅. So for
x1 6= x2 we have

Kx1 ∩Kx2 = ((tx1 , id) ∗K) ∩ ((tx2 , id) ∗K)

= {(tx1 , id) ∗ (r, h) | r ∈ R, h ∈ H} ∩ {(tx2 , id) ∗ (r, h) | r ∈ R, h ∈ H}
= {(tx1 · r, ltx1 ,rh) | r ∈ R, h ∈ H}∩{(tx2 · r, ltx2 ,rh) | r ∈ R, h ∈ H} = ∅.

Hence Kx = (tx, id) ∗ K, x ∈ E0 is the left cosets in G to K. So,
T ∗ = {(tx, id) | tx ∈ T, x ∈ E0} is a left transversal G by K.

4. Let us consider the transversal operation < E0,
(T ∗)
· , 1 > which cor-

responds to the left transversal T ∗ = {(tx, id)}|x∈E0 . Then x
(T ∗)
· y = z

i� (tx, id) ∗ (ty, id) = (tz, id) ∗ (r, h), (r, h ∈ K). Thus (tx
(L)
· ty, ltx,ty) =

(tz
(L)
· r, ltz ,rh). Hence tx

(L)
· ty = tz

(L)
· r, r ∈ R, tx, ty, tz ∈ T. Consequently,

x
(T )
· y = z, i.e., x

(T ∗)
· y = x

(T )
· y for all x, y ∈ E0.

Corollary 3.3. If the conditions of Lemma 3.2 are satis�ed, then for every

h ∈ H we have ĥ(R) ⊆ R.

Proof. The previous lemma shows that for any two elements (r1, h1) and
(r2, h2) from K holds

(r1, h1) ∗ (r2, h2) = (r1
(R)
· ĥ1(r2), lr1,ĥ1(r2)ϕ(r2, h1)h1h2).

Because K is a subgroup of the group G, for all r1, r2 ∈ R and h ∈ H we

have (r1
(R)
· ĥ(r2)) ∈ R. Hence ĥ(R) ⊆ R for all h ∈ H.

In the case H = LI(R) the inclusion ĥ(R) ⊆ R is equivalent to the fact
that la,b(R) ⊆ R for all a, b ∈ L. The last condition is equivalent to the left
Condition A for the loop L and its subloop R (Lemma 2.8 in [10]).
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