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On random error correcting codes

based on quasigroups

Aleksandra Popovska-Mitrovikj, Verica Bakeva and Smile Markovski

Abstract. Random error-correcting codes based on quasigroups transformations are
proposed elsewhere. They are similar to convolution codes and the dependence of the
properties of the codes from the used quasigroups are investigated in earlier paper of
ours. In this paper we compare the Random error correcting codes based on quasigroups
with the well know Reed-Muller and Reed-Solomon codes. The obtained experimental
results show that in the case when the bit-error probability of binary symmetric channel
is p > 0.05 (p > 0.06) then the random codes based on quasigroups over perform the
Reed-Muller and Reed-Solomon codes for the packet-error probability (for the bit-error
probability).

1. Introduction

A new class of codes, Random codes based on quasigroups (RCBQ), are
proposed by Gligoroski et al [4]. In RCBQ, similar to recursive convolution
codes, the correlation exists between any two bits of a codeword, and they
can have in�nite length, theoretically. However, in contrast to convolution
codes, RCBQ are nonlinear and almost random.

RCBQ have several parameters, and we have investigated the in�uence
of the code parameters to the code performances [8]. Since RCBQ are
designed using quasigroup string transformations on messages extended by
introduced redundancy, we have investigated how the following parameters
a�ect the codes: the pattern of redundancy, the chosen quasigroups, the
number of application of quasigroup transformations. The main goal of this
paper is to compare the performances of RCBQ regarding the performances
of the Reed-Muller codes (RMC) and Reed-Solomon codes (RSC). For that
aim we have chosen an RCBQ with best performances.
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The paper is organized as follows. The Section 2 contains the de�nition
of quasigroup transformations and the de�nition of TASC (Totally Asyn-
chronous Stream Ciphers) that is used for code de�nition. A description
of the code, i.e., the algorithms for coding and for decoding, are given in
Section 3. In Section 4 the de�nitions of codes RMC and RSC are given.
In Section 5 we show how optimal parameters for RCBQ can be chosen.
The comparison results for the performances of RCBQ regarding RMC and
RSC are presented in Section 6, which is the section with the main results
in this paper. Section 7 contains some conclusions.

2. Quasigroup transformation and TASC

A quasigroup (Q, ∗) is a groupoid, i.e., a set Q with a binary operation
∗ : Q2 −→ Q, such that for all u, v ∈ Q, there exist unique x, y ∈ Q,
satisfying the equalities u ∗ x = v and y ∗ u = v. Further on, we assume
that the set Q is a �nite set.

Given a quasigroup (Q, ∗), a new operation �\�, called a parastrophe,
can be derived from the operation ∗ as follows:

x ∗ y = z ⇐⇒ y = x \ z.

Then the algebra (Q, ∗, \) satis�es the identities: x \ (x ∗ y) = y and
x ∗ (x \ y) = y, and (Q, \) is also a quasigroup.

Quasigroup string transformations are de�ned on a �nite set Q (i.e., an
alphabet Q) endowed with a quasigroup operation ∗, and they are mappings
from Q+ to Q+, where Q+ is the set of all nonempty words on Q. Note
that Q+ = Q ∪ Q2 ∪ Q3 ∪ . . . . Here, we use two types of quasigroup
transformations as explained below.

Let l ∈ Q be a �xed element, called a leader. For every ai, bi ∈ Q, e-
and d-transformations are de�ned as follows.

el(a1a2 . . . an) = b1b2 . . . bn ⇔ bi+1 = bi ∗ ai+1,

dl(a1a2 . . . an) = b1b2 . . . bn ⇔ bi+1 = ai \ ai+1,

for each i = 0, 1, . . . , n − 1, where b0 = a0 = l. By using the identities
x \ (x ∗ y) = y and x ∗ (x \ y) = y, we have that dl(el(a1a2 . . . an)) =
a1a2 . . . an and el(dl(a1a2 . . . an)) = a1a2 . . . an. This means that el and
dl are permutations on Qn, mutually inverse. Compositions of e- and d-
transformations are used in the design of RCBQ.
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The concept of TASC was introduced in [3]. That cryptographic concept
is the corner stone for the new algorithm for error correction. Here we use
a way of implementation of TASC by quasigroup string transformations.
We take the alphabet Q = {0, 1, . . . , 9, a, b, c, d, e, f}, whose elements are 4-
bit words, and we choose a quasigroup (Q, ∗) (given in Table 1) with good
properties according to the investigation in [8]. In fact, by using TASC, we
can encrypt and decrypt messages. The TASC algorithm for encryption and
decryption that we use for designing of RCBQ is given in Figure 1. TASC
uses a key k for the encryption and decryption purposes and the length of
the key has in�uence on the performances of RCBQ (smaller key length
produces faster code with worser decoding results).

Encryption Decryption
Input: Key k = k1k2 . . . kn and Input: The pair
message L = L1L2 . . . Lm (a1a2 . . . as, k1k2 . . . kn)
Output: message (codeword) Output: The pair
C = C1C2...Cm (c1c2 . . . cs,K1K2 . . .Kn)

For j = 1 to m For i = 1 to n
X ← Lj ; Ki ← ki;
T ← 0; For j = 0 to s− 1
For i = 1 to n X, T ← aj+1;

X ← ki ∗X; temp← Kn;
T ← T ⊕X; For i = n to 2
ki ← X; X ← temp \X;

kn ← T T ← T ⊕X;
Output: Cj ← X temp← Ki−1;

Ki−1 ← X;
X ← temp \X;
Kn ← T ;
cj+1 ← X;

Output: (c1c2 . . . cs,K1K2 . . .Kn)

Figure 1: TASC algorithm for encryption and decryption

The main characteristic of TASC is that the error propagation is un-
bounded and it propagates until the end of the stream. However, by adding
some redundant information in the stream, the correction of some errors can
be done. That is in fact the main idea behind TASC Error Correction. We
emphasis here that the pseudo random properties of RCBQ are obtained
according to the following theorem.
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Theorem 1. [6] Consider an arbitrary string α = a1a2 . . . an where ai ∈ Q,
and let β be obtained after k applications of an e-transformation. If n is
enough large integer then, for each 1 6 t 6 k, the distribution of substrings
of β of length t is uniform. �

Note that for t > k the distribution of substrings of β of length t is not
uniform (see [1]).

3. Description of RCBQ

The code design uses the alphabet Q = {0, 1, . . . , 9, a, b, c, d, e, f} of
nibbles and a quasigroup operation ∗ on Q, together with its parastrophe \
(as example, see Table 1).

3.1. Description of coding

Let M = m1m2 . . .mr be a block of Nblock bits, where mi is a nibble (4-
bit letter); hence, Nblock = 4r. We �rst add redundancy as zero bits and
produce block L = L(1)L(2) . . . L(s) = L1L2 . . . Lm of N bits, where L(i) are
4-nibble words, Li are nibbles, so m = 4s,N = 16s. After erasing the redun-
dant zeros from each L(i) the message L will produce the original message
M . On this way we obtain an (Nblock, N) code with rate R = Nblock/N .
The codeword is produced from L after applying the encryption algorithm
in TASC given in Figure 1. For that aim, previously, a key k = k1k2 . . . kn

of length n nibbles should be chosen. The obtained codeword of M is
C = C1C2 . . . Cm, where Ci are nibbles.

3.2. Description of decoding

After transmitting through a noise channel (for our experiments we use bi-
nary symmetric channel), the codeword C will be transformed to a received
message D = D(1)D(2) . . . D(s) = D1D2 . . . Dm, where D(i) are blocks of 4
nibbles and Dj are nibbles. The decoding process consists of four steps:
(i) a procedure for generating the sets with prede�ned Hamming distance,
(ii) an inverse coding algorithm, (iii) a procedure for generating decoding
candidate sets and (iv) a decoding rule.

Generating sets with prede�ned Hamming distance: The probability
that 6 t bits in D(i) are not correct is

P (p; t) =
t∑

k=0

(
16
k

)
pk(1− p)16−k.
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where p is probability of bit-error in a binary symmetric channel. Let Bmax

be an integer such that 1 − P (p;Bmax) 6 qB, where qB (0 < qB 6 1) is
given. Consider the set

Hi = {α|α ∈ Q4, H(D(i), α) 6 Bmax},

for i = 1, 2, . . . , s, where H(D(i), α) is the Hamming distance between D(i)

and α. Then, with probability at least 1− qB the block C(i) is an element
of the set Hi, for i = 1, 2, . . . , s. The cardinality of the sets Hi is

Bchecks = 1 +
(

16
1

)
+

(
16
2

)
+ ... +

(
16

Bmax

)
and the number Bchecks determines the complexity of the decoding proce-
dure: for �nding the element C(i) in the set Hi, less than or equal to Bchecks

checks have to be made. Clearly, for e�cient decoding the number of checks
Bchecks has to be reduced as much as possible.

Inverse coding algorithm: The inverse coding algorithm is the decrypting
algorithm of TASC given in Figure 1.

Generating decoding candidate sets: The decoding candidate sets S0,
S1, S2,. . . , Ss are de�ned iteratively. Let S0 = (k1 . . . kn;λ), where λ is
the empty sequence. Let Si−1 be de�ned for i > 1. Then Si is the set
of all pairs (δ, w1w2 . . . w16i) obtained by using the sets Si−1 and Hi as
follows (Here, wj are bits). For each (β, w1w2 . . . w16(i−1)) ∈ Si−1 and
each element α ∈ H, we apply the inverse coding algorithm with input
(α, β). If the output is the pair (γ, δ) and if both sequences γ = c1c2 . . . c16

and L(i) have the redundant nibbles in the same positions, then the pair
(δ, w1w2 . . . w16(i−1)c1c2 . . . c16) ≡ (δ, w1w2 . . . w16i) is an element of Si.

Decoding rule: The decoding of the received codeword D is given by the
following rule: If the set Ss contains only one element (d1 . . . dn, w1 . . . w16s)
then L = w1 . . . w16s. In this case, we say that we have a successful decoding.

In the case when the set Ss contains more than one element, we say
that the decoding of D is unsuccessful (and then we say that error of type
more-candidate-error appears).

In the case when Sj = ∅ for some j ∈ {1, . . . , s}, the process will be
stopped (and then we say that error of type null-error appears); we conclude
that for some m 6 j, D(m) contains more than Bmax errors, resulting with
Cm /∈ H. In this case, whenever it is possible, we may increase the value of
Bmax by 1 and repeat the decoding procedure for the block D(m) again.

Theorem 2. [4] The packet-error probability of RCBQ is q = 1− (1−qB)s.
�
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4. Description of RMC and RSC

RMC are amongst the oldest and most known codes. They were discovered
and proposed by D. E. Muller and I. S. Reed in 1954 ([2], [5]). The rth

order Reed-Muller code, denoted as RM(r, m), is de�ned as the set of all
polynomials of degree at most r in the ring F2[x0, x1, . . . xm−1]. There is a
recursive de�nition of RM(r, m) given as follows.
1. RM(0,m) = {00...0︸ ︷︷ ︸

2m

11...1︸ ︷︷ ︸
2m

};

2. RM(m,m) = F2m

2 ;
3. RM(r, m) = {x‖(x⊕ y) | x ∈ RM(r, m− 1), y ∈ RM(r − 1,m− 1)},

for 0 < r < m.
Here, a‖b denotes the concatenation of the words a and b.

For decoding, majority logic decoding is applied.

RMC have many interesting properties that are important for examina-
tion. They form an in�nite family of codes and larger RMC can be con-
structed from smaller ones. Unfortunately, RMC become weaker as their
length increases. However, they are often used as building blocks in other
codes.

The distance of Reed-Muller RM(r, m) code is 2m−r and this code can
correct 2m−r−1 − 1 bit errors in the message transmitted through the noise
channel.

The RSC were invented in 1960 by I. S. Reed and G. Solomon ([7]).
The �rst application of RSC in mass-production was for the compact discs
(1982), where two interleaved RSC are used. Today RSC are used in hard
disk drive, DVD, telecommunication, and digital broadcast protocols. These
codes are de�ned over the Galois �elds GF (q). The Reed-Solomon code
CRS(n, k) of length n = q − 1 is de�ned by the set of polynomials A(x) of
degree less than k with coe�cients from GF (q). The set of code words for
this code is

C = {(c0, c1, ..., cn−1)|ci = A(αi), i = 0, 1, ..., n− 1, deg(A(x)) < k}

where α is a primitive element of GF (q). The input message consists of k
symbols from GF (q) and they are the coe�cients of the polynomials A(x).
The decoding is usually realized by using Berlekamp-Massey algorithm.

The Reed-Solomon code CRS(n, k) has minimum distance n−k +1 and
it can correct t = b(n− k)/2c symbol errors in a code word.
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5. Choosing parameters for optimal RCBQ

RCBQ have several parameters, and we have investigated the in�uence of
the code parameters to the code performances [8]. Since RCBQ are de-
signed using quasigroup string transformations on messages extended by
introduced redundancy, we have pointed out how 1) the pattern of the re-
dundancy, 2) the length of the key of TASC and 3) the chosen quasigroups,
a�ect the codes.

We have made experiments in the following way. First, we extend input
message using di�erent patterns for redundant zero nibbles, and after that
we encode the extended message and transmit it through a binary sym-
metric channel with probability p of bit error. For coding and decoding
we use the codes described in Section 3. The outgoing message is decoded
and if the decoding process completed successfully (the last set Ss of candi-
dates for decoding has only one element), the decoded message is compared
with the input message. If they di�er at least one bit, then we say that
an uncorrected-error appears. Then we compute the number of incorrectly
decoded bits as Hamming distance between the input and the decoded mes-
sage. Experiments showed that this type of package error occurs rarely.

In our experiments we also calculate the number of incorrectly decoded
bits when the decoding process �nish with more-candidate-error or null-
error. Then, that number is calculated as follows.

When null-error appears, i.e., Si = ∅, we take all the elements from
the set Si−1 and we �nd their maximal common pre�x substring. If this
substring has k bits and the length of the sent message is m bits (k 6 m),
then we compare this substring with the �rst k bits of the sent message. If
they di�er in s bits, then the number of incorrectly decoded bits is m−k+s.

If a more-candidates-error appears we take all the elements from the
set Ss and we �nd their maximal common pre�x substring. The number of
incorrectly decoded bits is computed as previous.

The total number of incorrectly decoded bits is the sum of all of the
previously mentioned numbers of incorrectly decoded bits.

We compute the probability of packet-error as

PER = #(incorrectly decoded packets)/#(all packets)

and the probability of bit-error as

BER = #(incorrectly decoded bits in all packets) / #(bits in all packets).
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Experiments are made for di�erent values of bit-error probability p of binary
symmetric channel and Bmax = 3 and Bmax = 4. For Bmax > 4, the
experiments do not terminate in real time.

Redundancy pattern. We made experiments for di�erent 6 patterns
for redundant zero nibbles for (72,288) code with rate R=1/4. In these
experiments we have used the quasigroup given in Fig. 1, the initial key
k = 01234 and the following 6 patterns:

patt.1 patt.2 patt.3 patt.4 patt.5 patt.6
1000 1000 1100 1100 1100 1100 1100 1100 1100 1000 1100 1100
1000 1000 0000 1100 1000 0000 1100 0000 0000 1100 1000 0000
1000 1000 1100 0000 1100 1000 0000 1100 1000 0000 1100 1100
1000 1000 1100 1100 1000 0000 1100 1100 1100 1000 1000 0000
1000 1000 0000 1100 1100 1100 0000 0000 0000 1100 1100 1100
1000 1000 1100 0000 1000 0000 1100 1100 1000 0000 1000 0000
1000 1000 1100 0000 1100 1000 1100 0000 1100 1000 1000 1000
1000 1000 0000 0000 1000 0000 0000 0000 0000 1100 1000 0000
1000 1000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000

From the experimental results obtained for all six proposed patterns we
conclude that the best results for PER and BER are obtained for the third
pattern patt.3.

Key length. Theoretical probability of packet-error given in Theorem
2 is determined under the assumption that the code is perfectly random
(i.e., the r-tuple are uniformly distributed in each codeword with length
N , r 6 N). Therefore, in that theorem the more-candidates-errors are not
provided. In Theorem 1 it is proved that if we apply t quasigroup transfor-
mations on a string, we obtain string where n-tuples of letters are uniformly
distributed for n 6 t. In the design of these codes, the length of the key k
determines how many times quasigroup transformations will be applied in
forming of codeword. Therefore, longer key of the code gives �more random�
code. This means that the results of experimental PER will be closer to
the theoretical values for PER, i.e., the number of more-candidates-errors
will be reduced. So, we made experiments with the third pattern (which
give the best results) with key length 10. From the obtained results we saw
that in some experiments more-candidates-error are not appeared, and if
they appear, their number is very small. We can conclude that when we
use a longer key, we can obtain better results for PER with almost the same
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∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 3 c 2 5 f 7 6 1 0 b d e 8 4 9 a
1 0 3 9 d 8 1 7 b 6 5 2 a c f e 4
2 1 0 e c 4 5 f 9 d 3 6 7 a 8 b 2
3 6 b f 1 9 4 e a 3 7 8 0 2 c d 5
4 4 5 0 7 6 b 9 3 f 2 a 8 d e c 1
5 f a 1 0 e 2 4 c 7 d 3 b 5 9 8 6
6 2 f a 3 c 8 d 0 b e 9 4 6 1 5 7
7 e 9 c a 1 d 8 6 5 f b 2 4 0 7 3
8 c 7 6 2 a f b 5 1 0 4 9 e d 3 8
9 b e 4 9 d 3 1 f 8 c 5 6 7 a 2 0
a 9 4 d 8 0 6 5 7 e 1 f 3 b 2 a c
b 7 8 5 e 2 a 3 4 c 6 0 d f b 1 9
c 5 2 b 6 7 9 0 e a 8 c f 1 3 4 d
d a 6 8 4 3 e c d 2 9 1 5 0 7 f b
e d 1 3 f b 0 2 8 4 a 7 c 9 5 6 e
f 8 d 7 b 5 c a 2 9 4 e 1 3 6 0 f

\ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 8 7 2 0 d 3 6 5 c e f 9 1 a b 4
1 0 5 a 1 f 9 8 6 4 2 b 7 c 3 e d
2 1 0 f 9 4 5 a b d 7 c e 3 8 2 6
3 b 3 c 8 5 f 0 9 a 4 7 1 d e 6 2
4 2 f 9 7 0 1 4 3 b 6 a 5 e c d 8
5 3 2 5 a 6 c f 8 e d 1 b 7 9 4 0
6 7 d 0 3 b e c f 5 a 2 8 4 6 9 1
7 d 4 b f c 8 7 e 6 1 3 a 2 5 0 9
8 9 8 3 e a 7 2 1 f b 4 6 0 d c 5
9 f 6 e 5 2 a b c 8 3 d 0 9 4 1 7
a 4 9 d b 1 6 5 7 3 0 e c f 2 8 a
b a e 4 6 7 2 9 0 1 f 5 d 8 b 3 c
c 6 c 1 d e 0 3 4 9 5 8 2 a f 7 b
d c a 8 4 3 b 1 d 2 9 0 f 6 7 5 e
e 5 1 6 2 8 d e a 7 c 9 4 b 0 f 3
f e b 7 c 9 4 d 2 0 8 6 3 5 1 a f

Table 1: Quasigroup of order 16 and its parastrophe used in the experiments

duration of the decoding process.

Choosing of a quasigroup. Since we work with �nite sequences, the
randomness of a sequence obtained by quasigroup transformations depends
on the used quasigroup. So, we did experiments with several quasigroups,
which showed that the choice of the quasigroup does not a�ect only the
values of PER and BER, but they have an enormous in�uence on the speed
of decoding.

First we did experiments with the cyclic group of order 16 and the length
of the key 10. Decoding for the third pattern was too slow. So, we did ex-
periment with the �rst pattern for binary symmetric channel with p = 0.02
and Bmax = 3, and we received PER=0.734087 and BER=0.460359 (that
is much worse then PER=0.1186, BER=0.0089 obtained by the quasigroup
in Table 1). Hence, it is clear that the choice of quasigroup has enormous
in�uence over the performances of the code.

After that we made experiments with quasigroup of order 16 obtained as
a direct product of a quasigroup of order 2. Experimental results obtained
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with this quasigroup are worse than the results for cyclic group. For the �rst
pattern, p = 0.02 and Bmax = 3 we got PER=0.99424 and BER=0.80869.

The cyclic group and the direct product of quasigroups of order 2 are
examples of so called fractal quasigroups, they produce biased sequences.
The quasigroup in Table 1 is an example of so called non-fractal quasigroups.
The results obtained by this quasigroup were quite satisfactory.

From the experiments, we can conclude that the best results for a
RCBQ(72,288) were obtained for the third pattern, key length 10, quasi-
group given in the Figure 1 (together with its parastrophe) and Bmax = 4.
We compare that code with RMC and RSC.

6. Experimental results for comparison

We have made several experiments in order to compare the performances
of RCBQ(72,288) of rate 1/4 with Reed-Muller and Reed-Solomon codes of
the same rate. (The experiments were made on ordinary PC, 2.6 GHz and
2 Gb RAM.) Because of the construction of RMC, its rate was chosen to be
130/512 ≈ 1/4. We considered transmissions through binary symmetrical
channel for several values of probability p of bit-error. In order to obtain
relevant statistics, we have made experiments with 13888 packets for RSC,
7692 packets for RMC and 3200 packets for RCBQ. (The experiments for
RCBQ are time consuming.) In the experiments we have analyzed the
packet-errors and the bit-errors.

For coding with the Reed-Muller code RM(r, m), an input message is

divided into blocks of k =
r∑

i=0

(
m

i

)
bits, and these blocks are encoded with

code words with length n = 2m. In this case, the code rate is R = k/n. We
need to choose appropriate values for the parameters r and m, such that the
code rate will be the closest to R = 1/4. Therefore, we made experiments
with the code RMC(3,9), the length of the messages is k = 130 bits, and
the length of the corresponding code words is n = 512 bits, i.e., the code
rate is R = 130/512 = 0.2539.

In our experiments, we have used a shortened version of the RSC(63,27).
It is the code RSC(48,12) de�ned over the Galois �eld GF (26) with a prim-
itive polynomial p(x) = 1+X +X6 (and it has the same good properties as
general RSC). The shortened RSC has the same length of the code words
(288 bits) and the same rate (1/4) as the considered RCBQ.
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The probability of packet error. The results of the experiments for
the PER are given in Table 2 and presented in Figure 2. We can derive the
following conclusions.

p RMC(3,9) RSC(48,12) RCBQ(72,288)
0.01 0 0 0.001250
0.02 0 0 0.001250
0.03 0 0.000216 0.003125
0.04 0.000650 0.003312 0.005938
0.05 0.010400 0.028874 0.015938
0.06 0.083073 0.107503 0.035938
0.07 0.260530 0.290251 0.066563
0.08 0.533021 0.505112 0.113125
0.09 0.759750 0.713062 0.188750
0.10 0.914587 0.845694 0.257813
0.11 0.971659 0.933899 0.350000

Table 2: Experimental results obtained for PER.
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Figure 2: Comparison of PER for all three codes.

The RMC is the best code (with smallest values of PER) for p 6 0.05.
For 0.05 < p 6 0.07, RMC is better than RSC, but it is worse than RCBQ.
For p > 0.08, RMC has the worst performances. The RSC has better
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performances than RMC only for p > 0.08. RCBQ is better than RMC
and RSC for p > 0.05 . It is noticeable that RMC and RSC have similar
performances for p > 0.06, while the performances of RCBQ become much
better. Maybe the best characteristic for RCBQ appears when p > 0.08,
since then RMC and RSC are useless (see Table 2), while RCBQ gives still
reliable values.

The rate of growing of these codes is given in Table 3. So, RMC has the
highest rate of growing, but it starts with very small PER for small values
of p. The similar conclusion holds for RSC, too. The results for RCBQ are
much better since the rates of growing are smaller than the suitable rates of
RMC and RSC for all considered values of p. Therefore, we conclude that
RCBQ is capable to decode for higher values of p.

RMC(3,9) RSC(48, 12) RCBQ(72, 288)
p1-p2 PER(p2)/PER(p1) PER(p2)/PER(p1) PER(p2)/PER(p1)

0.01 - 0.02 / / 1.00
0.02 - 0.03 / / 2.50
0.03 - 0.04 / 15.33 1.90
0.04 - 0.05 16.00 8.72 2.68
0.05 - 0.06 8.00 3.72 2.25
0.06 - 0.07 3.14 2.70 1.85
0.07 - 0.08 2.05 1.74 1.70
0.08 - 0.09 1.43 1.41 1.67
0.09 - 0.10 1.20 1.19 1.37
0.10 - 0.11 1.06 1.10 1.36

Table 3: The rate of growing of PER.

The probability of bit error. The results of the experiments for the
BER are given in Table 4 and presented in Figure 3.

It can be seen that we have similar results for BER as for PER, but
the di�erences between the results for RCBQ and those for RMC and RSC
are not so signi�cant. The reason for that lies in the constructions of the
codes. Namely, for RCBQ, when a bit is incorrectly decoded, then almost
all consecutive bits are incorrectly decoded. On the other side, the number
of bit-errors in a packet decoded by RMC or RSC are smaller, but they
appear in almost all packets when p > 0.08.

Although the code of Reed-Solomon did not give the best results for
PER and BER for any value of p, compared with the other two reviewed
codes, this code has the best performance in terms of speed of the decoding
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process. This is a very important feature in the coding theory. Namely,
as a rule, a coding procedure is easily to be done fast and simple, but
the problem in designing of codes is to make the decoding process to be
time e�ective (in terms of capabilities for fast detecting and correcting the
errors). The speed of decoding is a very important factor since in many real
applications the codes work with huge amounts of data.

p RMC(3,9) RSC(48, 12) RCBQ(72, 288)
0.01 0 0 0.000577
0.02 0 0 0.000759
0.03 0 0.000041 0.001359
0.04 0.000181 0.000671 0.003429
0.05 0.002488 0.006082 0.009279
0.06 0.020369 0.023117 0.022396
0.07 0.064838 0.063642 0.040647
0.08 0.135881 0.113436 0.064852
0.09 0.206767 0.166291 0.113572
0.10 0.268919 0.206621 0.156029
0.11 0.320262 0.239463 0.218902

Table 4: Experimental results obtained for BER.
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Figure 3: Comparison of BER for all three codes.
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In the experiments with these three codes it can be noted that decoding
with RCBQ is very complex and it is not time e�ective, especially for larger
values of Bmax. Thus, decoding of a packet is in average 25 times slower by
using Bmax = 4 instead of Bmax = 3. Decoding a packet by using Bmax = 5
could not be �nished for a day. Nevertheless, RCBQ can be very useful for
decoding messages transmitted through a very noisy channels (with up to
10% noise), especially when the decoding speed is not an important factor
(for example, decoding a pictures transmitted from the deep space). The
di�erence of the obtained decoding by using Bmax = 3 and Bmax = 4
can be noticed from Table 5. There, we can see that we have the same
values for PER and BER when Bmax = 3 with bit-error p = 0.05, and
Bmax = 4 with bit-error p = 0.08. The values PER_t in Table 5 are the
theoretical probabilities according to Theorem 2. The paper [4] contains
results for Bmax = 5 and Bmax = 6, obtained by using some auxiliary
heuristic algorithms. The same results for PER and BER as above are
obtained when Bmax = 5 with bit-error p ≈ 0.115, and Bmax = 6 with
bit-error p ≈ 0.155.

Bmax = 3
p PER_t PER BER

0.02 0.004314 0.004752 0.002093
0.03 0.019674 0.018433 0.008493
0.04 0.055435 0.055588 0.026289
0.05 0.118838 0.117584 0.054876
Bmax = 4
0.03 0.001447 0.003125 0.001359
0.04 0.005541 0.005938 0.003429
0.05 0.015319 0.015938 0.009279
0.06 0.034361 0.035938 0.022396
0.07 0.066467 0.066563 0.040647
0.08 0.114889 0.113125 0.064852

Table 5: Experimental results for Bmax = 3 and Bmax = 4

7. Conclusion

The RMC and the RSC are well known codes that are applied for many
practical purposes. The RCBQ are new kind of codes de�ned by using
quasigroups and quasigroup transformations, so RCBQ are based on quite
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di�erent principals than those of RMC and RSC. Here we have compared
the decoding capacities of these three types of codes in terms on time e�ec-
tiveness and capabilities for detecting and correcting the errors. For that
aims several experiments were produced and relevant statistics were inferred
from them. Generally, the RMC and the RSC have better decoding perfor-
mances in a binary symmetrical channel with bit-error probability p < 0.05.
In the opposite case, the RCBQ outperforms them signi�cantly. Neverthe-
less, the time e�ciency of the RMC and the RSC is much higher than that
of RCBQ. So, the speed of decoding of RCBQ is its disadvantage and it is
a challenge for further improvements.

We note that there are interesting results considering RMC and RCBQ
when performed in a bounded binary symmetrical channel. A bounded
binary symmetrical channel where the maximal number of erroneous bits
in every 16 transmitted bits was 5 was considered in [4]. There was shown
that RCBQ of rate 3/16 could decode a 32-bit message with 8-10 erroneous
bits, while RMC (with the same rate) was not capable to do the decoding.
These results suggest further investigations on the performances of RCBQ
in di�erent kind of channels.

Another feature of the RCBQ is that they have cryptographic properties.
Namely, if the data are encoded with these random codes, then the recipient
can decode the original data only if s/he knows exactly which parameters
are used in the process of encoding, even if the communication channel is
without noise. By the de�nition and the design of RCBQ, it is clear that
if we want to implement the algorithms for decoding we must know the
quasigroup and the primary key that is used for encoding the messages and,
of course, the pattern for introducing the redundant nibbles into original
message. (We could use not only zeros as a redundancy information, it can
be any string, even with semantic meaning.) Therefore, the usage of RCBQ
for cryptographic purposes is its another advantage over RMC and RSC.
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