
Quasigroups and Related Systems 19 (2011), 23 − 68Steiner triple systems and their lose relativesTerry S. GriggsAbstrat. This paper is intended to be a gentle and self-ontained introdution toSteiner triple systems and other important designs of triples. Topis overed inludeexistene proofs, isomorphism testing, and important tehniques whih have wide appli-ation. Links to the algebrai theory of quasigroups and loops are also disussed.
1. IntrodutionThis paper aompanies talks given at the Loops11 workshop in T°e²´,Czeh Republi, from 21st to 23rd July (�ervene), 2011. Knowledge ofSteiner triple systems and other designs of triples is a vast �eld as the ref-erene work, �Triple Systems� by C.J. Colbourn and A. Rosa [17℄ shows.This was published in 1999 and has over 450 pages of text and nearly 100pages of bibliography. Although in the 10+ years sine its publiation thesubjet has inevitably moved on it is still the referene work to onsultand I will refer to it at various points throughout this paper referened asjust C&R. Another indispensable tool is the �Handbook of CombinatorialDesigns� edited by C.J. Colbourn and J.H. Dinitz [12℄. Now in its seondedition I will also refer to this as HB. So within the time and spae avail-able it is possible only to give a very brief glimpse of this interesting andfasinating area. I have to be seletive; indeed very seletive. What hasguided my hoie are three basi priniples. The �rst of these is to presentbasi existene results and questions of isomorphism testing. The seond isto explore ertain tehniques whih seem to have a wide appliation. Last,but not least, I want to selet topis whih I hope will be of most interestor use to an algebrai audiene. In this way perhaps I will ahieve the aimof at least giving a �avour of the subjet. So let us begin.2010 Mathematis Subjet Classi�ation: 05B07Keywords: triple system, onstrution, automorphism, on�guration, isomorphism,group divisible design, quasigroup, loop.



24 T. S. GriggsA Steiner triple system of order v, usually denoted by STS(v), is anordered pair (V,B) where V is a base set of elements or points of ardinality
v and B is a olletion of triples also alled bloks, whih olletively have theproperty that every pair of distint elements of V is ontained in preiselyone triple. The most well-known examples ome from geometry. Let F2 bethe �nite �eld of two elements and V = (F2)

n \ {0}. The set of triples ofvetors {x,y, z} where x + y + z = 0, x 6= y 6= z 6= x, form the bloks ofan STS(2n − 1). Thus V and B are respetively the points and lines of theprojetive geometry PG(n − 1, 2) and the systems are known as projetiveSteiner triple systems. For n = 3, and interpreting the vetors as binarynumbers, this gives the following triples 123, 145, 167, 246, 257, 347, 356as the bloks of an STS(7). Here, and throughout the rest of the paper wewill for larity omit set brakets and ommas from triples when there is nodanger of onfusion.Further examples are the a�ne triple systems. Let F3 be the �eld ofthree elements and let V = (F3)
n. Again B is the set of triples of vetors

{x,y, z} where x + y + z = 0, x 6= y 6= z 6= x, and V and B are respe-tively the points and lines of the a�ne geometry AG(n, 3). For n = 2, andinterpreting the vetors as ternary numbers, this gives the following triples012, 345, 678, 036, 147, 258, 048, 372, 615, 057, 138, 246 as the bloks ofan STS(9). A wider lass whih ontains the a�ne Steiner triple systemsis the Hall triple systems. These were introdues by Hall [51℄ as Steinertriple systems in whih for eah x ∈ V , the automorphism group ontainsan automorphism whih is an involution with just x as a �xed point. Theyan be haraterized as Steiner triple systems in whih every three pointswhih do not form a triple generate the a�ne Steiner triple system AG(2, 3)of order 9. Hall triple systems have order 3m, m ≥ 2, and the smallest suhsystem whih is not a�ne has order 81. More information is ontained onpages 496 to 499 of HB.Less well-known are the so-alled Netto triple systems. These appearto have been inorretly attributed to Netto and are not the systems in-trodued in his paper of 1893 [74℄. Perhaps their most elegant desriptionis the following taken from [22℄. Let p be prime with p ≡ 7 (mod 12).Let n be odd and q = pn. Consider the �nite �eld Fq = V and let ǫ1and ǫ2 be the two primitive sixth roots of unity. Then ǫ1 and ǫ2 satisfythe equation x2 − x + 1 = 0. So ǫ1ǫ2 = ǫ1 + ǫ2 = 1. Both ǫ1 and ǫ2are quadrati non-residues. The olletion B is determined by speifyingthe unique triple whih ontains the pair {a, b}. De�ne x < y if y − x



Steiner triple systems and their lose relatives 25is a quadrati residue. Either a < b or b < a but not both. Withoutloss of generality assume the former. Then the triple ontaining the pairis {a, b, f(a, b)} where f(x, y) = xǫ1 + yǫ2. The onstrution works be-ause both b < f(a, b) and f(a, b) < a and both f(b, f(a, b)) = a and
f(f(a, b), a) = b.The above are very speial types of Steiner triple system. It was Pl¶kerin 1835 [80℄ who �rst asked the question for whih v Steiner triple systemsSTS(v) exist and stated that a neessary ondition is v ≡ 3 (mod 6), later[81℄ orreted to v ≡ 1, 3 (mod 6). Suh values are alled admissible and areeasily derived by ounting. Eah point x ∈ V ours in r = (v−1)/2 triples.This is the repliation number. Hene v must be odd. The total number oftriples is b = v(v − 1)/6 whih disallows v ≡ 5 (mod 6). The name omesfrom the fat that Steiner in 1853 [89℄ asked a series of questions, the �rst ofwhih was the existene of what beame to be alled Steiner triple systems.Welhe Zahl, N , von Elementen hat die Eigenshaft, dass sih die Elemente so zudreien ordnen lassen, dass je zwei in einer, aber nur in einer Verbindung vorkommen?Six years later a solution was given by Reiss [83℄, but both Steiner andReiss had been antiipated by Kirkman [60℄ in a paper dated 23rd Deember1846 and published the next year. There is a remarkable similarity betweenthe papers of Kirkman and Reiss!Kirkman's paper was the �rst of any signi�ane in Combinatorial De-sign Theory and was followed by other important ontributions. To quoteBiggs [5℄In this series of papers Kirkman has established an inontestable laim to beregarded as the founding father of the theory of designs. Among his ontempo-raries, only Sylvester attempted anything omparable, and his papers on Tatiseem to be more onerned with advaning his laims to have disovered the sub-jet than with advaning the subjet itself. Not until the Tatial Memoranda ofE.H. Moore in 1896 is there another ontribution to rival Kirkman's.In one note [61℄, Kirkman posed the following problem.Fifteen young ladies in a shool walk out three abreast for seven days in suession:it is required to arrange them daily, so that no two shall walk twie abreast.What is required here is an STS(15), but one whih has an additionalproperty, that of resolvability. In an STS(v), (V,B), a parallel lass or a



26 T. S. Griggsresolution lass is a set of bloks whih ontain every element preisely one.If the bloks of B an be partitioned into parallel lasses, then the STS(v)is said to be resolvable. Suh an STS(v), together with its parallel lasses,is alled a Kirkman triple system and denoted by KTS(v). The STS(9)given above has this property of resolvability. Although Kirkman himselfalways very properly referred to �young ladies� the problem beame knownas �Kirkman's 15 shoolgirls problem�. A solution was given by Cayley [8℄in 1850 and the following year Kirkman [62℄ gave his own solution. Clearly,neessary ondition for the existene of a KTS(v) is v ≡ 3 (mod 6), but aproof of its su�ieny, by Ray-Chaudhuri and Wilson [82℄, did not appearuntil 1971, fully 120 years after the proof for Steiner triple systems. Thesame result was also established by Lu in 1965 but remained unpublisheduntil 1990 [66℄.Essentially there are two types of onstrution for Steiner triple systems;reursive and diret. Kirkman's solution is reursive and is desribed in thenext setion as well as further later onstrutions. Diret onstrutions areonsidered in Setion 3. However before proeeding it is perhaps appropriateto give some enumeration results.Two Steiner triple systems (V,B) and (W,D) are said to be isomor-phi if there exists a one-one mapping φ : V → W suh that every triple
B ∈ B maps to a triple φ(B) ∈ D. In the ase of a Kirkman triple systemthe mapping must also preserve the resolution lasses. To within isomor-phism the STS(7) and STS(9) are unique with automorphism groups oforder 168 and 432 respetively. There are two non-isomorphi STS(13)s. In1897, Zulauf [100℄ showed that the known STS(13)s fall into two isomor-phism lasses and two years later De Pasquale [24℄ determined that onlytwo isomorphism lasses are possible. White, Cole and Cummings [94℄ �rstenumerated STS(15)s in 1919; they found 80 non-isomorphi systems. Un-aware of their work, Fisher [31℄ repeated the enumeration in 1940 but foundonly 79 systems. However the veraity of White, Cole and Cumming's re-sult was on�rmed in 1955 by Hall and Swift [52℄ in one of the �rst uses ofdigital omputers in Combinatorial Design Theory. Listings and properties,inluding details of automorphism groups, of these systems are ontainedin the paper by Mathon, Phelps and Rosa [67℄, see also pages 65 to 69of C&R. The ombinatorial explosion now takes over. The number of non-isomorphi STS(19)s is 11,084,874,829 published by Kaski and �stergård in2004 [59℄. A study of the properties of these system is [13℄. So enumerationresults have appeared at the rate of one in eah of the 19th, 20th and 21st



Steiner triple systems and their lose relatives 27enturies. It is interesting to speulate whether we will have to wait untilthe next entury or perhaps the general availability of quantum omputingto know the number of non-isomorphi STS(21)s.There are seven KTS(15)s but these ome from only four STS(15)s;there are two non-isomorphi resolutions of systems #1, #7 and #15 andone of #61. They an be found, very onveniently, on page 67 of HB. Thesolutions mentioned above by Cayley and Kirkman are the two resolutionsof system #1 whih is the projetive STS(15). In 1860, Peire [76℄ alsogave both solutions together with the one from system #61 and all sevensolutions are listed by Mulder [73℄ and Cole [20℄. An early bibliography of48 papers on �Kirkman's shoolgirls problem� was published by Ekenstein[29℄. 2. Reursive onstrutionsSo, how did Kirkman prove the existene of Steiner triple systems, or as healled them triad systems? He devised two reursive onstrutions whihare given below. But �rst we need some further de�nitions. A partialSteiner triple system of order v, denoted by PSTS(v), is de�ned similarlyto an STS(v) exept that every pair of distint elements of V is ontainedin at most one triple. The set of pairs whih are not ontained in any tripleis alled the leave of the PSTS(v). The onstrutions also use the oneptof a one-fatorization of a omplete graph K2n. A one-fator is a set of
n edges whih olletively are inident with every vertex of the graph. Aone-fatorization is a partition of all n(2n−1) edges into 2n−1 one-fators.Denote by Qv, an STS(v) and by Rv, a PSTS(v) with a leave whih onsistsof a yle Cv−1. The neessary ondition for the existene of the latter is
v ≡ 1, 5 (mod 6). Kirkman's two onstrutions are as follows.1. Q2n+1 =⇒ Q4n+3 =⇒ R4n+1.2. R2n+1 =⇒ Q4n+1 =⇒ R4n−1.Kirkman's �rst onstrutionLet Q2n+1 be de�ned on base set V = {x0, x1, x2, . . . , x2n}. Now take thefollowing one-fatorization of the omplete graph K2n+2 on {∞, 0, 1, . . . , 2n}and assign all the pairs of eah one-fator to points of the base set V of the
Q2n+1 as shown below.



28 T. S. Griggs
x0 : (∞, 0) (1, 2n) (2, 2n − 1) . . . (n − 1, n + 2) (n, n + 1)
x1 : (∞, 1) (2, 0) (3, 2n) . . . (n, n + 3) (n + 1, n + 2)
·
·

xn−1 : (∞, n − 1) (n, n − 2) (n + 1, n − 3) . . . (2n − 2, 0) (2n − 1, 2n)
xn : (∞, n) (n + 1, n − 1) (n + 2, n − 2) . . . (2n − 1, 1) (2n, 0)

xn+1 : (∞, n + 1) (n + 2, n) (n + 3, n − 1) . . . (2n, 2) (0, 1)
·
·

x2n : (∞, 2n) (0, 2n − 1) (1, 2n − 2) . . . (n − 2, n + 1) (n − 1, n)This gives Q4n+3. To obtain R4n+1 remove all triples ontaining 0 or 2n.The C4n leave is
∞, x0, 1, xn+1, 2, x1, 3, xn+2, 4, x2, . . . , 2n − 2, xn−1, 2n − 1, x2n.Kirkman's seond onstrutionLet R2n+1 be de�ned on base set V = {x0, x1, x2, . . . , x2n} with C2n leave

x0, x1, x2, . . . , x2n−1. Now take the following one-fatorization of the om-plete graph K2n on set {∞, 0, 1, . . . , 2n− 2} and assign all the pairs of eahone-fator exept the pair in the last olumn to points of the base set V ofthe R2n+1 as shown below.
xn−1 : (∞, 0) (1, 2n − 2) (2, 2n − 3) . . . (n − 2, n + 1) (n − 1, n)
xn : (∞, 1) (2, 0) (3, 2n − 2) . . . (n − 1, n + 2) (n, n + 1)
·
·

x2n−3 : (∞, n − 2) (n − 1, n − 3) (n, n − 4) . . . (2n − 4, 0) (2n − 3, 2n − 2)
x2n : (∞, n − 1) (n, n − 2) (n + 1, n − 3) . . . (2n − 3, 1) (2n − 2, 0)
x0 : (∞, n) (n + 1, n − 1) (n + 2, n − 2) . . . (2n − 2, 2) (0, 1)
·
·

xn−2 : (∞, 2n − 2) (0, 2n − 3) (1, 2n − 4) . . . (n − 3, n) (n − 2, n − 1)Further, for pairs in the last olumn, assign the pair (2n − 2, 0) to x2n andall the other pairs to x2n−2 and x2n−1 alternately starting with the pair
(0, 1) assigned to x2n−2. Finally adjoin the triples

{1, x0, x1}, {2, x1, x2}, . . . , {2n − 2, x2n−3, x2n−2}, {∞, x2n−2, x2n−1}, {0, x2n−1, x0}This gives Q4n+1. To obtain R4n−1 remove all triples ontaining 0 or 2n−2.The C4n−2 leave is
∞, xn−1, 1, x2n−2, x2n−3, 2n − 4, xn−3, 2n − 5, x2n−4, 2n − 6, xn−4, . . . ,

x1, 3, xn, 2, x0, x2n−1, 2n − 3, xn−2Kirkman's work is quite remarkable, made even more so beause repeatedappliation of the two onstrutions gives STS(v) of all admissible ordersbeginning with the trivial Steiner triple system on just one point and on-sisting of no triples! First note that



Steiner triple systems and their lose relatives 29
Q1 =⇒ Q3 =⇒ Q7 =⇒ R5 =⇒ Q9Then, suesively for all n > 1, use the following shema.

Q6n+1 =⇒ R6n−1 =⇒ Q12n−3

Q6n+3 =⇒ R6n+1 =⇒ Q12n+1

Q6n+1 =⇒ Q12n+3

Q6n+3 =⇒ Q12n+7Kirkman's one-fatorizationThe one-fatorization used by Kirkman is the one whih is now usuallydenoted by GK2n. It is easily desribed. Let K2n be the omplete graphon vertex set {∞, 0, 1, 2, . . . , 2n − 2}. Denote the set of one-fators by
{F0, F1, . . . , F2n−2}. Let F0 be the set of edges {(∞, 0), (1, 2n−2), (2, 2n−3),
. . . , (n− 1, n)}. The remaining one-fators Fi, 1 6 i 6 2n− 2, are obtainedby applying the mapping x 7→ x + i to F0, arithmeti modulo 2n − 2 with
∞ as a �xed point.But this was not Kirkman's method. He used instead a greedy algo-rithm. Representing the verties of K2n as above, he onsidered the pairsin lexiographial order and assigned them to one fators in yli orderwithout violating the one-fator riterion. The method is best explained bythe following example for K10.

F0 F1 F2 F3 F4 F5 F6 F7 F801 02 03 04 05 06 07 08 0∞12 13 14 15 16 17 181∞ 23 24 25 26 2728 2∞ 34 35 3637 38 3∞ 4546 47 48 4∞56 57 585∞ 67 686∞ 787∞ 8∞It is not immediately obvious that this method works, nor that it gives
GK2n. It is not well-known but possibly should be. More details are on-tained in the paper by Anderson [2℄.Other reursive onstrutionsThe Q2n+1 =⇒ Q4n+3 onstrution is an STS(v) =⇒ STS(2v+1) onstru-tion whih an use any one-fatorization of Kv+1. Let (V,B) be an STS(v).For any one-fatorization of Kv+1 with vertex set W , assign all the pairs of



30 T. S. Griggseah one-fator to one of the points of V to form further triples T . Then
(V ∪ W,B ∪ T ) is an STS(2v + 1). In employing this onstrution we mayuse the STS(v) itself to determine the one-fatorization. For eah point
x ∈ V , let there be a point x′ ∈ W . Further let ∞ ∈ W . If {x, y, z} ∈ Bthen put {x, y′, z′}, {x′, y, z′}, {x′, y′, z} ∈ T . Finally, for all x ∈ V , put
{x, x′,∞} ∈ T .A further reursive onstrution is STS(v) =⇒ STS(3v− 2). Take threeSTS(v)s (V0 ∪ {∞},B0), (V1 ∪ {∞},B1), (V2 ∪ {∞},B2). Now take a Latinsquare of side v−1 with the rows, olumns and entries indexed respetivelyby the points of the sets V0, V1, V2. Let T be the set of {row, olumn, entry}triples. Then (V0 ∪V1 ∪V2 ∪{∞},B0 ∪B1 ∪B2 ∪T ) is an STS(3v− 2). Thethree initial STS(v)s need not be isomorphi.An exat tripling onstrution i.e. STS(v) =⇒ STS(3v) is the following.Let (V,B) be an STS(v). Let W = V × {0, 1, 2}. If {x, y, z} ∈ V , thenput {(x, i), (y, j), (z, k)} ∈ D for i = j = k and i 6= j 6= k 6= i and also
{(x, 0), (x, 1), (x, 2)} ∈ D for all x ∈ V . Then (W,D) is an STS(3v).The last onstrution an be generalized into a diret produt onstru-tion, i.e., STS(u) & STS(v) =⇒ STS(uv). Let (U,A) be an STS(u) and
(V,B) be an STS(v). Let (a, x), (b, y) ∈ U × V . If a 6= b de�ne c by
{a, b, c} ∈ A and similarly if x 6= y de�ne z by {x, y, z} ∈ B. Theblok set D is de�ned by speifying for eah distint pair {(a, x), (b, y)},the third element of the blok. The following is easily seen to be onsis-tent. If a 6= b and x 6= y, then put {(a, x), (b, y), (c, z)} ∈ D. If a 6= band x = y, put {(a, x), (b, x), (c, x)} ∈ D and if a = b and x 6= y, put
{(a, x), (a, y), (a, z)} ∈ D. Then (V × W,D) is an STS(uv).All of the above onstrutions an be obtained as speial ases of areursive onstrution due to Moore [72℄. Let (U,A) be an STS(u) and
(V ∪ W,B ∪ C) be an STS(v) whih ontains as a subsystem an STS(w),
(W, C). Take u opies of the STS(v) on base sets Vi ∪ W, 1 6 i 6 u. Indexthe u systems by the points of the set U and take a Latin square of side
v − w. Aross eah set of three systems of the u STS(v)s as determined bythe bloks of the STS(u) adjoin new triples determined by the set of {row,olumn, entry} triples as in the 3v − 2 onstrution above. What results isan STS(w +u(v−w)). The 3v− 2 onstrution orresponds to when w = 1and u = 3. A 3v onstrution is obtained by hoosing w = 0 and u = 3and a diret produt onstrution by hoosing w = 0. Finally, the 2v + 1onstrution in whih the STS(v) is used to produe the one-fatorizationis the ase where v = 3 and w = 1 (and u renamed as v).



Steiner triple systems and their lose relatives 313. Diret onstrutionsIn 1939, Bose [6℄ published a landmark paper on Design Theory in whihhe gave a diret onstrution for Steiner triple systems of order v ≡ 3 (mod6) based on a yli group of odd order. The method an be extended andit is in a more generalized form that we now present it.Bose onstrutionLet (Q, ◦) be a ommutative idempotent quasigroup of order 2s + 1 and let
V = Q × {0, 1, 2}. The bloks of an STS(6s + 3), (V,B), are de�ned asfollows.

(A) {(x, 0), (x, 1), (x, 2)}, x ∈ Q

(B1) {(x, 0), (y, 0), (z, 1)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B2) {(x, 1), (y, 1), (z, 2)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B3) {(x, 2), (y, 2), (z, 0)}, x, y ∈ Q, x 6= y, z = x ◦ ySuh quasigroups are easy to onstrut. Abelian groups of odd order possessunique square roots, so if G is an Abelian group of order 2s+1 and we write
x ◦ y = z if xy = z2 then (G, ◦) is a ommutative idempotent quasigroup.Also non-isomorphi quasigroups de�ned on Q may be used to onstrutthe bloks (B1), (B2), (B3).A further generalization [48℄ is the following. Let (W,D) be an STS(6m+3)whih ontains a parallel lass P. For eah blok of the system, assign anarbitrary but �xed order to the points. Call a typial blok {a, b, c} anddenote the ordering by a < b < c. The bloks of an STS((2s + 1)(6m + 3))on base set Q × W are de�ned as follows.

(A) {(x, a), (x, b), (x, c)}, x ∈ Q, {a, b, c} ∈ D

(B1) {(x, a), (y, a), (z, b)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ P

(B2) {(x, b), (y, b), (z, c)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ P

(B3) {(x, c), (y, c), (z, a)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ P

(C) {(x, a), (y, b), (z, c)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ D \ PWhen m = 0 there are no bloks of type (C) and the onstrution revertsto the basi Bose onstrution.The Bose onstrution and its variants seem to be a partiularly usefultool in onstruting Steiner triple systems having presribed properties. We



32 T. S. Griggswill meet them again in Setion 5 on on�gurations. The onstrution alsoappears in the work of Duroq and Sterboul [28℄ and Grannell, Griggs and�irá¬ [45℄ on biembedding pairs of Steiner triple systems in non-orientableand orientable surfaes respetively. Further disussion of this falls welloutside the sope of this paper and would take us towards Topologial GraphTheory but the interested reader an onsult the reent survey paper [40℄.Again the subjet has moved on sine it was written but it still serves as agood introdution and overview of the subjet.A parallel onstrution for STS(6s+1) uses a half-idempotent ommuta-tive quasigroup. A Latin square is half-idempotent if every element appearseither twie or zero times on the diagonal. Clearly suh squares an only ex-ist for even orders and an easy example is given by any yli group of evenorder. Any half-idempotent Latin square an have its rows and olumnsrelabelled in suh a way that the equation x ◦x = x is satis�ed by preiselyhalf of the elements. We then have a half-idempotent quasigroup. Notethat the relabelling an be done in suh a way that retains ommutativity.In partiular, for addition modulo 2s the relabelling an be done so that
2x◦2y = (2x+1)◦(2y+1) = x+y and 2x◦(2y+1) = (2x+1)◦2y = x+y+s,
0 6 x, y 6 s − 1.So let (Q, ◦) be a half-idempotent quasigroup of order 2s and let V =
Q × {0, 1, 2} ∪ {∞}. The bloks of an STS(6s + 1), (V,B), are de�ned asfollows.

(A) {(x, 0), (x, 1), (x, 2)}, x ∈ Q, x ◦ x = x

(B1) {(x, 0), (y, 0), (z, 1)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B2) {(x, 1), (y, 1), (z, 2)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B3) {(x, 2), (y, 2), (z, 0)}, x, y ∈ Q, x 6= y, z = x ◦ y

(C1) {∞, (x, 0), (x ◦ x, 1)}, x ∈ Q, x ◦ x 6= x

(C2) {∞, (x, 1), (x ◦ x, 2)}, x ∈ Q, x ◦ x 6= x

(C3) {∞, (x, 2), (x ◦ x, 0)}, x ∈ Q, x ◦ x 6= xA ompletely di�erent diret onstrution of Steiner triple systems was givenby Shreiber [86℄ and Wilson [96℄, see also [43℄.Shreiber-Wilson onstrutionLet G be an Abelian group of order n ≡ −1, 1 (mod 6) with the operationwritten additively and v = n + 2. First list all sets of triples {x, y, z} suhthat x + y + z = 0. These fall into three types.



Steiner triple systems and their lose relatives 331. {x, y, z}, x, y, z ∈ G, x 6= y 6= z 6= x2. {x, x,−2x}, x ∈ G \ {0}3. {0, 0, 0}The total number of triples is (n + 2)(n + 1)/6 = v(v − 1)/6, the exatnumber of bloks ontained in an STS(v). The idea is to leave type 1 triplesas onstruted and to replae repeated elements by two new elements, X andY. Clearly the type 3 triple beomes XY0. So the e�ay of the onstrutiondepends on the type 2 triples. These fall into orbits under the mapping
i 7→ −2i (mod n) and for the replaement to be done must all have evenlength. The ondition for this is number theoreti; for every prime divisor
p of n, the order of −2 (mod p) must be even. The following example for
v = 15 illustrates the onstrution well.Example 3.1. Let G be the yli group of order 13, Z13, with the elements10, 11, 12 being denoted by A, B, C respetively. The triples are as follows.Type 1: 01C, 02B, 03A, 049, 058, 067, 12A, 139, 148, 157, 238, 247,256, 346, 3BC, 4AC, 59C, 5AB, 68C, 69B, 78B, 79A.Type 2: 11B, BB4, 445, 553, 337, 77C, CC2, 229, 998, 88A, AA6, 661Type 3: 000Here the type 2 triples form a single orbit and so replaing the repeatedelements by X and Y respetively (and the type 3 blok by XY0) gives thetriplesX1B,YB4,X45,Y53,X37,Y7C,XC2,Y29,X98,Y8A,XA6,Y61,XY0The STS(15) onstruted is #37 in the standard listing on pages 65 to 69of C&R.However all is not lost when there are odd length orbits under the map-ping i 7→ −2i (mod n). In that ase these orbits our in pairs, mappedto one another by i 7→ −i (mod n). Proeed as before as far as possiblewith the replaement of repeated elements but with the extra proviso thatif the triple gg(−2g) in one orbit beomes the blok Xg(−2g) then also
(−g)(−g)2g in the �negative� orbit beomes X(−g)2g. There remain two



34 T. S. Griggstriples, xx(−2x) in one orbit and (−x)(−x)2x in the other orbit, in whihthe repeated element annot be replaed by either X or Y without intro-duing a repeated pair. To solve this problem disard the triples 0x(−x)and 0(2x)(−2x) and inlude four new triples. The already de�ned bloksinlude X(−2x)(4x) or Y(−2x)(4x). In the former ase the four new bloksare 0x(−2x), 0(−x)(2x), Xx(−x), Y(2x)(−2x). For the latter interhangeX and Y. The proedure is illustrated well by the following example for
v = 13.Example 3.2. Let G be the yli group of order 11, Z11. Denote theelement 10 by A. The type 2 triples fall into two orbits119, 994, 443, 335, 551 and AA2, 227, 778, 886, 66Awhih under replaement beomeX19, Y94, X43, Y35, 051 and XA2, Y27, X78, Y86, 06AThe type 1 triples 01A and 056 beome Y1A and X56 respetively. Theother (unhanged) type 1 triples are029, 038, 047, 128, 137, 146, 236, 245, 39A, 48A, 57A, 589, 679whih together with XY0 give the 26 bloks of an STS(13).4. AutomorphismsFurther onstrutions are based on assumed automorphisms. For a Steinertriple system of order v the obvious andidate is the yli group of the sameorder. So let (V,B) be an STS(v) where V = Zv and the automorphismis generated by the mapping i 7→ i + 1 (mod v). Considering the ase
v = 6s + 1, the STS(v) will omprise (v − 1)/6 orbits of triples under themapping. Suppose that the set {0, a, a+b} is a blok of suh an orbit. Thenthe other bloks in the same orbit whih ontain the point 0 are {v−a, 0, b}and {v − (a + b), v − b, 0}. Sine the group ats transitively on the points,a neessary and su�ient ondition for the existene of an STS(v) with ayli automorphism, denoted by CSTS(v), is that there exists a partition of
Z
∗
v into (v−1)/6 subsets eah of the form {a, b, a+b, v−a, v−b, v−(a+b)}.Equivalently we seek a partition of the integers {1, 2, . . . , 3s} into s triples

{a, b, c} where either a+b = c or a+b+c ≡ 0 (mod v). Thus as an example



Steiner triple systems and their lose relatives 35for s = 3 suh a partition is given by the equations 1 + 4 = 5, 2 + 6 = 8,
3+7+9 ≡ 0 (mod 19) and starter bloks for a CSTS(19) under the ation ofthe mapping i 7→ i+1 (mod 19) are {0, 1, 5} or {0, 4, 5}, {0, 2, 8} or {0, 6, 8},
{0, 3, 10} or {0, 7, 10}. Alternative hoies for the starter bloks an, andindeed often do, give non-isomorphi systems. The problem of partitioningthe set {1, 2, . . . , 3s} into s triples {a, b, c} with a + b = c or a + b + c ≡ 0(mod v) is known as He�ter's �rst di�erene problem, HDP1(s) [54℄.For v = 6s + 3, a yli system must ontain the short orbit generatedfrom the starter blok {0, v/3, 2v/3}. By the same argument as in theprevious paragraph, starter bloks for the other orbits an be obtained froma similar partition of the integers {1, 2, . . . , 3s + 1} \ {2s + 1}. For examplefor v = 15 we have 1 + 3 = 4, 2 + 6 + 7 ≡ 0 (mod 15) giving starter bloks
{0, 1, 4} or {0, 3, 4}, {0, 2, 8} or {0, 6, 8}, {0, 5, 10}. This is He�ter's seonddi�erene problem, HDP2(s).Solutions to both of He�ter's di�erene problems, exept for HDP2(1)for whih no solution exists, were �rst given by Peltesohn [77℄, and arereprodued below in ondensed form.

v = 18s + 1, s > 2
(3i + 1, 4s − i + 1, 4s + 2i + 2) 0 6 i 6 s − 1
(3i + 2, 8s − i, 8s + 2i + 2) 0 6 i 6 s − 1
(3i + 3, 6s − 2i − 1, 6s + i + 2) 0 6 i 6 s − 2
(3s, 3s + 1, 6s + 1)

v = 18s + 7, s > 1
(3i + 1, 8s − i + 3, 8s + 2i + 4) 0 6 i 6 s − 1
(3i + 2, 6s − 2i + i, 6s + i + 3) 0 6 i 6 s − 1
(3i + 3, 4s − i + 1, 4s + 2i + 4) 0 6 i 6 s − 1
(3s + 1, 4s + 2, 7s + 3)

v = 18s + 13, s > 1
(3i + 1, 4s − i + 3, 4s + 2i + 4) 0 6 i 6 s
(3i + 2, 6s − 2i + 3, 6s + i + 5) 0 6 i 6 s − 1
(3i + 3, 8s − i + 5, 8s + 2i + 8) 0 6 i 6 s − 1
(3s + 2, 7s + 5, 8s + 6)

v = 18s + 3, s > 1
(3i + 1, 8s − i + 1, 8s + 2i + 2) 0 6 i 6 s − 1
(3i + 2, 4s − i, 4s + 2i + 2) 0 6 i 6 s − 1
(3i + 3, 6s − 2i − 1, 6s + i + 2) 0 6 i 6 s − 1
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v = 18s + 9, s > 4
(3i + 1, 4s − i + 3, 4s + 2i + 4) 0 6 i 6 s
(3i + 2, 8s − i + 2, 8s + 2i + 4) 2 6 i 6 s − 2
(3i + 3, 6s − 2i + 1, 6s + i + 4) 1 6 i 6 s − 2
(2, 8s + 3, 8s + 5)
(3, 8s + 1, 8s + 4)
(5, 8s + 2, 8s + 7)
(3s − 1, 3s + 2, 6s + 1)
(3s, 7s + 3, 8s + 6)

v = 18s + 15, s > 1
(3i + 1, 4s − i + 3, 4s + 2i + 4) 0 6 i 6 s
(3i + 2, 8s − i + 6, 8s + 2i + 8) 0 6 i 6 s
(3i + 3, 6s − 2i + 3, 6s + i + 6) 0 6 i 6 s − 1The above leaves the values v = 7, 13, 15, 19, 27, 45, 63 still to be done butwe leave these as exerises for the reader. In ase of di�ulty see pages 31and 32 of C&R.We an therefore state the following theorem.Theorem 4.3. There exists a yli STS (v) for all v ≡ 1, 3 (mod 6) exept

v = 9.A restrited form of He�ter's �rst di�erene problem was onsidered bySkolem.In [87℄ he introdued the problem of partitioning the set{1, 2, . . . , 2s}into ordered pairs (ai, bi), i = 1, 2, . . . s, suh that bi−ai = i. An example fors=4 is (6, 7), (1, 3), (2, 5), (4, 8) whih is usually more suintly representedas 23243114 and alled a Skolem sequene. Given a Skolem sequene thenthe set of triples {(i, s + ai, s + bi) : 1 6 i 6 s} is a solution of HDP1(s).So the above example yields the solution 1 + 10 = 11, 2 + 5 = 7, 3 + 6 = 9,
4 + 8 = 12.Skolem proved that the sequenes, whih he alled 1, +1 systems, existif and only if s ≡ 0, 1 (mod 4). In a seond paper [88℄ he pointed out thatfor s ≡ 2, 3 (mod 4), if it ould be proved that the set {1, 2, . . . , 2s− 1, 2s+
1} ould be similarly partitioned then this too would yield a solution toHDP1(s). An example for s = 6 is 11345364252*6 and these are known ashooked Skolem sequenes. Their existene was determined by O'Keefe [75℄.Details of the onstrution of both Skolem and hooked Skolem sequenesare given below.
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v = 4s
(i, 4s − 1 − i) 1 6 i 6 s − 1
(s + 2 + i, 3s − 1 − i) 0 6 i 6 s − 3
(4s + i, 8s − i) 0 6 i 6 2s − 1
(s, s + 1), (2s, 4s − 1), (2s + 1, 6s)

v = 4s + 1
(i, 4s + 1 − i) 1 6 i 6 s
(s + 2 + i, 3s + 1 − i) 1 6 i 6 s − 2
(4s + 2 + i, 8s + 2 − i) 0 6 i 6 2s − 1
(s + 1, s + 2), (2s + 1, 6s + 2)
(2s + 2, 4s + 1)

v = 4s + 2
(i, 4s + 2 − i) 1 6 i 6 2s
(4s + 3 + i, 8s + 4 − i) 1 6 i 6 s − 1
(5s + 2 − i, 7s + 3 − i) 1 6 i 6 s − 1
(2s + 1, 6s + 2), (4s + 2, 6s + 3)
(4s + 3, 8s + 5), (7s + 3, 7s + 4)

v = 4s − 1
(i, 4s − 1 − i) 1 6 i 6 s − 1
(s + 1 + i, 3s − i) 1 6 i 6 s − 2
(4s + i, 8s − 2 − i) 1 6 i 6 2s − 2
(s, s + 1), (2s, 4s − 1)
(2s + 1, 6s − 1), (4s, 8s − 1)Another type of automorphism is 1-rotational. This is an automorphismwhih onsists of a (v−1)-yle together with a �xed point. Usually systemshaving suh an automorphism are represented on a base set V = Zv−1∪{∞}with the automorphism generated by the mapping i 7→ i + 1 (mod v − 1)and �xing the point ∞. In [79℄ Phelps and Rosa proved the following.Theorem 4.4. A 1-rotational STS (v) exists if and only if v ≡ 3, 9(mod 24).Proof. We �rst prove neessity. Consider orbits of pairs of elements un-der the automorphism. There is one half-orbit generated from the starterblok {0, (v − 1)/2} and (v − 1)/2 full orbits. Now onsider the orbit oftriples generated from the starter blok {∞, 0, α}. It also ontains the blok

{∞, α, 2α}. Thus α = (v − 1)/2 and this is a half-orbit whih ontains thehalf-orbit of pairs and full orbit ontaining the point ∞. There are (v−3)/2orbits of pairs remaining. If v ≡ 1 (mod 6), there is a third-orbit of triplesgenerated from the starter blok {0, (v − 1)/3, 2(v − 1)/3}. This ontains



38 T. S. Griggsthe orbit of pairs generated from {0, (v − 1)/3} with the other (v − 5)/2orbits of pairs appearing in full orbits of triples. But this is impossible sine
(v − 5)/2 is not divisible by 3. If v ≡ 3 (mod 6), then (v − 3)/6 full orbitsof triples are required to omplete the system. Thus v ≡ 3, 9, 15, 21 (mod24).Now onsider the set of pairs S = {{x, y} : 0 6 x < (v−1)/2, (v−1)/2 6

y < v−1}. The ardinality of S is (v−1)2/4 and (v−1)/2 of the pairs ourin the orbit generated from {∞, 0, (v − 1)/2}. This leaves (v − 1)(v − 3)/4pairs. Now every blok in the rest of the system ontains either none or twopairs from S. Moreover the bloks our in pairs: if {a, b, c} is a blok thenso is {a + (v − 1)/2, b + (v − 1)/2, c + (v − 1)/2}. Hene (v − 1)(v − 3)/4must be divisible by 4 whih eliminates the ases v ≡ 15, 21 (mod 24).To prove su�ieny put v = 6t + 3 where t = 4s or 4s + 1. Then thereexists a Skolem sequene of order t, (ai, bi), i = 1, 2, . . . t. The following arethen the starter bloks for a 1-rotational STS(v).
{∞, 0, (v − 1)/2} ∪ {{0, i, t + bi} : 1 6 i 6 t}.The onept of 1-rotational an be generalized. A Steiner triple system,STS(v), is k-rotational if it admits an automorphism onsisting of k ylesof length (v − 1)/k together with a �xed point. In the same paper [79℄ inwhih they determined the spetrum of 1-rotational Steiner triple systems,Phelps and Rosa also proved the following.Theorem 4.5. A 2-rotational STS (v) exists if and only if v ≡ 1, 3, 7, 9,

15, 19 (mod 24).Cho [10℄ then determined the spetrum of 3-rotational and 4-rotationalsystems.Theorem 4.6. A 3-rotational STS(v) exists if and only if v≡1, 19(mod 24).Theorem 4.7. A 4-rotational STS (v) exists if and only if v ≡ 1, 9, 13, 21(mod 24).A partiularly interesting ase is when k = (v − 1)/2, i.e., the automor-phism onsists of an involution �xing one element. Suh systems are alledreverse Steiner triple systems and in fat were studied before general rota-tional systems. The ombined work of Doyen [25℄, Rosa [85℄, and Teirlink[91℄ gives the following result.Theorem 4.8. A reverse STS (v) exists if and only if v≡1, 3, 9, 19(mod 24).



Steiner triple systems and their lose relatives 39However the ultimate result in this area is due to Colbourn & Jiang[15℄ who determined the spetrum of k-rotational STS(v) for all k with
1 6 k 6 (v − 1)/2. Their result is given in the next theorem.Theorem 4.9. A k-rotational STS (v) exists if and only if

1. v ≡ 3 (mod 6) if k = 1, and
2. v ≡ 1 (mod k), and
3. v 6= 7, 13, 15, 21 (mod 24) if (v − 1)/k is even.Various other automorphism types have also been onsidered whihspae does not allow to be disussed here. But partiular mention shouldbe made of the work of Calahan and Gardner, further details of whih arein Setion 7.4 on pages 134 to 140 of C&R and the relevant papers in theBibliography. Mendelsohn [69℄, [70℄ proved that every abstrat group is theautomorphism group of some Steiner triple system.Finally in this setion it is probably appropriate to ask about Steinertriple systems whih have only the identity automorphism, so-alled auto-morphism-free systems. There are none of orders 7, 9, and 13 but 36 ofthe 80 STS(15)s and all but 164,758 of the 11,084,874,829 STS(19)s areautomorphism-free. The question was onsidered by Lindner & Rosa [63℄who onstruted automorphism-free systems for v = 15, 19, 21, 25, 27, 33and then used various �doubling� onstrutions, inluding the STS(v) =⇒STS(2v + 1) onstrution with the one-fatorization GKv+1 desribed inSetion 2, to omplete the spetrum.Theorem 4.10. An automorphism-free STS (v) exists if and only if v ≡ 1, 3(mod 6) and v > 15.Babai [3℄ in fat proved that almost all Steiner triple systems are automor-phism-free. 5. Con�gurationsIn the ontext of a Steiner triple system, a on�guration is simply a smallnumber of bloks whih may appear in the system. Perhaps the �rst ques-tion to ask therefore is for given n, the number of bloks, how many non-isomorphi on�gurations are there? Trivially when n = 1 there is justone, a single blok, and when n = 2 there are two, a pair of parallel bloks



40 T. S. Griggs(denoted by A1) and a pair of bloks interseting in a ommon point (de-noted by A2). Denoting the number of non-isomorphi on�gurations with
n bloks by C(n), it is also easy to work out that C(3) = 5 and these areshown in Figure 5.1.

Fig. 5.1. 3-blok on�gurations.A nie exerise for a student is to determine the value of C(4). It is 16and these are illustrated in Figure 5.2. Beyond this a omputer is neededand the values for 5 6 n 6 10 are given below. There seems to be no knownformula to determine these values.
n 5 6 7 8 9 10C(n) 56 282 1865 17100 207697 3180571Of more interest is ounting the number of ourrenes of eah on�gu-ration in an STS(v), a study of whih was initiated in [41℄. For a sin-gle blok this is v(v − 1)/6 and for A2, a pair of interseting bloks, is

v ×

(

r

2

)

= v(v − 1)(v − 3)/8 where r = (v − 1)/2 is the repliation num-ber, i.e. number of bloks through any given point. For A1, �rst note thatgiven any blok of an STS(v), there are v(v − 1)/6 − 3(v − 3)/2 − 1 =
(v− 3)(v− 7)/6 disjoint bloks. The number of ourrenes of A1 thereforeis (v(v − 1)/6 × (v − 3)(v − 7)/6)/2 = v(v − 1)(v − 3)(v − 7)/72. Withouttoo muh di�ulty, by reasoning along the same lines, formulae for the �ve3-blok on�gurations an be obtained. These are given below where b1 isthe number of ourrenes of Bi.
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b1 = v(v − 1)(v − 3)(v − 7)(v2 − 19v + 96)/1296
b2 = v(v − 1)(v − 3)(v − 7)(v − 9)/48
b3 = v(v − 1)(v − 3)(v − 4)/48
b4 = v(v − 1)(v − 3)(v − 7)/8
b5 = v(v − 1)(v − 3)/6

Fig. 5.2. 4-blok on�gurations.So, for any given v ≡ 1, 3 (mod 6), the number of ourrenes of every 1, 2,and 3-blok on�guration is the same in all Steiner triple systems of that or-der. But at 4-blok on�gurations the situation hanges. The on�guration
C16 now plays a key role. It is the �tightest� of the 4-blok on�gurationshaving only 6 points and is more usually known as a quadrilateral or Pashon�guration, P . Reall that there are two non-isomorphi STS(13)s. Oneof these ontains 13 Pash on�gurations and the other ontains 8. Sothe formulae for the number of ourrenes of 4-blok on�gurations in an



42 T. S. GriggsSTS(v) annot all be funtions of v. This leads to the following de�nitions.A on�guration will be alled onstant if the formula for its number of o-urrenes in an STS(v) is a funtion of v; otherwise it is alled variable. Infat only 5 of the 4-blok on�gurations are onstants and 11 are variable.Formulae for these on�gurations were �rst given in [41℄. They are repeatedbelow, where again we adopt the onvention that ci is the formula for Ci.All an be expressed in terms of the order v of the Steiner triple system andthe number of Pash on�gurations p in the partiular STS(v). We write
nv for v(v − 1)(v − 3).

c1 = nv(v − 9)(v − 10)(v − 13)(v2 − 22v + 141)/31104 + p
c2 = nv(v − 9)(v − 10)(v2 − 22v + 129)/576 − 6p
c3 = nv(v − 9)2(v − 11)/128 + 3p
c4 = nv(v − 7)(v − 9)(v − 11)/288
c5 = nv(v − 9)(v2 − 20v + 103)/48 + 12p
c6 = nv(v − 9)(v − 10)/36 − 4p
c7 = nv(v − 5)(v − 7)/384
c8 = nv(v − 7)(v − 9)/16
c9 = nv(v − 9)2/8 − 12p
c10 = nv(v − 8)/8 + 3p
c11 = nv(v − 7)/4
c12 = nv(v − 9)/4 + 12p
c13 = nv(v

2 − 18v + 85)/48 − 4p
c14 = nv/4 − 6p
c15 = nv/6
c16 = pOf ourse the number of ourrenes of all of the variable on�gurationsan be expressed in terms of the order v and the number of ourrenesof any one of them. However the Pash on�guration is the most naturalfor a number of reasons whih will beome learer later. As well as havingthe least number of points of all the 4-blok on�gurations, observe thatit is also the only n-blok on�guration, 1 6 n 6 4, in whih every pointhas degree at least 2. These formulae immediately raise two interesting andsigni�ant areas of investigation.The �rst is to identify, for eah n, an easily desribed subset of on�gu-rations suh that for admissible v the number of ourrenes of any n-blokon�guration in an STS(v) an be expressed in terms of v and the numberof ourrenes of eah member of the subset. This idea was onsidered byHorák, Phillips, Wallis and Yuas [55℄. They make the following de�nitions.



Steiner triple systems and their lose relatives 43De�nitions. A generating set M for n-blok on�gurations is a set of m-blok on�gurations, 1 6 m 6 n, suh that the number of ourrenes ofany n-blok on�guration an be expressed as a linear ombination of thenumber of ourrenes of the on�gurations in M , where the oe�ients arepolynomials in v. A basis is a minimal generating set.So using this terminology, the single blok is a basis for 1-, 2-, and 3-blok on�gurations and the single blok and the Pash on�guration forma basis for 4-blok on�gurations. The main result in [55℄ is the followingimportant theorem.Theorem 5.1. The single blok, together with all m-line on�gurations,
1 6 m 6 n, having all points of degree at least 2, form a generating set forthe n-line on�gurations in a Steiner triple system.The only 5-blok on�guration having all points of degree at least 2 isthe so-alled mitre, shown in Figure 5.3. Formulae for the number of o-urrenes of 5-blok on�gurations are given in [21℄, with minor orretionsin [39℄. Already these are beoming omplex. For example, that for 5 non-interseting (parallel) bloks, where m is the number of mitres is
v(v− 1)(v− 3)× (v7 − 91v6 +3588v5 − 79510v4 +1069873v3 − 8742231v2 +
40167162v − 80101224)/933120 + (v − 16)(v − 21)p/6 + 2mThere are �ve 6-blok, nineteen 7-blok, and 153 8-blok on�gurationshaving all points of degree at least 2 and formulae for the number of our-renes of the 6-blok, 7-blok, and 8-blok on�gurations are given on thewebsite [32℄. In all of these ases it is known that the generating set is alsoa basis but in general this is not proved. Indeed, Horák, Phillips, Wallisand Yuas make the following onjeture.Conjeture 5.2. The single blok, together with all m-line on�gurations,
1 6 m 6 n, having all points of degree at least 2, form a basis for the n-lineon�gurations in a Steiner triple system.The seond area is to answer the question: what are the onstant on�g-urations? There seems to be little doubt what the answer to this is, thoughproving it ertainly doesn't appear easy and may in fat be quite di�ult.De�ne an n-star to be an n-blok on�guration in whih all n bloks inter-set at a ommon point alled the entre. The following onjeture is alsomade in [55℄.



44 T. S. GriggsConjeture 5.3. For n > 4, an n-blok on�guration in a Steiner triplesystem is onstant if and only if it an be obtained from the (n− 1)-star byadjoining a blok.In general this an be done in preisely �ve ways. The �adjoined blok�an be disjoint from the (n − 1)-star, interset at the entre or interset atone, two, or three points. The proof that these on�gurations are onstantis straightforward, and formulae are given in [55℄. Note that the onjetureis not true for n < 4. The on�guration B1, three non-interseting bloks,is the sole exeption.A third onjeture was also made in [39℄. It is easily veri�ed that the four3-blok on�gurations obtained by removing eah of the four bloks in turnfrom a 4-blok on�guration uniquely determine the 4-blok on�guration,and the same is true for the �ve 4-blok on�gurations obtained from a5-blok on�guration.Conjeture 5.4. Every n-blok on�guration, n > 4, is uniquely hara-terized by the n on�gurations on n− 1 bloks, eah of whih is obtained byremoving a single blok from the given n-blok on�guration.Again note that the onjeture is not true for the 2-blok or 3-blok on-�gurations (both B3 and B5 give three pairs of interseting bloks). Giventhat this onjeture is analogous to the graph reonstrution onjeture,this too may be di�ult to prove.Another important topi is that of avoidane. In 1973, Erd®s [30℄ onje-tured that for every integer k > 4, there exists v0(k) suh that if v > v0(k)and if v is admissible, then there exists an STS(v) with the property that itontains no on�guration having n bloks and n + 2 points for any n satis-fying 4 6 n 6 k. Suh an STS(v) is said to be k-sparse. Clearly, a k-sparsesystem is also k′-sparse for every k′ satisfying 4 6 k′ 6 k. The reason whyon�gurations having two more points than bloks form the fous of theonjeture lies in the following theorem and its orollary whih are formallyproved in [33℄.Theorem 5.5. Suppose that n>2 and that v is admissible with v > n+3.Then any STS (v) ontains a on�guration having n bloks and n+3 points.Corollary 5.6. For every integer d > 3 and for every integer n satisfying
n > ⌈d/2⌉ there exists v0(n, d) suh that for all admissible v > v0(n, d),every STS (v) ontains a on�guration having n bloks and n+d points.



Steiner triple systems and their lose relatives 45So a 4-sparse STS(v) is just one whih ontains no Pash on�gurations.Suh systems are more ommonly known as anti-Pash. But onstrutingthese systems is not straightforward. The Bose onstrution gives a goodstart. As was observed by Doyen [26℄, when G is the yli group of order
2s + 1, the onstrution yields an anti-Pash STS(v), whenever v = 6s + 3is not divisible by 7. The ase when v is divisible by 7 was resolved byBrouwer [7℄. The ase where v ≡ 1 (mod 6) seems to be muh harder and isbased on work ontained in two papers [65℄ and [46℄. The de�nitive resultis as follows.Theorem 5.7. There exists an anti-Pash STS (v) for all v ≡ 1, 3(mod 6)exept v = 7, 13.There are two on�gurations with 5 bloks and 7 points. One is the mia(Fano arrow or Farrow), shown in Figure 5.3, obtained by extending thePash on�guration with an extra blok through any of the three pairs ofunovered points. So systems avoiding the mia are the same as anti-Pashsystems. The other on�guration is the mitre. So 5-sparse systems are thosewhih are both anti-Pash and anti-mitre. But �rst, Colbourn, Mendelsohn,Rosa and �irá¬ [16℄ onsidered systems whih were just anti-mitre. Theyshowed that these exist for all v ≡ 3, 7, 9, 19, 21, 27 (mod 36). The proofuses both the Bose onstrution and the standard �doubling� onstrutionSTS(v) =⇒ STS(2v + 1) with the one-fatorization based on the STS(v).They also pointed out that the Netto systems are anti-mitre. Combinedwith the result of Robinson [84℄ that Netto systems STS(pn) are also anti-Pash if and only if p ≡ 19 (mod 24), this gives an in�nite lass of 5-sparseSteiner triple systems. The spetrum was extended by Ling [64℄ who provedthat if there exists a transitive anti-mitre (resp. 5-sparse) STS(v), v ≡ 1(mod 6), (and the Netto systems are transitive), and an anti-mitre (resp.5-sparse) STS(w), (inluding w = 3), then there exists an anti-mitre (resp.5-sparse) STS(vw). Further work by Fujiwara [35℄,[36℄ and Wolfe [98℄ �nallyestablished the de�nitive result for anti-mitre systems.Theorem 5.8. There exists an anti-mitre STS (v) for all v ≡ 1, 3 (mod 6)exept v = 9.With regard to 5-sparse systems Wolfe has proved that these exist for�almost all� admissible v (meaning arithmeti set density 1 in the set of alladmissible orders) [97℄ and for all v ≡ 3 (mod 6) with v > 21 [99℄. For 6-sparse STS(v), as well as the Pash on�guration and the mitre, the systems



46 T. S. Griggsalso have to avoid two further on�gurations, the rown and the 6-yle,also shown in Figure 5.3. In two papers [33℄, [34℄, Forbes, Grannell andGriggs gave onstrutions for in�nite lasses of these. In partiular they areare known to exist for all su�iently large v of the form 3p, p prime and
p ≡ 3 (mod 4). There is no known 7-sparse STS(v).
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HHHHHH6-yleFig. 5.3 Some 5 and 6-blok on�gurations.6. Isomorphism testingGiven two Steiner triple systems, (V,B) and (W,D), of the same order v, afundamental question is whether they are isomorphi and how to determinethis? Clearly to examine all v! bijetions from V to W is not possible.A di�erent approah is needed. We therefore de�ne an invariant to beany property of an STS(v), (V,B), whih remains �xed under all possible
v! permutations of the base set V . Then if the invariants of two Steinertriple systems di�er they are non-isomorphi though of ourse if they arethe same no onlusion an be drawn. Trivially, the number of bloks
b = v(v − 1)/6 is suh an invariant but this would be totally useless indetermining isomorphism as would any onstant on�guration. Howevera variable on�guration will be of use. The �rst andidate is the Pash



Steiner triple systems and their lose relatives 47on�guration P and we already noted in the last setion that the numberof these in the two STS(13)s di�er.For the 80 STS(15)s, the number of Pash on�gurations in eah of thesystems is given on pages 65 to 69 of C&R. It varies from 105 for the pro-jetive STS(15) to 0 for the unique anti-Pash system of this order. In totalthere are 27 di�erent values but only 8 of these, 105, 73, 57, 32, 15, 11, 2, 0,our as the number of Pash on�gurations of just one STS(15). At theother extreme there are seven systems with both 7 and 6 Pash on�gura-tions and six systems with 10, 9, and 8 Pash on�gurations. Neverthelesssome progress has been made and further tests, suh as ounting the num-bers of other variable on�gurations suh as the mitre and the rown, anbe applied to try to distinguish the systems further. However, in additionto simply just ounting the number of Pash on�gurations, other statistisan also be ompiled. For any STS(v), (V,B), and any variable on�gu-ration C, let n(C) be the number of ourrenes of the on�guration inthe STS(v). Further for eah point x ∈ V and blok B ∈ B, let n(C, x)and n(C, B) be the number of on�gurations C in whih the point x andthe blok B respetively, appear. The point-on�guration vetor is thende�ned as the vetor (x0, x1, . . . , xn(C)) where xi is the ardinality of theset {x ∈ V : n(C, x) = i}, i.e. the number of points in the system whihour in preisely i on�gurations. The blok-on�guration vetor is de�nedanalogously. These two vetors give muh more information and in fat aresu�ient to identify individual STS(15)s.So we have a general strategy. First ompute the point-on�gurationand blok-on�guration vetors of variable on�gurations for the two Steinertriple systems under onsideration. Any di�erene implies that the systemsare non-isomorphi. If not, so that one suspets that the two systems maybe isomorphi, then the information obtained an be used to determine theisomorphism. As a simple example there exist STS(19)s ontaining justone Pash on�guration, in fat 35,758 of them [13℄. Therefore 6 pointsour in one Pash on�guration and 13 points in no Pash on�guration.So if we wish to test whether two suh systems are isomorphi this simpleobservation immediately redues the number of possible bijetions from 19!to 6!×13!, a saving in the omputational e�ort by a fator of over 25,000. (Infat, sine the automorphism group of the Pash on�guration has order 24,this an be redued further to 24 × 13!). Further tests an then be appliedto redue this number further until all the remaining possibilities an betested individually.



48 T. S. GriggsAnother very useful invariant is yle struture. Let (V,B) be an STS(v).For eah pair x, y ∈ V , de�ne a graph Gx,y with vertex set V \ {x, y, z}where {x, y, z} ∈ B with two verties u, v being joined by an edge if either
{x, u, v} or {y, u, v} ∈ B. The graph Gx,y is a union of yles of evenlength greater than 2 and these an be reorded as a list of yle lengthsin asending order. The yle struture is the olletion of all suh ylelists. The idea for this invariant goes bak to the work of White, Cole andCummings [94℄ on the enumeration of STS(15)s where a yle list is alleda type of interlaing. It ompletely distinguishes non-isomorphi STS(15)s.It is worth noting that the number of Pash on�gurations an also beomputed from yle struture. A Pash on�guration, say with bloks
{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}, will our as a 4-yle in the graphs
Ga,x, Gb,y, Gc,z. So adding the total number of 4-yles in the yle strutureand dividing by 3 will give the number of Pash on�gurations.Before leaving yle struture it is perhaps appropriate to take a littledetour. Steiner triple systems in whih all yle lists are the same are alleduniform and are of some interest. The projetive, Hall, and Netto systemsare uniform but apart from these little is known. In [42℄, Grannell, Griggsand Murphy onstruted uniform STS(v) for v = 43, 13063, and 34303with all yle lists 4, v − 7. A further uniform STS(v) with v = 180907is given in [33℄ with yle lists 4, 12, 180888. Uniform Steiner triple sys-tems in whih eah yle list is v − 3 are alled perfet and here only 14systems are known. The smallest four are the unique STS(7), the uni-que STS(9), one of the three STS(25)s with automorphism group Z5 × Z5[92℄, and a yli STS(33). Then in [42℄, perfet systems of order, 79,
139, 367, 811, 1531, 25771, 50923, 61339, 69991 were onstruted and a fur-ther system of order 135859 was given in [33℄. Unfortunately it is nowknown that the method used annot yield an in�nite lass. Having no 4-yles, perfet systems are anti-Pash and those of order 79, 367, 811 arealso 5-sparse whilst that of order 139 is 6-sparse, a very interesting Steinertriple system indeed.Another invariant of a Steiner triple system is a direted graph known asthe train. Let (V,B) be an STS(v). De�ne a mapping f from the set of all3-subsets of V to itself by f({x, y, z}) = {a, b, c} where {a, y, z}, {x, b, z},
{x, y, c} ∈ B. The digraph whih represents this mapping is the train of theSTS(v). It omprises a number of omponents, all of whih onsist of a singledireted yle with pendant direted trees that are direted towards the y-le. If {a, b, c} ∈ B then the direted yle will be a direted loop on the ver-



Steiner triple systems and their lose relatives 49tex; the only plae where loops will our. Further if f({x, y, z}) = {a, b, c}where {a, b, c} ∈ B then the four bloks {a, y, z}, {x, b, z}, {x, y, c}, {a, b, c}are a Pash on�guration. So by omputing the sum of the indegrees ofall the verties whih represent bloks of the STS(v) and dividing by 4, thenumber of Pash on�gurations an again be obtained. The idea of the trainwas developed by White [93℄ but is rather umbersome to represent sine thedigraph has v(v−1)(v−2)/6 verties. Aordingly, Colbourn, Colbourn andRosenbaum [19℄ suggested using a summary of the information ontainedin the digraph. This is alled the ompat train and is de�ned as a set ofordered triples (m, n, p) where suh a triple means that the train ontains pomponents with m verties, n of whih have indegree zero (after disount-ing the direted yle from eah omponent). Trains also ompletely distin-guish non-isomorphi STS(15)s and ompat trains nearly do exept thatsystems #6 and #7 both have ompat train (13, 12, 1)(13, 10, 18)(13, 9, 16).However the former has 37 Pash on�gurations and the latter has 33.The information in the train an also be summarized by the triolourvetor. This was introdued in [50℄ primarily as an invariant for one-fatorizations of the omplete graph but is appliable to Steiner triple sys-tems. In the train, de�ne vi to be the number of verties having indegreeequal to i. The triolour vetor is then (v0, v1, v2, . . . , vm) where m is themaximum indegree, and the triolour number is the value of v0. The tri-olour number varies from 420 for the projetive STS(15) to 60 for theanti-Pash STS(15). There are 62 di�erent values ourring with 47 ap-pearing one, 12 appearing twie and 3 appearing thrie. It is thereforea more disriminating invariant than ounting Pash on�gurations. Thetriolour vetors do distinguish the STS(15)s ompletely; in fat the �rstthree omponents are su�ient.7. Group divisible designsA natural generalization of a Steiner triple system is a group divisible de-sign. Let S be a set of positive integers. A 3-group divisible design, usuallydenoted by 3-GDD, is an ordered triple (V,G,B) where V is a base set of ar-dinality v, G is a partition of V into parts, alled groups, whose ardinalitybelongs to S, and B is a olletion of triples or bloks whih olletively havethe property that every pair of elements from di�erent groups is ontainedin preisely one triple and no pair of distint elements from the same groupour in any triple. Alternatively, every pair of distint elements our in



50 T. S. Griggseither a group or a blok but not both. If the partition of V is into ti groupsof ardinality gi, i = 1, 2, . . . , n so that v = Σn
i=1tigi, the 3-GDD is said tobe of type gt1

1 gt2
2 . . . gtn

n . The use of the word �group� in this de�nition isperhaps misleading; it has nothing to do with Group Theory.Example 7.1. Let V = {1, 2, 3, 4, A, B, C, D, E, F} and G be the partition
{1, 2, 3, 4}, {A, B}, {C, D}, {E, F}. Take the triples B to be 1AC, 1BE, 1CF,2AD, 2BF, 2CE, 3AE, 3BD, 3CF, 4AF, 4BC, 4DE. Then (V,G,B) is a 3-GDD of type 4123.A Steiner triple system of order v is a 3-GDD of type 1v. Further, byde�ning the sets of pairs through any hosen point as the groups and thendeleting that point from the design, gives a 3-GDD of type 2(v−1)/2. For anSTS(6s+3) with a parallel lass, by de�ning eah blok of the parallel lassas a group, a 3-GDD of type 32s+1 is obtained. A Latin square of side v isa 3-GDD of type v3.More generally, neessary and su�ient onditions for the existene of3-GDDs in whih every group has the same ardinality, i.e. of type gt, are(1) t > 3, (2) (t − 1)g ≡ 0 (mod 2), (3) t(t − 1)g2 ≡ 0 (mod 3), [53℄ or intabular form as below.Value of g Value of t1 or 5 (mod 6) 1 or 3 (mod 6)2 or 4 (mod 6) 0 or 1 (mod 3)3 (mod 6) 1 (mod 2)0 (mod 6) no onstraintAlso of partiular note are 3-GDDs in whih all groups exept one are ofthe same ardinality, i.e. of type gtu1. Neessary and su�ient onditionsare the following [14℄.1. if g > 0 then t > 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0,2. u 6 g(t − 1) or gt = 0,3. g(t − 1) + u ≡ 0 (mod 2) or gt = 0,4. gt ≡ 0 (mod 2) or u = 0,5. g2t(t − 1)/2 + gtu ≡ 0 (mod 3).



Steiner triple systems and their lose relatives 51The importane of group divisible designs is their use in a onstrution ofWilson [95℄. The onstrution is appliable to group divisible designs havingany blok size but is presented here just in the ontext of 3-GDDs.Wilson's fundamental onstrutionLet (V,G,B) be a 3-GDD (alled the master GDD), and the partition Gof V be G1, G2, . . . , Gt. Further let w be a funtion (alled a weight fun-tion) from the base set V to the set Z
+
0 of non-negative integers whihhas the property that if {x, y, z} ∈ B then there exists a 3-GDD of type

w(x)w(y)w(z) (alled a slave GDD). Then there exists a 3-GDD of type
Σx∈G1

w(x) Σx∈G2
w(x) . . .Σx∈Gt

w(x).Wilson's onstrution has wide appliation throughout Design Theoryand has been used in many reative ways. Below is just one example whih,although quite straightforward, will hopefully give some idea of the powerof the tehnique. In Setion we introdued the Pash on�guration and dis-ussed the existene of anti-Pash STS(v); systems whih ontain no Pashon�gurations. At another extreme it is perhaps appropriate to ask whetherthere exist STS(v) in whih the bloks of the system an be partitioned intoPash on�gurations. This is one of the questions onsidered in [49℄ andthe relevant material, together with explanatory omments, are reproduedin the proof of the following theorem.Theorem 7.2. There exists an STS (v) whih is deomposable into opiesof the Pash on�guration if and only if v ≡ 1, 9 (mod 24).Proof. We �rst prove neessity. In order for an STS(v) to be deomposableinto Pash on�gurations, the number of bloks b = v(v − 1)/6 must bedivisible by 4. Hene v ≡ 1, 9 (mod 24).The �rst possible value of v is therefore 25. If we hoose V = Z25 thena yli STS(25) will onsist of 4 orbits under the mapping i 7→ i + 1 (mod25). We seek suh a system whih ontains a Pash on�guration with oneblok from eah orbit. Then the ation of the mapping will guarantee thatthe system deomposes into Pash on�gurations. It is not too di�ultto onstrut a system by hand. The one given in [49℄ has starter bloks
{0, 1, 6}, {0, 2, 16}, {0, 3, 10}, {0, 4, 12} and a Pash on�guration with oneblok from eah orbit is {0, 1, 6}, {1, 3, 17}, {3, 6, 13}, {13, 17, 0}.The seond possible value of v is 33. We use the same approah asfor v = 25, seeking a system with V = Z11 × {1, 2, 3} with automorphism
i 7→ i + 1 (mod 11) ating on the �rst o-ordinate and leaving the seondo-ordinate �xed. There are 16 orbits in all and starter bloks both for the



52 T. S. Griggssystem and the deomposition into Pash on�gurations are
010203, 0162103, 3102103, 316203; 011131, 8111102, 813163, 0110263;
021242, 621233, 6242101, 0233101; 037353, 837361, 8353102, 0361102.This system was found by omputer.The above are two of the ingredients needed in applying Wilson's on-strution. The third is a 3-GDD of type 43 whih is also deomposableinto Pash on�gurations. This will be the slave GDD. Let K4 be theKlein 4-group with elements {e, x, y, z} where e is the identity. Let V =
K4 × {1, 2, 3}, with GDD partition Gi = K4 × {i}, i = 1, 2, 3. The3-GDD has 16 bloks whih are generated from the Pash on�guration
e1e2e3, e1y2z3, x1e2z3, x1y2e3 under the ation of K4.We an now use the onstrution. Take as the master GDD, a 3-GDDof type 6t, t > 3, and weight every point with 4. Replae every blokof the master GDD with the slave 3-GDD of type 43 above whih an bedeomposed into Pash on�gurations. Eah group of the master GDDis now expanded and has ardinality 24. Adjoin a further point ∞ andon every expanded group together with this point plae the Pash deom-posable STS(25) onstruted above. The result is a Pash deomposableSTS(24t + 1).For the ase where v = 24t + 9 a di�erent master GDD is needed, onein whih one of the groups has di�erent ardinality from the others. Takeas the master GDD, a 3-GDD of type 6t81, t > 3. Then just proeed as inthe former ase but on the expanded blok of 32 points, together with thepoint ∞, plae the Pash deomposable STS(33).The reader will have notied that in fat we have not quite proved thetheorem. The master GDDs used exist only for t > 3. We already havePash deomposable STS(25) and STS(33) but this still leaves the two val-ues v = 49 and v = 81. This is a ommon feature of GDD onstrutions;often small values �fall through the net� and have to be onsidered indi-vidually. Nevertheless we have proved the existene of Pash deomposableSTS(v) for all v ≡ 1, 9 (mod 24) with only two exeptions and we have donethis by building the systems from just three basi ingredients. Using Wil-son's onstrution has enabled us to assemble these ingredients to obtainwhat we require. A Pash deomposable STS(49) was also given in [49℄ butno suh system for v = 81. So the theorem was proved for all v ≡ 1, 9 (mod24) exept possibly v = 81. Of ourse the authors of the paper did notbelieve that this was a genuine exeption; just that the method used wasunable to deal with this value. Sometimes �lling in the �missing� values to



Steiner triple systems and their lose relatives 53omplete the spetrum an be the most di�ult part of the proof. Often it isneessary to embark on a lengthy omputer searh whih an present a sig-ni�ant hallenge. To omplete this story, a Pash deomposable STS(81)does exist; it was found later by Adams, Billington and Rodger [1℄.Before leaving this topi, it is worth noting that with little extra workwe an prove that the systems onstruted in the above theorem not onlypartition into Pash on�gurations, they also partition into sets of fourparallel bloks, i.e. on�gurations C1 in Figure 5.2. All that is needed to dois to partition the three ingredients used, STS(25), STS(33), and 3-GDD oftype 43 into on�gurations C1. It is ompletely straightforward and is leftas an exerise for the reader. More information about deomposing Steinertriple systems into on�gurations an be found in the papers [1℄, [47℄, [49℄,[56℄. 8. Mendelsohn and direted triple systemsThe bloks of a Steiner triple system are unordered. In this setion weonsider the situation where order is introdued. There are two possibilities.A yli triple, whih will be denoted by (x, y, z), ontains the ordered pairs
(x, y), (y, z), (z, x) and a transitive triple, denoted by [x, y, z] ontains theordered pairs (x, y), (y, z), (x, z). Systems of yli triples were the �rstto be onsidered, by Mendelsohn [71℄, and very appropriately are namedafter him. Thus a Mendelsohn triple system of order v, usually denoted byMTS(v), is an ordered pair (V,B) where V is a base set of ardinality v and
B is a olletion of yli triples whih olletively have the property thatevery ordered pair of distint elements of V is ontained in preisely oneyli triple. An elementary ounting argument establishes that a neessaryondition for the existene of an MTS(v) is v ≡ 0, 1 (mod 3) and systemsdo exist for all of these orders exept that there is no MTS(6).An MTS(3) on base set {a, b, c} onsists of the two triples (a, b, c) and
(c, b, a). An MTS(4) on base set {a, b, c, d} has triples (a, b, c), (d, b, a),
(c, d, a), (d, c, b). They are the unique Mendelsohn triple systems of theseorders. There are three non-isomorphi Mendelsohn triple systems of order7 detailed in the example below.Example 8.1. All three systems will be de�ned on base set V = Z7.System #1: Develop the triples (0, 1, 3) and (0, 3, 1) under the ation ofthe mapping i 7→ i + 1 (mod 7).System #2: Develop the triples (0, 1, 3) and (0, 3, 2) under the ation of



54 T. S. Griggsthe mapping i 7→ i + 1 (mod 7).System #3: The triples are (0, 1, 2), (0, 2, 1), (0, 3, 4), (0, 4, 3), (0, 5, 6),
(0, 6, 5), (1, 3, 5), (1, 4, 6), (1, 5, 4), (1, 6, 3), (2, 3, 6), (2, 4, 5), (2, 5, 3),
(2, 6, 4).The numbers of non-isomorphi MTS(v) for v = 9, 10, 12 are 18 [68℄, 143[37℄ [38℄, 4,905,693 [23℄. The Mendelsohn triple systems of order 9 are listedon pages 533 and 534 of HB. A further isomorphism invariant is availablefor Mendelsohn triple systems. For a Steiner triple system, (V,B), theneighbourhood of a point x ∈ V is the set N(x) = {{u, v} : {x, u, v} ∈ B}.Cyle struture an then be thought of as the graphs obtained from alldouble neighbourhoods, i.e. N(x) ∪ N(y), x, y,∈ V, x 6= y. However fora Mendelsohn triple system, the neighbourhood of a point will be a set ofordered pairs, whih form a olletion of direted yles. The set of all thesesingle neighbourhoods is an invariant of an MTS(v).Two reursive onstrutions for Mendelsohn triple systems are given onpages 442 and 443 of C&R.Theorem 8.2. If there exists an MTS (v) then there exists an MTS (2v+1).Proof. Let (V,B) be an MTS(v) and W be a set of ardinality v+1, disjointfrom V . Let L be a Latin square of side v + 1 with rows and olumnsindexed by W and entries from V ∪ {∞}, where L(i, i) = ∞, i ∈ W . Nowput D = {(i, L(i, j), j) : i, j,∈ W, i 6= j}. Then (V ∪ W,B ∪ D) is anMTS(2v + 1).Theorem 8.3. If there exists an MTS (v) then there exists an MTS (2v+4).Proof. Let (V,B) be an MTS(v) where V is disjoint from Zv+4. Let T bethe set of triples obtained by the ation of the mapping i 7→ i + 1 (mod
v + 4) on the starter triple (0, 1, 3). For eah d ∈ Zv+4 \ {0, 1, 2, v + 1}, let
D = {(xd, i, i+d) : 0 6 i 6 v+3, xd ∈ V } where the elements xd run throughall elements of V and addition is modulo v +4. Then (V ∪Zv+4,B∪T ∪D)is an MTS(2v + 4).Given Mendelsohn triple systems of orders 3, 4, 13, 16 the above twotheorems are su�ient to give the entire spetrum of MTS(v). Systems forthe latter two values are given in the next two examples.Example 8.4. For an MTS(13), let V = Z13. The bloks are obtained bythe ation of the mapping i 7→ i+1 (mod 13) on the starter triples (0, 1, 4),
(4, 3, 0), (0, 2, 7), (7, 5, 0).



Steiner triple systems and their lose relatives 55Example 8.5. For an MTS(16), let V = Z13 ∪ {∞1,∞2,∞3}. The bloksare obtained by the ation of the mapping i 7→ i + 1 (mod 13) on thestarter triples (∞1, 0, 7), (∞2, 0, 9), (∞3, 0, 10), (0, 1, 5), (0, 2, 7), (0, 3, 1),with the points ∞1,∞2,∞3 as �xed points, together with the two bloks
(∞1,∞2,∞3) and (∞3,∞2,∞1).Given an MTS(v), if every yli triple (x, y, z) is replaed by the orre-sponding unordered triple {x, y, z} a twofold triple system, usually denotedby TTS(v), is obtained. This is a olletion of triples in whih every pairours preisely twie. The TTS(v) so obtained is alled the underlyingTTS(v) of the MTS(v) and may ontain repeated triples. If it does notthen it is alled simple and the MTS(v) is said to be pure. Bennett andMendelsohn [4℄ proved the following theorem.Theorem 8.6. There exists a pure MTS (v) for all v ≡ 0, 1 (mod 3) exept
v = 3, 6.In fat, the results presented in this setion are a good start in provingthis. The onstrution given in the proof of Theorem 8.2 does not introduerepeated triples provided that the Latin square used is anti-symmetri. Nordoes that in the proof of Theorem 8.3 if v is odd. If v is even, replae thestarter triple (0, 1, 3) with (0, 1, (v + 4)/2) and let d ∈ Zv+4 \ {0, 1, (v +
2)/2, (v + 4)/2}. Of the initial systems used in these onstrutions thoseof orders 4 and 13 are pure. So what is required is a pure MTS(7) (one isgiven in the example above) and a pure MTS(10) to replae the MTS(3),and a pure MTS(16).Also given an MTS(v), if every yli triple (x, y, z) is replaed by
(z, y, x), another MTS(v), alled the onverse of the original MTS(v), isobtained. The onverse is not neessarily isomorphi to the original but asystem where this is the ase is said to be self-onverse. Chang, Yang andKang [9℄ proved the following theorem.Theorem 8.7. There exists a self-onverse MTS (v) for all v ≡ 0, 1 (mod 3)exept v = 6.We now turn our attention to direted triple systems. These were intro-dued by Hung and Mendelsohn [57℄ and the formal de�nition is as follows.A direted triple system of order v, usually denoted by DTS(v), is an or-dered pair (V,B) where V is a base set of ardinality v and B is a olletionof transitive triples whih olletively have the property that every orderedpair of distint elements of V is ontained in preisely one transitive triple.



56 T. S. GriggsAgain a neessary ondition for existene is v ≡ 0, 1 (mod 3) and this isalso su�ient with no exeptions.Direted triple systems exist in greater numbers than their Mendel-sohn ounterparts. Enumeration results for v 6 7 were obtained by Col-bourn and Colbourn [18℄. The DTS(3) is of ourse unique: on base set
{a, b, c}, it onsists of the transitive triples [a, b, c] and [c, b, a]. But thereare 3 non-isomorphi DTS(4)s. On base set {a, b, c, d}, they are (1) [a, b, c],
[b, a, d], [c, d, a], [d, c, b], (2) [a, b, c], [b, a, d], [c, d, b], [d, c, a], (3) [a, b, c],
[c, a, d], [b, d, a], [d, c, b]. There are 32 non-isomorphi DTS(6)s and 2,368non-isomorphi DTS(7)s (ompared to no MTS(6) and just 3 MTS(7)s).In respet of pure direted triple systems, there is a stronger result thanfor Mendelsohn triple systems. Colbourn and Colbourn [11℄ proved thefollowing theorem.Theorem 8.8. Every twofold triple system is the underlying system of somedireted triple system.This is ertainly not true for Mendelsohn triple systems. There are 36non-isomorphi TTS(9)s but only 16 of them are underlying systems of the18 MTS(9)s.As with MTS(v), the onverse of a DTS(v) is also a DTS(v), not ne-essarily isomorphi to the original. Kang, Chang and Yang [58℄ establishedthe spetrum of self-onverse DTS(v).Theorem 8.9. There exists a self-onverse DTS (v) for all v ≡ 0, 1 (mod 3)exept v = 6.An existene proof for direted triple systems an be adapted from andfollows losely Theorems 8.2 and 8.3 for Mendelsohn triple systems. Butto �nish this setion an alternative proof is given; one whih uses Wilson'sfundamental onstrution. We will need ertain ingredients to implementthis and we give these �rst as examples.Example 8.10. For larity brakets and ommas are omitted from diretedtriples.DTS(6): 013, 124, 230, 341, 402, 054, 150, 251, 352, 453.DTS(9): 012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246, 310,872, 654, 520, 761, 843, 740, 851, 632, 860, 421, 753.DTS(10): 021, 203, 130, 312, 054, 506, 460, 645, 087, 809, 790, 978, 347,158, 269, 593, 671, 482, 836, 914, 725, 274, 385, 196, 952, 763,841, 628, 439, 517.



Steiner triple systems and their lose relatives 57This latter example is taken from [44℄. Note that the DTS(10) ontainsa subsystem DTS(4) on the set {0, 1, 2, 3}, a feature whih will be ruialin the proof below. The triples also have the interesting property that ifthey are interpreted as yli triples instead of transitive triples they forman MTS(10).3-GDD of type 23: Let V = {a, b, c, x, y, z} with partition {a, x}, {b, y},
{c, z}. The direted triples are abc, ayz, xbz, xyc, zyx, cbx, cya, zba.Theorem 8.11. There exists a DTS (v) for all v ≡ 0, 1 (mod 3).Proof. The proof is divided into di�erent residue lasses.(1) v = 6s + 1, s > 1. Let {{0, ai, ai + bi} : 1 6 i 6 s} be a set of orbitstarters under the mapping i 7→ i + 1 (mod 6s + 1). For a DTS(v), hooseorbit starters [0, ai, ai + bi] and [ai + bi, ai, 0] under the same mapping or,for a pure system, [0, ai, ai + bi] and [ai + bi, bi, 0].(2) v = 6s + 3, s > 0. As in ase (1), for s 6= 1 take a set of yli orbitstarters. It will not be possible in this ase to onstrut a pure DTS(v)beause of the short orbit starter {0, 2s + 1, 4s + 2}. A DTS(9) is given inthe above example.(3) v = 12s + 6, s > 0. For s = 0, a DTS(6) is given above. Otherwisetake a 3-GDD of type 32s+1 and weight every point with 2. Replae everyblok of the GDD by the slave direted 3-GDD of type 23 given in the aboveexample and every expanded group by the DTS(6).(4) v = 12s + 4, s > 0. The three non-isomorphi DTS(4)s are givenabove. For s > 1, Take a 3-GDD of type 23s+1, weight every point with 2,and proeed as in ase (3), using the slave direted 3-GDD and a DTS(4).(5) v = 12s, s > 1. This is exatly the same as the previous asestarting with a 3-GDD of type 23s.(6) v = 12s + 10, s > 0. This is a slightly more di�ult ase andillustrates a further extension of the use of Wilson's onstrution. For s = 0,a DTS(10) is given above. Otherwise take a 3-GDD of type 32s+1, weightevery point with 2, and replae every blok of the GDD by the slave direted3-GDD as before. The expanded groups of the master GDD have ardinality6 so adjoin four further points, say a, b, c, d. On every expanded blok,together with a, b, c, d, plae a DTS(10) ontaining a DTS(4) subsystem sothat this subsystem is on the four adjoined points. Reall that we remarkedthat the DTS(10) in the example above had suh a subsystem.



58 T. S. Griggs9. Quasigroups and loopsA Steiner quasigroup or squag is a pair (Q, ·) where Q is a set and · is anoperation on Q satisfying the identities
x · x = x, y · (x · y) = x, x · y = y · x.If (V,B) is an STS(v), then a Steiner quasigroup (Q, ·) is obtained by letting

Q = V and de�ning x·y = z where {x, y, z} ∈ B. The proess is reversible; if
Q is a Steiner quasigroup, then a Steiner triple system is obtained by letting
V = Q and {x, y, z} ∈ B where x · y = z for all x, y ∈ Q, x 6= y. Thusthere is a one-one orrespondene between all Steiner triple systems andall Steiner quasigroups, see for example Theorem V.1.11 of [78℄. A Steinerquasigroup is also known as an idempotent totally symmetri quasigroup,see Remark 2.12 on page 153 of HB. In a similar vein, a Steiner loop orsloop is a pair (L, ·) where L is a set ontaining an identity element, say e,and · is an operation on L satisfying the identities

e · x = x, x · x = e, y · (x · y) = x, x · y = y · x.If (V,B) is an STS(n), then a Steiner loop (L, ·) is obtained by letting
L = V ∪ {e} and de�ning x · y = z where {x, y, z} ∈ B. Again the proessis reversible. All of the above is well-known in both the algebrai and theombinatorial ommunities.For a Steiner loop, a natural question is whether it an ever be a groupand if so to identify both the group and the Steiner triple system from whihit omes? The answer, whih is also well-known, is in the a�rmative and iseasy to determine. Let (L, ·) be a Steiner loop. Then if it is also a group,sine every non-identity element has order 2, it is elementary Abelian oforder 2n, n > 2. The orresponding Steiner triple system thus has order
2n−1 and is the projetive Steiner triple system of that order introdued inthe Introdution and obtained by suitably identifying elements of the groupwith vetors in (F2)

n.A further question whih now arises is whether there are any otheralgebrai identities whih a Steiner loop may satisfy whih lead to otherinteresting lasses of Steiner triple system? However, before onsidering thisquestion, it is instrutive to present a di�erent proof of the above result thatif a Steiner loop is assoiative then it omes from a projetive Steiner triplesystem. This alternative proof is not group-theoreti but ombinatorial,relying on results from Design Theory. Let (V,B) be an STS(v) and (L, ·),



Steiner triple systems and their lose relatives 59where L = V ∪ {e}, the assoiated Steiner loop. If any of x, y, z are equalto e or to one another then assoiativity is satis�ed. If {x, y, z} ∈ B then
(x · y) · z = x · (y · z) = e. Now suppose that {x, y, z} /∈ B. Then theblok, say b1, ontaining x, y also ontains the element x · y. Similarly,the blok, say b2, ontaining y, z also ontains the element y · z. Nowonsider the blok b3 ontaining x · y and z. The third point is (x · y) · z.Similarly the third point in the blok b4 ontaining x and y · z is x · (y · z).If the assoiative law holds then these two third points are the same andthe four bloks b1, b2, b3, b4 ontain six points, x, y, z, x · y, y · z, x · y · z,i.e. they form a Pash on�guration. The number of sets {x, y, z} /∈ B is
v(v−1)(v−2)/6−v(v−1)/6 = v(v−1)(v−3)/6, so the STS(v) must ontainat least v(v − 1)(v − 3)/24 Pash on�gurations. But this is the maximumnumber that an our and does so only in the projetive systems [90℄. Infat the yle struture of the projetive systems ontains only 4-yles.We now introdue a onept whih we all frational assoiativity. Inorder to do this we express assoiativity in a di�erent notation. By in-troduing left and right translations, x · y an be written as either Lx(y)or Ry(x). The assoiative law an then be expressed as LxRz = RzLx.Then 1/nth assoiativity is de�ned by (LxRz)

n = (RzLx)n. Clearly if anoperation is 1/nth assoiative then it is 1/mth assoiative for all m > nwith assoiativity being the ase where n = 1. Now onsider a Steinerloop (L, ·) where the operation is 1/2-assoiative, in onventional notation,
x ·((x ·(y ·z)) ·z) = (x ·((x ·y) ·z)) ·z. Then a straightforward, but somewhattedious, analysis shows that the yle struture of the orresponding Steinertriple system must ontain only 4-yles and 8-yles. This lass of STS(v)is wider than just the projetive systems. It ontains the STS(15) #2 inthe standard listing in [67℄ for example. But none of the 11,084,874,829STS(19)s have this property. The situation merits further investigation.The Hall triple systems have an elegant haraterization in terms ofSteiner quasigroups.Theorem 9.1. Let (Q, ·) be the Steiner quasigroup orresponding to anSTS (v), (V,B). Then (Q, ·) satis�es the distributive law, i.e., x · (y · z) =
(x · y) · (x · z), x, y, z ∈ Q, if and only if (V,B) is a Hall triple system.Proof. To prove neessity, we need to show that every three points whihdo not form a triple generate the unique STS(9).So let a, b, p ∈ V where {a, b, p} /∈ B. Then there exists c, x, suh that
{a, b, c}, {a, p, x} ∈ B. (It is to be understood that when a new letter is



60 T. S. Griggsintrodued it represents a new point.) There also exist z, r, suh that
{b, p, z}, {b, x, r} ∈ B.Now a·(b·p) = (a·b)·(a·p), i.e. a·z = c·x = q. Thus {a, z, q}, {c, x, q} ∈ B.Also a·(b·x) = (a·b)·(a·x), i.e., a·r = c·p = y. Thus {a, r, y}, {c, p, y} ∈ B.We now have nine points, a, b, c, p, q, r, x, y, z and eight bloks. To om-plete the STS(9) and also the proof we need to show that {b, q, y}, {c, r, z},
{p, q, r}, {x, y, z} ∈ B.So b ·q = (c ·a) ·(c ·x) = c ·(a ·x) = c ·p = y. Further c ·r = (b ·a) ·(b ·x) =
b · (a · x) = b · p = z. Next p · q = (x · a) · (x · c) = x · (a · c) = x · b = r.Finally x · y = (p · a) · (p · c) = p · (a · c) = p · b = z.To prove su�ieny, suppose �rst that {x, y, z} ∈ B. Then x · (y · z) =
x · x = x and (x · y) · (x · z) = z · y = x. If {x, y, z} /∈ B, then the threepoints x, y, z generate an STS(9). There exists a, b, c suh that {a, y, z},
{x, b, z}, {x, y, c} ∈ B. But {a, b, c} /∈ B, beause the unique STS(9) is anti-Pash. Therefore there exists l, m, n suh that{l, b, c}, {a, m, c}, {a, b, n}∈B,and by onsidering bloks ontaining the point a, {a, x, l} ∈ B. Now weobtain x · (y · z) = x · a = l and (x · y) · (x · z) = c · b = l.Another method of obtaining a loop from a Steiner triple system (V,B) isto hoose a point α ∈ V and de�ne an operation ◦ by the rule x◦y = (x·y)·αwhere x ·y is de�ned as in the Steiner quasigroup, i.e. x ·x = x and x ·y = zwhere {x, y, z} ∈ B. The point α is the identity and every other elementhas order 3. Di�erent values of α an lead to di�erent loops. If (V,B) is aHall triple system then the loop obtained is a Moufang loop and di�erentvalues of α then lead to isomorphi loops. The relationship between Halltriple systems and exponent 3 ommutative Moufang loops is one-one.Less well known seems to be the fat that quasigroups and loops an beobtained from Mendelsohn triple systems by preisely the same proeduresas desribed above for onstruting Steiner quasigroups and Steiner loopsfrom Steiner triple systems. The law y · (x · y) = x is usually alled semi-symmetri and the quasigroups are known as idempotent semisymmetriquasigroups, see again Remark 2.12 on page 153 of HB. However the alge-brai strutures might also appropriately be alled Mendelsohn quasigroupsand Mendelsohn loops; they satisfy the same properties as their Steinerounterparts with the exeption of ommutativity. Similarly there is aone-one orrespondene between Mendelsohn triple systems, Mendelsohnquasigroups and Mendelsohn loops.For a direted triple system, an algebrai struture an also be obtainedas above by de�ning x ·x = x and x ·y = z for all x, y ∈ V , x 6= y where z is



Steiner triple systems and their lose relatives 61the third element in the transitive triple ontaining the ordered pair (x, y).However the struture obtained is not neessarily a quasigroup. If [u, x, y]and [y,v,x℄ are transitive triples then u · x = v · x = y. But in fat someDTS(v)s do yield quasigroups and these are the subjet of a reent paper byDrápal, Kozlik and the present author [27℄. Suh a DTS(v) is alled a Latindireted triple system, and denoted by LDTS(v), to re�et the fat thatin this ase the operation table forms a Latin square. The quasigroup soobtained is alled a DTS-quasigroup. In an analogous way to that desribedabove for Steiner triple systems a loop may also be onstruted from anLDTS(n); alled a DTS-loop.A neessary and su�ient ondition for a direted triple system to beLatin is given in the following theorem, proved in [27℄.Theorem 9.2. Let D = (V,B) be a DTS (v). Then D is an LDTS (v) ifand only if [x, y, z] ∈ B ⇒ [w, y, x] ∈ B for some w ∈ V .Latin direted triple systems di�er from their Steiner and Mendelsohnounterparts in fundamental ways. One of these is that they are not a va-riety. Another is that, unlike Steiner and Mendelsohn triple systems, thereis not a one-one orrespondene between the Latin direted triple systemsand the assoiated quasigroups or loops. A further di�erene onerns �ex-ibility. The �exible law states that x ·(y ·x) = (x ·y) ·x. As is easily veri�ed,both Steiner quasigroups and loops and Mendelsohn quasigroups and loopsall satisfy this law. But this is not the ase for DTS-quasigroups and loops.A �exible DTS-quasigroup or loop has an interesting geometri strutureand a neessary and su�ient ondition is as follows.Theorem 9.3. A DTS-quasigroup or DTS-loop obtained from a Latin di-reted triple system LDTS (v), D = (V,B), satis�es the �exible law if andonly if [x, y, z] ∈ B ⇒ [x, z · x, y · x] ∈ B.DTS-quasigroups exist for all v ≡ 0, 1 (mod 3) exept v = 4, 6, 10. Moredetails are in [27℄.Finally we remark that the isomorphism invariants, yle lists and trains,used to distinguish non-isomorphi Steiner and Mendelsohn triple systems,and hene also their assoiated quasigroups and loops, might also be usedmore widely. Let (Q, ·) be a quasigroup (inluding a loop). For x ∈ Q de�nethe neighbourhood N(x) as the set of ordered pairs {(u, v) : u · v = x}. Theyles indued by double neighbourhoods and, if Q is not ommutative,the direted yles indued by single neighbourhoods an be used to help



62 T. S. Griggsdetermine isomorphism. Trains an be obtained by de�ning the mapping ffrom the set of all yli triples of Q to itself by f((x, y, z)) = (a, b, c) where
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