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Four lectures on formal nonassociative Lie theory

José M. Pérez—Izquierdo

Abstract. This survey corresponds to four lectures on nonassociative Lie theory that
will be held at Workshops Loops’11, T¥est’, July 21 — 23, 2011. In the first lecture we
focus on the importance of the space of distributions in the algebraic treatment of local
loops. Formal loops replace local loops in the second lecture, where the classification of
formal loops in terms of Sabinin algebras is presented. The geometrical meaning of this
classification is the topic of the third lecture. The non-existence of quantum loops is

discussed in the final lecture.

1. The bialgebra of distributions of a local loop

1.1. Basic definitions and structures

1.1.1. Distributions with support at a point. Let ) be an n-dimensional
smooth manifold, e € Q and (U, (x!,...,2")) a coordinate neighborhood
of e. Let §; = 0/92" and for any I = (i,...,i,) € N" define elements
1) in the dual space C®(Q)* of C>®(Q) by dj|e = I ---din|. if |I]| =
i1+ +in =1, and Or|e: f — f(e) the Dirac delta . in case that |I| = 0.
Linear combinations of {9 | I € N"} are called distributions on @Q with
support at e, and they form a vector space that we will denote by D.(Q).

1.1.2. Exercises.

(1) Prove that D.(Q) does not depend on the particular choice of the
coordinate neighborhood of e.

(2) Prove that {9r]e | I € N"} is a basis of DL(Q).

(3) Let (U, (x!,...,2™)), (V, (y,....,y™)) and (U XV, (2}, ..., 2™, y}, ...,y™))
be coordinate neighborhoods of e; € @1, e2 € Q2 and (e1,e2) €
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Q1 X Q2 respectively. Prove that the map

a[|:t:el & BJ’y:eQ — 818J|(3:,y):(31,82)

induces a linear isomorphism D, (Q1) ® D,,(Q2) = DZel,ez)(Ql X Q2).

(4) Prove that D.(e) = Ré, for the zero-dimensional manifold {e}.

1.1.3. The linearization functor. By the Chain rule, any smooth map
w: Q1 — Q9 induces a corresponding linear map

¢ 1 De(Q1) — Diy)(Q2),
poe @) froufop).
The assignment
Q) = De(Q), ¢
defines a covariant functor from the category of smooth manifolds with base
point to the category of vector spaces.

1.1.4. Examples.
(1) (Twist map) With the identification in Exercise 1.1.2 (3), the map
0: Q1 x Q2 — Q2x
(z,y) = (y,2)
induces a corresponding map
o'+ D, (Q1) ® D, (Q2) — D, (Q2) ® D, (Q1)
pROQV — VU
on distributions.
(2) (Inclusion map) The inclusion ¢: e — @ induces
iR — DLQ),
0e +—  Oe.
(3) (Constant map) The constant map k: Q — e induces
KiDLQ) — RS,

0 if |I]#0
e = {56 if |I] = 0.

The map € = £’ will be called the counit of D.L(Q).
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(4) (Projection) With the natural identifications, the projection
T QX Q2 — Q1
(z,y) —
induces a corresponding map
™ De, (Q1) @D, (Q2) — D, (Q1)
(wev) — W,
where € denotes the counit of D}, (Q2).

(5) (Diagonal map) The diagonal map 6: @ — Q X Q x +— (z,z) induces

0" DLQ) — De(Q) @ D(Q)

1!
dtle Z W81'|6®8"|67 (1.1)
I=r+1r7 = 7

where (i1,...,4,)! = i1!---i,! The map A = § will be called the
comultiplication of DL(Q).

1.1.5. The coalgebra of distributions with support at a point. A coassocia-
tive coalgebra (or simply coalgebra) is a k-vector space C' endowed with two
linear maps A: C — C ® C (comultiplication) and e: C' — k (counit) such
that the following diagrams commute

C A CeC C
A I®A and y A\
ceC 22 .ogcwcC c+2L cgct2 ¢

Following Sweedler sigma notation, the linear combination of homoge-
neous tensors that represents A(u) will be written as

D) @ ez
The coalgebra (C, A, €) is called cocommutative if A = A°P where

AP (1) = pay @ pga).-
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Given two coalgebras (C1, Ay, €1) and (Ca, Ag, €2), a coalgebra morphism is

a linear map ¥ : C; — Cy that verifies Ago1) = (Y ®1)o A and €301 = €.
The linearizations of the the different commutative diagrams in the first

column of Table 1 show that (DL(Q), A, €) is a cocommutative coalgebra.

Manifolds Distributions
Q— +QxQ DLUQ) —E—— DLQ) @ DLQ)
6{ { Ixé A l IQA
QxQ2 e 93 gxqQ | DPUQ) @ DLQ) AL () 0 DLQ) @ DL(Q)

De(Q)

o I

O XL o5 o Ixm, g DLQ) ~2L DL(Q)2DL(Q) 125 1l ()
o DLQ)
/ \ / X
Q%0 e 0xQ | DLUQ)®DLQ) — " DLQ) @ DL(Q)
Table 1.

1.1.6. Exercises.

(1) Given a coassociative coalgebra (C,Aje)let A;: C@C®---®@C —
C®C®---®C be the map that acts as A on the ith slot and
as the identity on the others. Prove that for a fixed r, the map
A" = A;, -+ A, A does not depend on the particular values i, . ..
The image of p under A" is denoted by - p(1) ® -+ @ ppp1).-

-

(2) Given a coassociative coalgebra (C, A, €) prove that

(a) the dual space C* is a unital associative algebra with the convo-
lution product

Frglw)=> Fflua)glne)

and identity element e;
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(b) any coalgebra morphism ¢: C; — C9 induces an algebra homo-
morphism ¢*: C5 — CT f— fo.
(3) Prove that in the coalgebra (DL(Q), A, €) we have

A(de) =0e ®0. and €(d.) = 1.
(4) Prove that the tangent space T.Q of Q at e is

T.Q = R(ile;- -, Onle) ={n € DQ(Q) | A(p) = 1 @ e + e @ pu}.

1.1.7. Local loops. A local loop (Q,zy,e) is a smooth manifold @ with a
distinguished point e such that on a neighborhood U of e there is defined
a smooth binary product U x U — @ (z,y) +— zy with xze = x = ex for
all x € U. The Inverse Function Theorem ensures that around e there are
defined a left and a right division, denoted by z\y and x/y respectively,
such that

z\(zy) =y =z(z\y) and (zy)/y=2=(z/y)y

for any z,y in a neighborhood of e.

1.1.8. The bialgebra of distributions with support at the identity. A (uni-
tal) bialgebra is a coalgebra (B, A, €) endowed with two extra linear maps
m: B®B — B (product) and u: k — B (unit) that make commutative the
following diagrams:

Bok 2%, BgB Bop-12080NA®A) | popeyBeB
= m u®I m mem
= A
B k® B b B® B
BoB—2% kek
m product
B €

The identity element of B is 15 = u(1g). Elements z € B with A(x) =
x® 1p + 1p ® x are called primitive and they form a subspace Prim(B).
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Given a local loop (Q, zy,e,\, /), themaps m: (z,y) — zyand ¢t: e — Q
induce corresponding maps on distributions, that we will denote by m and
¢ respectively. The commutativity of the diagrams

Ix. (Ixo xI)(6 x )

Qxe QxQ QxQ ~QxQxQxQ
T m v x 1 m mxXm
Q—~cxq Q 2 QxQ
K X

QXQ—F‘ exe

Q

e

shows that (D,(Q), A, e,m, 1) is a bialgebra with identity element 1p/ ) =
de. The left an right divisions \ and / also induce left and right division
maps \ and / on distributions. The linearization of the identities

z\(zy) =y =z(z\y) and (zy)/y=z=(z/y)y Vz,y€Q
leads to
Yo\ () = (v =3 pay(re)\v) (1.2)
> (nvay) /vy = ew)p = o (1/va))ve) (1.3)

for all p, v € DL(Q), where uv = m(u,v). By Exercise 1.1.6 (4) the tangent
space of @ is recovered as

T.Q = Prim(D(Q))

1.1.9. Exercises.

(1) Prove that in D.L(Q)

Alp\v) = ZM(l)\V(l) ® p2)\v(z) and
Alp/v) = nay/va) @ ey /ve)-
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(2) Given a unital bialgebra B and a,b € Prim(B) prove that [a,b] =
ab — ba € Prim(B).

1.1.10. Poincaré-Birkhoff-Witt type bases for D.(Q). Given a local loop
(Q,zy,e) and 0;,|e - - 0;, |e the product in DL(Q) of 0j, e, - .., 0;,|e with an
unspecified order of parentheses then the Chain rule implies that

Oirle -+ 0i.le = 0, -+ 0;,|e+ linear combination of Jr|e with |I| < r. (1.4)

Recall that a filtration of an algebra A is an increasing chain of subspaces
Ayp € Ay C -+ such that A = U2 A, and ApA, C Apy, for any p,q > 0.
Any filtration of A induces a graded algebra Gr(A) = ®5°)A;/Ai—1 (where
A_; = 0) with the product

(xp + Apfl)(yq + Aqfl) = TpYq + Aptq-1.

The subspaces DL(Q)r = R(9r|e | |I] < 7) (r > 0) define a filtration of
DL(Q) and (1.4) is equivalent to fact that the associated graded algebra
is isomorphic to the symmetric algebra k[T.Q]. The set of ordered right
normed monomials

{((OileDisle) -+ )0isle |7 20 and iy <--- < iy}

is a basis of D.L(Q).

1.2. Examples of algebraic structures
induced on the tangent spaces of local loops

1.2.1. Lie groups. A local Lie group (G, xy,e) is a local analytic loop that
satisfies the associative identity

(zy)z = 2(y2).
In terms of diagrams this identity is written as

Ixm

GxGxG GxG

mx I m

GxG m G
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where m(x,y) = xy. The linearization of this diagram shows that the pro-
duct on D.(G) is associative. The inverse map x — x~! on G induces a
map

S: Di(G) — D(G)
with

Z S(uay) e = e(w)lpya) = Z p)yS () (1.5)

so (DL(G),A,e,m,,S) is a unital Hopf algebra (i.e., an associative bialgebra
with a map S, the antipode, satisfying (1.5)).

The commutator product [x,y] = xy — yx in any associative algebra
satisfies

(Skew-commutativity) [z,y] = —[y,x] and
(Jacobi identity) [[z,y], z] + [y, 2], ] + [[z, =], y] = 0.

Algebras with a skew-commutative product [, | that satisfies the Jacobi
identity are called Lie algebras. Exercise 1.1.9 (2) shows that the tangent
space of a local Lie group at the identity element is a Lie algebra.

1.2.2. Exercises.

(1) Prove that any associative algebra with the commutator product is a
Lie algebra.

(2) Prove that a local loop (Q,zy,e) is a local Lie group if and only if
DL(Q) is associative.

(3) Prove that a local Lie group (G, zy,e) is abelian if and only if T.(G)
is an abelian Lie algebra (i.e., [, f] = 0 for all a, 5 € T.G).

1.2.3. Moufang loops. A local Moufang loop is a local loop (Q, zy,e) that
satisfies any of the following equivalent identities

z(y(zz)) = ((zy)r)z, (2y)(27) = 2((y2)z) and ((zy)2)y = z(y(zy)).

The linearization of these identities shows that in D.(Q)

D oy wlnem) = Z((N(I)V)M(Q))Ua (1.6)
D (uay) ) = Y nay(vn (1.7)
Z((MVU))H)V@) = ZM 1 (1Mv2))) (1.8)
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Unital cocommutative bialgebras with left and right division satisfying (1.2)
and (1.3) that also satisfy any of the equivalent identities (1.6), (1.7) or (1.8)
are called unital cocommutative Moufang-Hopf algebras.

For any algebra A the (generalized) alternative nucleus of A is defined
as

Nat(A) ={a € A| (a,z,y) = —(x,a,y) = (x,y,a)}

where (z,y,2) = (zy)z — x(yz) denotes the associator. A Malcev algebra
is a vector space M endowed with a skew-symmetric bilinear product [, |
such that

J(:L’,y, [‘,177 Z]) = [J(:L’,y, Z),.T]

where J(z,y,2) = [[z,y], 2] + [[y, 2], ] + [[2, ], y] denotes the jacobian of
x,y and z.

Proposition 1.1. For any algebra A, N, (A) is a Malcev algebra with the
commutator product. ]

Identities (1.7) and (1.8) imply that Prim(D.(Q)) C N (DL(Q)). Propo-
sition 1.1 and Exercise 1.1.9 (2) then show that the tangent space at the
identity element of any local Moufang loop is a Malcev algebra.

1.2.4. Exercises. Ly, R, will denote the left and right multiplication opera-
tors by a. Recall that a derivation of an algebra A is a linear map d: A — A
such that d(zy) = d(x)y + xzd(y) for all z,y € A.

(1) Prove that any commutative local Moufang loop is a commutative lo-
cal Lie group. It is essential that the characteristic of the ground field,
the real numbers, is different from 3 since over fields of characteristic
3 there exist (formal) commutative Moufang loops that are not groups

[1].
(2) Given an algebra A, triples (di,d2,d3) € End(A)? such that
di(zy) = da(x)y + 2ds(y) Vo,ye A
are called ternary derivations of A. Prove that the set Tder(A) of
all ternary derivations of A is a Lie algebra with the componentwise

commutator product and that

ac Nalt(A) = (Laa La + Raa _La)7 (Rav _Rm La + Ra) € Tder(A)
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(3) Prove that in any Moufang loop there exists a map z + ! such that
r\y = 27 'y and y/x = yz~!. Conclude that for any local Moufang
loop (Q,xy, e) there exists a map S: DL(Q) — DL(Q), the antipode,
with S? = I and such that

Z 5(#(1))(#(2)”) =e(p)y = Z(Vﬂ(l))s(ﬂa)) .
(4) Prove that for any algebra A, a,b € N,y (A) and z € A we have that

(i) Loz = LaLe + [Ra; La], Lya = LaLa + [Le, Ral,
(i) Raz = RoRq + [Ra, La), Rya = RoRy + [La, Ry,
(iii) [La, Re] = [Ra, L],
)
)

(iv

(La, Lb] = Liap) — 2[Ra, Lp], [Ra, Rp] = —Rjap) — 2[La, Rs),

(v) The map Dy = [Lq, L]+ [La, Rp]+[Ra, Rp) is a derivation of A,
Dy yp = adjqp) — 3[La, Rp] and 2D = ad|y ) + [ada, adp], where
ad, denotes the map z — [a, z].

1.2.5. Bol loops. A local right Bol loop is a local loop (Q, xy, €) that satisfies
the right Bol identity

((zy)2)y = 2((y2)y)-

The linearization of this identity shows that D.L(Q) satisfies

D ((va)nve =Y (1.9)

A vector space V equipped with a trilinear operation [a, b, c] is called a Lie
triple system if

[a,b,0] =0,
[a,b,c] + [b,c,al + [c,a,b] =0,
[la,b,c], 2, y] = [la, 2, y],b, ] + [a, [b,z,y], ] + [a, ], [c, z, Y]]

for all z,y,a,b,c € V. A right Bol algebra (V,[,,],[,]) is a Lie triple sys-
tem (V,[,,]) with an additional bilinear skew-symmetric operation |[a, b|
satisfying

[la, ], ¢, d] = [[a, c,d],b] + [a, [b, ¢, d]] + [[c, d], a, b] + [[a, b], [c, d]]. ~ (1.10)
Given an arbitrary algebra A, the right alternative nucleus is defined as

RNalt(A):{aeA| (x,y,a) :_(x7a7y) Vl’,yEA}
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Proposition 1.2. For any algebra A, RN, (A) is a Lie triple system with
the triple product

[a, b, c] = (ab)e — (ac)b — (bc — cb)a.

Any subspace V' of RNy (A) closed under the triple product [, ,] and the
opposite (a,b) = ba — ab of the commutator product is a right Bol algebra
with these operations. O

Identity (1.9) implies that Prim(D.(Q)) € RN, (DL(Q)) so the tangent
space to any local right Bol loop is a right Bol algebra.

1.2.6. Exercises.

(1) Prove that in any right Bol loop R,! = R/, where e denotes the
identity element.

(2) A local right Bruck loop is a local right Bol loop with the automorphic
inverse property

(zy) =2ty

where 27! = e/z. Prove that the binary product [, ] of the right Bol
algebra T.(Q vanishes for any local right Bruck loop (Q, zy,€).

1.3. Applications

1.3.1. Linear local loops. Any finite-dimensional unital algebra (A,*,14)
over the real numbers defines a local loop in a neighborhood of the identity
element 14. By translation z — x — 14 we obtain a local loop around 0.
The product xy of this local loop is related with the product z * y of A by

TYy=x+y+axxy.

Even in case that A is nonunital this formula still defines a local loop
(A, zy,0). We say that a local loop (@, zy, €) is linear if there exists a finite-
dimensional algebra A and homomorphism of local loops ¢: (Q,xy,e) —
(A, zy,0) such that the differential of ¢ at e is nonsingular.

Let us fix a basis {z1,...,2,} of A and the corresponding dual basis
{x! ... 2™} that defines local coordinates on A around 0. Let (A%, %) be
the algebra obtained by adding a formal identity element to A, that we
identify as a vector space with the subspace R(do, 01]o, - - -, Om|o) of Dy(A)
in the natural way. Define the map

Taw : D(Q) — A¥
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which assigns to a distribution p the component of ¢'(u) of degree < 1 in
Dj(A), i.e., its projection on R(dg, dio, - - . , Omlo) parallel to R{dfo | || > 2),
and finally fix the scalars ¢}, determined by

Ty kT = Cil%'
where Einstein summation convention is assumed. Since
Pl(u)(a’) = (@) = (Lo v)(¢'(zy))
= (nOV)(@'(2) + ' (y) + " (@)¢' (1)
and e(¢'(ur)) = e(p)e(v) then
T (W) = T % (1) * Tp% (V).
This proves the “only if” part of

Theorem 1.3. A local loop (Q,xy,e) is linear if and only if there exists a
finite-codimensional ideal I of the algebra DL(Q) with INPrim(D.L(Q)) = 0.

In [13] it was proved that for any simple local Bruck loop (Q, zy,e) of
dim > 2, D.(Q) has no finite-codimensional proper ideals different from
ker(e) so those local loops are not linear. By contrast, in [14] it was proved
using Ado’s theorem for Lie algebras that any local Moufang loop is linear.

2. Formal loops and Sabinin algebras

2.1. Formal loops

2.1.1. Formal maps. Let V be a vector space over a field k of characteristic
zero, k[V]; the ith symmetric power of V and k[V] the symmetric algebra
on V. By the universal property of the symmetric algebra, the assignments
r—x®1+1®z and z +— 0 extend to homomorphisms of algebras

comultiplication A: k[V] — k[V]® k[V] and counit e: k[V] — k.

Unital bialgebras with underlying coalgebra structure isomorphic to k[V]
for some V are called connected. By (1.1), for any local loop (Q, zy,e) the
bialgebra D.(Q) is a connected bialgebra with coalgebra structure isomor-
phic to k[T.Q)].

By analogy, elements of the dual space k[V]* will be referred to as formal
functions on V| and those of k[V] as formal distributions on V. Recall that
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by Exercise 1.1.6 (2) k[V]* is a unital associative and commutative algebra
with the convolution product *. A formal map from V to W is a linear map

0: k[V] — W

with (1) = 0. The projection of k[V] onto its primitive part k[V]; = V
will be denoted by 7y .

2.1.2. Exercises.
(1) Prove that Prim(k[V]) = V.
(2) (Taylor series) Prove that if {z1,...,zn} isabasisof V, {a7,... 23}

is the corresponding dual basis, z; = zi' - aln, % = (27)% x -

#(x})n if T = (iq,...,i,), then the algebra k[V]* is isomorphic to the

algebra of formal power series k[[z],...,z}]] by
f(ﬂf[) *
f= 2
IeNn

2.1.3. Coalgebra morphisms induced by formal maps. The following iden-
tification will be useful

{f e kW] | f(E[W];) =0 Vi#1} = W*
f = flw

By Exercise 1.1.6 (2), any coalgebra morphism 1: k[V] — k[W] induces
an algebra homomorphism ¢*: k[W]* — k[V]*. This homomorphism is
determined by its restriction to W*. Hence, 9 itself is determined by the
formal map 7y o 9. Conversely, any formal map 6: k[V] — W induces a
(unique) coalgebra morphism 6’: k[V] — k[W] with 0" = 0, namely

oo

Z% 0(pn)) = €(p)1 +0(p) + -+ (2.1)
n=0

2.1.4. Exercises.

(1) Prove that for any formal map 6: k[V] — W the map ¢’ is a coalgebra
morphism.

(2) Prove that the coalgebra morphism induced by the projection
my . k[V] — V is the identity map on k[V].



146 J. M. Pérez—Izquierdo

(3) Prove that the coalgebra morphism induced by the null map k[V] — V
is o e(p)l.
2.1.5. Notation. The algebra k[V} x --- x V,,] is canonically isomorphic to
kE[Vi] ® - -- ® k[V,]. The formal map vy, : k[V;] — V; will be denoted by x;
and the null map k[V;] — V; will be denoted by 0. The induced coalgebra
morphism @} is the identity map on k[V;], and 0'(u) = e(u)l. Given a
formal map
G:Ek[Vix - xV,] =W
and formal maps 0;: k[U;] — V; for 1 < i < n we write G(6y,...,60,) for
the map Go (] ®---®86)).
With this notation @; can be treated as variables. In particular, G can

be also written as G(x1,...,xy). If

G(x1,...,Ti 1, %, g1, .., Tn) = G(x1, ..., 21,0, Tip1, ..., Tn)

we say that G does not depend on x; and we omit this variable altogether.
Notice that in this case

G(pr, - ptn) = €(pi) Gy oo phim1, 1y flig 15+ oy )

If Vi =..- =1V, =V the notation G(z,...,x) stands for the compo-
sition of G with the map k[V] — E[V X --- x V] induced by the diagonal
V-oVx...xV:

Similarly one defines G(x;,, ..., #;,) when there are various groups of re-
peating indices among the .

2.1.6. Formal multiplications. A formal multiplication on V is a formal
map

F:k[VxV]—=V.

A formal multiplication on V is said to be a formal loop or a formal unital
multiplication if

Fleyier = v = Fligky]-

Any unital formal multiplication F'(x,y) induces a coalgebra morphism
F': k[V]® k[V] — k[V].
Moreover,

F'(p,1) = (nv)' () = p=F'(1,u) for any p € k[V].
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The unital connected bialgebra (k[V], A, e, F',u) with u: k — k[V] 1 — 1
will be denoted by k[F| and will be called the connected bialgebra of formal
distributions of F.
Since
Hom(k[V] @ k[V],V) = ] Hom(k[V], ® k[V],, V)
P,q=0

we can write any formal unital multiplication F' as an infinite formal sum

Flzy)=z+y+ Y Fylz.y) (2.2)

p,q=1

with F ,(x,y) € Hom(k[V], ® k[V],, V), or equivalently

Fm ® p2) = mv (m)e(pa) + e(p)mv (p2) + Y Fpglpn © pa).
p,g=1

We will write @y for a unital formal multiplication F'(x,y). Recall that
the product of any local analytic loop around 0 € R™ can be expressed by
a Taylor expansion of the form (2.2).

2.1.7. Poincaré-Birkhoff-Witt type bases for k[F]. Given a unital formal
multiplication F' on V/, by (2.1) the subspaces > ;" k[F]; (n > 0) define a
filtration of k[F] whose associated graded algebra Gr(k[F]) is isomorphic
to the symmetric algebra k[V]. Therefore, for any totally ordered basis of
V' the ordered right normed monomials on elements of that basis is a basis
of k[F] (compare with Section 1.1.10).

2.1.8. The equivalence of categories. Let F' and H be unital formal multi-
plications on V and W respectively. A formal map 6 from V to W is called
a homomorphism from F to H if

H(0(),0(y)) = 0(F(z,y))

or, equivalently,

H(0' (1) ® 0" (u2)) = 0(F' (11 @ piz))

for any pi1,ue € k[V]. Hence, 8 — 6 gives a correspondence between
homomorphisms of unital formal multiplications and homomorphisms of
their connected bialgebras of formal distributions.
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Theorem 2.1. [11] The category of unital formal multiplications and the
category of connected unital bialgebras are equivalent.

Proof. The product of any connected unital bialgebra k[V] induces a unital
formal multiplication k[V] ® k[V] — k[V] =% V and conversely, any formal
unital multiplication F' defines a connected unital bialgebra k[F]. O

2.1.9. Exercises.

(1) Prove that the category of formal Moufang loops, i.e. formal loops
xy with ((xy)z)y = z(y(zy)) is equivalent to the category of unital
connected bialgebras that satisfy the (right) Moufang-Hopf identity

> ((mva)mviey =Y e (ve)).

(2) A formal loop is called right alternative if (xy)y = x(yy). Prove that
for any formal right alternative loop (zy’)y’ = x(y'y’) holds where
y' = ((yy) - - - )y denotes the ith power of y.

2.2. Sabinin algebras

2.2.1. Primitive operations and Shestakov-Umirbaev’s functor. Let S be a
set. Denote by k{S} the unital free non-associative algebra generated by
the elements of S over the field k of characteristic zero. The algebra k{S}
can be given a structure of a bialgebra: the comultiplication is defined by
the condition that all elements of S are primitive, i.e., A(z) =2z ®1+1Qx
for all x € S.

Define by induction on the degree |u| of the nonassociative monomial u
bilinear maps \, / such that

D up\(u@w) = e(wo = (vua)) /) -
They also satisfy  ue(ug)\v) = e(u)v = D (v/un))ue)-

Let x1,...,Zm,Y1,--.,Yn, 2 € S different elements, u = ((x122) -+ )Tm,
v = ((y192) - - - )yn and define the primitive operations

p(;Ula o Tmy Yty - Yng Z) = Z(u(l)v(l))\(u(2)7 V(2), Z)

where (z,y,2) = (2y)z — z(yz) [17]. These are nonassociative polynomi-
als that define multilinear operations when evaluated on any algebra. If
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the evaluation takes place on primitive elements of a unital cocommutative
bialgebra then the result is again a primitive element.

Consider
(Liy,z) = (y,2) = [y, 2] = —yz + 2y,
(T1,- - 2m; Y, 2) = (wy,2) = —pw;y;2) +p(Y, 2,9) ,

(DSU(xla"w‘Tm;yla”'ayn) -

11

ﬁﬁ Z p(x‘r(l)7 < Tr(m)s Yo (1)s - - -5 ya(n))

T 7€Sm,0€8,
with u = ((z122) -+ )T, u = (21, ..., ZTm), Sy the symmetric group on m

letters and m > 1, n > 2.

Any nonassociative algebra A with these operations turns out to be a
Sabinin algebra, an algebraic structure that we will define in Section 2.2.3.
Thus we have the Shestakov-Umirbaev functor from non-associative algebras
to Sabinin algebras

A YII(A).

The tangent space T.Q = Prim(D.(Q)) of any local analytic loop (Q, zy, e)
is a Sabinin subalgebra of YII(DL(Q)). Similarly, for any unital formal
multiplication F' on V' the vector space V' of primitive elements of k[F] is
a Sabinin subalgebra of YII(k[F]).

Given any unital formal multiplication F on V, consider the pair (U(V'), )
formed by a unital algebra U(V') and a homomorphism of Sabinin algebras
vV — yI(U(V)) with the following universal property: any homomor-
phism of Sabinin algebras ¢: V — VII(A) from V to a unital algebra A
extends to a unique homomorphism of unital algebras ¢: U(V) — A with
¢ = ¢o By [17], U(V) is a bialgebra isomorphic to k[F], in fact the
homomorphism U(V) — k[F] induced by the inclusion V' C k[F] is such

an isomorphism.
Theorem 2.2. Let F' and G be two unital formal multiplications. The
following statements are equivalent:
(1) The local loops F' and G are isomorphic.
(73) The connected bialgebras k[F] and k[G] are isomorphic.
(7i1) The Sabinin algebras Prim(k[F]) and Prim(k[G]) are isomorphic. O

2.2.2. Exercises.
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(1) Prove that for any z1,...,Zm,¥Y1,..-,Yn, 2 € S
p(xla <o ImiYly -5 Yng Z) € Prlm(k{8}> :

(2) Prove that a formal loop F is right alternative if and only if the
multioperator ®5U vanishes.

(3) Prove that a formal loop F' is a formal group if and only if any multi-
linear operation on the Sabinin algebra Prim(k[F]) different from the
binary operation (, ) vanishes. Conclude that two formal groups are
isomorphic if and only if their corresponding Lie algebras are isomor-
phic.

(4) Prove that if A is an associative algebra then YIII(A) is the Lie algebra
A~ i.e., the Shestakov-Umirbaev functor A — YIII(A) generalizes the
usual functor from associative algebras to Lie algebras.

2.2.3. Sabinin algebras. [16] A vector space V' is called a Sabinin algebra if
it is endowed with multilinear operations

(1,22, .., Tm3 Y, 2) m >0 and

D(x1, 22, T3 Y1, Y2, -y Yn)y, M =1, n>2
which satisfy the identities
(1,22, -y Tm3 Y, 2) = —{(T1, T2, -, T3 2, Y),

<.7}1,J32, vy Ty A, b,$7«+1, "'733m;y7z> - <$17$27 "'7wrab>a7xr+17 "'axm;yaz>
T . . —
+ D k0 2alTars o Tay, <xak+1, ey Ty 3 Ay Y ooy Ty, 2) = 0,

0907y72(<x1) vy Ly L3 Y, Z>
+ZZ:O Za<xa17 coos Loy s <xak+1, oy Loy Y, Z>,£C>) =0
and

<I>(3317' -y Ims Y1, .- 7yn) = q)(mT(l)a o Tr(m)s Ys()s - - - 7y5(n)),

where « runs the set of all bijections of the type a:{1,2,....7} — {1,2,...,r},
Py, o <ap << g, O < o<, k=0,1,...,m, 7 >0, 052
denotes the cyclic sum by z,y,z; 7 € Si,, € S, and S; is the symmetric
group on [ symbols. The operations (; , ) and the so called multioperator ®
are independent and sometimes the term “Sabinin algebra" is used for a vec-
tor space equipped only with operations (; , ) satisfying the corresponding
properties.
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With the help of the bialgebra structure on k{S} introduced in Section
2.2.1 we may write the definition of a Sabinin algebra very shortly as
(u;a,b) + (u;b,a) =0,
(uabv; ¢, e) — (ubav; c, e Jrz u(z),a byv;c,e) =0,

Tab,e ((% a,b) + Z U(1); Q(z);aab>,c>> =0 and
D1, T Y15 Yn) = P(Tr(1), o Tr(m) Ys(1)s - - 5 Ys(n))s
where u = ((x122) -+ )@m), v = ((y1y2) - - - )yn and x;,y;,a,b,c,e € S.

2.2.4. Exercises.

(1) Prove that any Lie algebra is a Sabinin algebra where all multilinear
operations vanish with the possible exception of the bilinear product

<y7 Z> = _[y7 Z]'
(2) Prove that any Malcev algebra is a Sabinin algebra with
(1;a,b) = —[a, 0],
(c;a,b) = —3J (a b, c) and
(uc;a,b) = 5 (uy; e, (w);a,0) if fu] > 1

(3) Prove that any right Bol algebra is a Sabinin algebra with

<1;a7b> - —[a,b],
(c;a,b) = —[c,a,b] + [c,[a,b]] and

(ucsa,b) = 3 (uyic, (g a, b)) if [ul > 1

(4) An Akivis algebra is an algebra with a skew-symmetric bilinear pro-
duct [, | and a trilinear one {, , } related by

([, 9], 2] + [ly, 2], 2] + [[, 2], y]
= {l’,y,Z} + {ya Z,l’} + {z,:z:,y} - {ZL‘, Z’y} - {y,x,z} - {z,y,a}}.

Prove that any Sabinin algebra with the bilinear map [z,y] = —(x,y)
and the trilinear map {z,y, 2z} = —%(:I:;y, z) is an Akivis algebra.

2.3. Formal integration

Formal integration of a Sabinin algebra amounts to constructing an ade-
quate universal enveloping algebra for it.
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2.3.1. Formal integration of Lie algebras. The universal enveloping algebra
U(g) of a Lie algebra (g, [, ]) is defined as the quotient of the free unital
associative algebra on g, i.e., noncommutative polynomials on a basis of g,
by the ideal I generated by

{xy —yx — [z,y] | z,y € g}

The pair (U(g),¢) with ¢: g — U(g), * — x + I verifies the following
universal property: for any unital associative algebra A and any homomor-
phism of Lie algebras ¢: g — A~ there exists a unique homomorphism
@: U(g) — A of unital algebras such that the following diagram commutes:

/s

To integrate a Lie algebra (g, [, |) to a formal group we need to construct
a unital associative connected bialgebra U(g) with Prim(U(g)) = g and such
that the Sabinin structure on g given by Exercise 2.2.4 (1) is the one induced
on g from YII(U(g)), which is equivalent to recovering the product of g as
[x,y] = 2y — yz on U(g). The product on the bialgebra U(g) will induce a
formal group
F:U(g)@U(g) — Uls) = g.

The existence of this bialgebra U(g) is ensured by the Poincaré-Birkhoff-
Witt Theorem for Lie algebras [4].

Theorem 2.3. There exists an equivalence of categories between the cate-
gory of formal groups and the category of Lie algebras. ([

2.3.2. Formal integration of Malcev algebras. Let (m, [, |) be a Malcev alge-
bra. In order to integrate it to a formal Moufang loop we need to construct
a connected unital bialgebra U(m) with Prim(U(m)) = m satisfying the
Moufang-Hopf identity

> ((uvay)mvey =Y nvay(ve))

and such that the Sabinin structure of m given by Exercise 2.2.4 (2) agrees
with the Sabinin structure induced on m by YIII(U (m)). In fact, it is enough
to recover the product on m as [z,y] = xy — yxr € U(m) for any z,y € m
[12].
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Let us sketch the method used to construct U(m) assumed that U(m)
exists [14].

(1)

(2)

The Lie algebra L(m). The associative multiplication algebra of an
algebra A is the associative algebra Mult(A) generated by the left
and right multiplication operators by elements of A. Since m C
Nait(U(m)), Exercise 1.2.4 (4) shows that Mult(U(m)) is generated
by left and right multiplication operators by elements of m. Let £(m)
be the Lie algebra generated by {4, pa | @ € m} with relations

Aaat+Bb = Qg + BAp, Paa+8b = CPa + Bpy,
[Aas Ab] = Aap) — 2[Aas o)y [Pas pb] = —Play) — 2[Aas 1),
[)\aa Pb] = [pm )‘b]v

a,bem, a,f € k. The maps determined by
g()\a) = Ta? 77(>\a) = _>\a7
C(pa) = —pa; n(pa) = Ta,

where T, = A\ + p, define two automorphisms of £(m). There is a
Lie homomorphism

(2.3)

L(m) — Mult(U(m))~

that extends to a homomorphism U(L£(m)) — Mult(U(m)) defining a
left U(L(m))-module structure on U(m).

The L(m)-module U(m). U(m) is a cyclic U(L(m))-module generated
by the identity element 1. The annihilator of 1 in U(£(m)) contains
the left ideal K generated by £ = {A\a—pa, [Aas Aa]+[pas pb]+[Nas o) }-
The Lie algebra £(m) admits a Zg-gradation £L(m) = £, & L_ with
L_={Xs+pas | a€m}=mas vector spaces. The Poincaré-Birkhoff-
Witt for Lie algebras implies that if {a; | i € Q} is a totally ordered
basis of m then a;, -+~ a;, — T, -+ To, + K (a;; <+ < ;) is an

isomorphism 0: k[m] SU (L(m))/K as vector spaces (as coalgebras
in fact). The U(L(m))-module structure of U(L(m))/K is transported
to k[m] by Aoz = 071(\(x)) for any A € U(L(m)) and = € k[m].

The product on klm] (determination). Having identified U(m) and
k[m], we look for a product % on k[m] such that m C Ny ((k[m], *))
and a xx = 2 gz, T+ a =2p,xr and 1 *x = x = x * 1. Since

ax(x*xy)=(axx+z*a)xy+x*(—ax*xy)
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and
(xxy)xa=(—rxa)xy+z*(a*xy+yx*a),

the product * should be a homomorphism
«: kfm]c © K, — Kfm)

of £(m)-modules where k[m]: denotes the vector space k[m] with the
twisted action X\ -z = ((\) o z.

(4) The product on k[m] (construction). The inductive definition of the
product x is quite straightforward. Fix a totally ordered basis {a;}icq
of m and consider the basis

{ar=a;, ---ai, | I = (i1,...,in) € Q", a;; <--- < a;,, n =0}
For I = (iy,...,4,) denote I' = (ig,...,%,) and I(I) = r. The element
rr = aj — 2, o ap belongs to k[m|;ny_; (in particular, if (1) =1
then r; = 0). We set 1 %2 = x, and assume that we have defined
ay * x for any ay with I(J) < I(I). Then we define

aj xxr = 2Tai1 o (a[/ * .%') — 2@[/ * (pail ox) -+ [k T,

Theorem 2.4. There exists an equivalence of categories between the cate-
gory of formal Moufang loops and the category of Malcev algebras. O

2.3.3. Exercises.

(1) Prove that for any Malcev algebra (m,[, ]) the algebra U(m) is iso-
morphic to the quotient of the unital free nonassociative k{m} algebra
by the ideal generated by

{ab —ba — [a’ b]v (CL,SL‘,y) + (l‘, a, y)v (337 a, y) + (SC,y, a)} )

where a € m, x,y € k{m}.

(2) Prove that if a Malcev algebra m is a Lie algebra then U(m) is iso-
morphic to the universal enveloping algebra of the Lie algebra m.

(3) Given a Malcev algebra (m, [, |) prove that m with the triple product
1
[a, b, c] = 3 (2lla, bl ¢] = [[b, ], a] ~[[c, al, b])

is a Lie triple system.
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2.3.4. Groups, Hopf algebras and Lie algebras with triality. A group with
triality is a group (G, zy,e) with two automorphisms o, 7 that satisfy
(1) o®>=p*=1,0p0=p’
and
(2) (97'¢") g7 'g%) (97" 97)" = forany g € G.

Theorem 2.5. [3] Given a group with triality G the set M(G) = {g~1¢°},
where g € G, is a Moufang loop with respect to the multiplication law

2 2
m-n=m nm™ " =n"" mn"’ Ym,n € M(G) O

Given two automorphisms p, o of a cocommutative Hopf algebra H such
that 02 = p? = Iy and op = p?o, H is called a cocommutative Hopf algebra
with triality relative to p and o if

> P(x))p(P(22))0’ (P(xs)) = e(x)1, (2.4)
for all z € H, where P(a:) = Za(a:(l))S(a:(g)).
Theorem 2.6. Let H be a cocommutative Hopf algebra with triality relative
to p and o and define P(x) = Y o(x(1))S(x()) for any v € H. Then
MH(H)={P(z) |z € H}

18 a unital cocommutative Moufang-Hopf algebra with the coalgebra structure
and antipode inherited from H, the same unit element and product defined

by

wrv =y p*(S(uy)vp(S(u)) = Y p(S(vm))up®(S(ve))
for any u,v € MH(H). O

Given a Lie algebra (g, [, ]), two automorphisms p,o of g such that
ol =pd= Iy, op = p’o | gis called a Lie algebra with triality relative to p
and o in case that

a—o(a) + p(a) — po(a) + p*(a) = p*o(a) = 0 (2.5)

for any a € g. For any Malcev algebra (m, [, |) the Lie algebra £(m) with the
automorphisms defined in (2.3) is an example of Lie algebra with triality.
The universal enveloping algebra U(g) of a Lie algebra with triality g is a
Hopf algebra with triality.

The following result presents another approach to the formal integration
of Malcev algebras.
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Theorem 2.7. [2] Let (m,[,]) be a Malcev algebra over a field of char-
acteristic # 2,3. Then the Moufang-Hopf algebra U(m) is isomorphic to
MH(U(L(m))). O

2.3.5. Exercises.

(1) Given a local group (G, zy, e) with triality prove that the bialgebra of
distributions with support at the identity element is a Hopf algebra
with triality.

(2) Prove that for any connected Hopf algebra with triality the primitive
elements form a Lie algebra with triality.

(3) Prove that for any Malcev algebra (m,[, ]) the Lie algebra £(m) is a
Lie algebra with triality.

2.3.6. Integration of Sabinin algebras. Let (V,(;,),®) be a Sabinin al-
gebra. The formal integration of (V,(;, ), ®) to a formal loop amounts
to constructing a unital connected bialgebra U(V') with Prim(U(V)) =V
and such that the Sabinin algebra structure of V' is the one induced by
YU (vy)).

A natural candidate for the underlying vector space of U (V') is a quotient
of the unital free associative algebra T(V') on a basis of V'

S(V) =T(V)/k({zaby — xbay + Zaz(l) (Z(2); as byy|z,y € T(V), a,be V).

With this choice the second axiom of the operations (; , ) is automatically
satisfied. Even more, S(V) is a coalgebra isomorphic to k[V]. Using a
Poincaré-Birkhoff-Witt basis it can be defined a (bialgebra) product on
S(V) such that the Sabinin structure on V agrees with the one induced by

yir(S(v)) [12).

Theorem 2.8. There exists an equivalence of categories between the cate-
gory of formal loops and the category of Sabinin algebras. U

3. The geometry of formal loops

3.1. Geodesic loops and similarity

3.1.1. Affine connections and local loops. Given a flat affine connection on

a smooth manifold @ and e € @, the parallel transportation 7,/ from z to y

along a curve does not depend on the curve itself. Around e we may define
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a binary operation z x y = exp, (7¢(exp; ! (y))) that extends the usual sum
on R".

) Xy

exp () /r';<exp;<y>>

(& xT

Clearly e x y = exp,(t¢(exp;'(y))) = vy and = x e = exp,(75(0)) =
exp,(0) = zs0 (Q, xxy, e) is alocal loop, the geodesic loop at e. Forv € T.Q
small enough, both (x X exp,(tv)) x exp,(sv) and = x (exp,(tv) X exp,(sv))
are geodesics v;(s) with v(0) = x x exp,(tv) and 44(0) = 5 0) (v) so

(z xy) xy=xx(yxy),

ie, (Q,z X y,e) is right alternative. Conversely, given any local loop

(Q,zy, e)

7y (v) = dLyle(dLale) ™ (v)

defines around e the parallel transportation of the so called canonical flat
affine connection. The geodesic loop (@, x X y,e) obtained from this affine
connection might not be isomorphic to the original loop (Q, zy, €). However,
both loops are related through a certain map ® by

x X ®(x,y) =zy (3.1)
that verifies
Oe,y) =y, P(z,e)=e and dP(z,y)|y—= =I1.0. (3.2)

Any map ®: Q x Q — Q satisfying (3.2) is called a similarity. Two local
loops (Q,zy,e) and (Q,z X y,e) that define the same canonical flat con-
nection are similar. This is equivalent to the existence of a similarity that
relates both products by (3.1).

Mikheev and Sabinin proved that a local loop is similar to a unique
right alternative local loop. The classification of right alternative local
loops is equivalent to the classification of local flat affine connections. Any
such connection is determined by its torsion which is encoded in the (; , )
operations

(T1,- - T3 Y 2)F = Vr - Vaxr T(y", 27) (e).

The multioperator ® encodes the similarity needed to pass from the geodesic
loop to the target loop [16].
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3.1.2. Right alternative loops. Given a local loop (@, zy, e), any similarity
®: Q x Q — Q induces a corresponding map ¢: DL(Q) ® DL(Q) — DL(Q)
on distributions with

®(e,v)=v, @' (u,e)=c(p)e and & (u,a)=-c€(p)a

for any p,v € DL(Q) and « primitive. A formal map ®: k[V]| @ k[V] -V
such that

Pligry) =mv  and  Plpy waev) =0
is called a similarity. Two formal loops F1 and Fs on V' are similar if there
exists a similarity ®: k[V]®@k[V] — V such that F}(z,y) = Fa(z, ®(z,y)).
Notice that in this case

Fi(p, o) = Fy(p, @) (3.3)
for any primitive a.

Lemma 3.9. Fach formal loop is similar to a unique formal right alterna-
tive loop.

Proof. In Section 2.1.7 we saw that the graded algebra Gr(k[F]) of the
the bialgebra of formal distributions k[F] of a formal unital multiplication
F on V is isomorphic to the symmetric algebra k[V]. Hence given a to-
tally ordered basis {a; | i € Q} of V, the elements sym(a;,,...,a; ) =
L > ves, (@i, @iyey) -+ )iy, (r > 0) form a basis of k[V].

We may define a new product x on k[V] by

1
x X sym(a;,, ..., a;,) = ] Z ((maia(l)) T )aio'(r')
" o€ES,

for any = € k[V]. With this new product k[V] is a unital connected bial-
gebra and it induces a formal right alternative unital multiplication & X y.
Both formal loops  x y and the original formal loop xy are related by
x X ®(x,y) = xy for certain formal map ®. The definition of the product
x on k[V] implies that ® is a similarity. The uniqueness is a consequence
of (3.3) and the right alternativity. O

Proposition 3.10. Let k[V] be a bialgebra with respect to two similar prod-
ucts pv and p X v. Then for any a,aq,...,0,, €V

(a1,...,ap;,B) = {a1,..., a0, 5) . O
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Using a basis formed by elements sym(a;,,...,a;,) as in the proof of
Lemma 3.9, the similarity that relates a formal loop on V with its for-
mal right alternative loop can be expressed by a set of multilinear oper-
ations @y, (z1,...,Zm;Y1,...,yn) on V symmetric on z1,...,z, and on

Y1y -5 Yn-

3.1.3. Formal flat affine connections. In this section the commutative and
associative product of the symmetric algebra k[V] plays a crucial role. We
will denote this product by p - v. Juxtaposition is reserved for products in-
duced by other formal unital multiplications on V. The convolution product
on k[V]* will be denoted by fg instead of f % g since we adopt it as the
natural product of k[V]*.

A formal vector field is a linear map A : k[V] — V. The product of a
formal vector field A with a formal function f is given by

FA: e Fu) Alpe)-

This action provides the formal vector fields with the structure of a free
k[V]*-module. In fact, any set {A4;}; of formal vector fields such that
{4;(1)} is a basis of V gives a k[V]*~basis of Hom(k[V], V).

A formal vector field A gives a derivation D4 of the algebra k[V]* of
formal functions into itself:

Da(f)=A(f): pr— Zf(“(l) - Apa))-

We have (fA)(g) = fA(g). Formal vector fields form a Lie algebra with the
Lie bracket [A, B] given by

[A, B]: p—= > Bl - Alue)) — Alpq) - Blige))-
Clearly [D4, Dg| = D4 p)- We also have that
[A, fB] = A(f)B + f[A, B].

A formal flat affine connection is a linear map k[V] ® V' — V whose
restriction to 1® V' is the identity. For a given formal connection, p € k[V]
and v € V', we write pxv for the image of u®wv. The vector field v*: u — p*v
is said to be adapted to the tangent vector v. There always exists a unique
“Inverse” map k[V]® V — V sending u ® u to an element that we denote

by p\*u and such that 3~ u)\"(nz) *v) = e(p)v =3 pay * (z)\"v).
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The covariant differentiation with respect to the formal vector field A
is defined as

VaB): > Bluay - Al)) — (k) - Alwe)) = (1@)\*Blu))-

Proposition 3.11. Let A, B be formal vector fields, f a formal function
and v,w € V. Then

(1) Vya(B) = fVa(B),
(2) Va(fB)=A(f)B+ fVa(B),
(3) Ve (w*) = 0.

Given a formal loop F' on a vector space V, the formal canonical con-
nection of F is the restriction of F' to the subspace

k[V]®V C k[V]® k[V].

In fact, this is all one needs to construct a right alternative product on k[V]
as in the proof of Lemma 3.9.
Exercises.

(1) Prove that the formal vector fields form a free k[V]*-module.

(2) Prove that D4 is a derivation of the algebra k[V]* of formal functions.

(3) Prove that the space of formal vector fields is a Lie algebra with the
product

[A, Bl: =Y By - Alpe)) — A(uq) - Blig))-

(4) Prove Proposition 3.11.

(5) Let {v; | i € Q} a basis of V and V the covariant derivative of a
formal flat affine connection. Given a formal vector field A =), fiv}
prove that

Vo (4) = 3 vt (fivi-

(6) Prove that two formal loops on the vector space V' are similar if and
only if their formal canonical connections agree.

(7) Prove that the set of formal flat affine connections is a group with the
product

CxC'p@v =) Clupy ® C'(ne) ®v)).
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3.1.5. The torsion of a formal flat affine connection. The torsion of two
formal vector fields A and B is defined in the usual way

T(Aa B) = VA(B) - VB(A) - [A7 B]
In the case of adapted vector fields z*, y* with x,y € V we get
T, y") = —[2",y"].

Setting
(1, Y, 2)F = Var - Ve T(y", 27)(1)

we obtain an n + 2-linear operation on V for all n > 0.

Proposition 3.12. Assigning the set of operations (x1,...,%n,y,2)F to a
formal multiplication F' gives a functor from the category of formal loops to
that of Sabinin algebras with trivial multioperator. O

Given a formal unital multiplication F' on V, the torsion tensor of the
formal canonical connection of F' admits a simple interpretation in terms of
the product on k[F].

Lemma 3.13. For any x,y € V and p € k[V] we have that

T(x*,y") (1) = mv ((py)z — (px)y) - O

This provides the geometrical interpretation of the multilinear opera-
tions involved in the definition of the Shestakov-Umirbaev functor.

Theorem 3.14. [11] The multilinear operations (x1,...,Tn;y,2) of Shes-
takov and Umirbaev identically coincide with the operations (x1,...,Tn; Y, 2)F
of Mikheev and Sabinin. O

3.1.6. Exercises.

(1) Use Exercise 3.1.4 (5) to prove that the torsion of a formal flat affine
connection is determined by the multilinear operations (x1, ..., Zn;y, 2)
(n>0).

(2) Given a local group and its canonical formal flat connection, prove
that the commutator of two adapted vector fields is an adapted vector
field. Conclude that any covariant derivative of the corresponding
torsion with respect to any adapted vector field vanishes.
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(3) [15] Prove that the adapted vector fields on a right Bol loop (Q, zy, €)
form a Lie triple system with the product

[=*,y%, 2" = a7, [y", 27]).
Take a basis {z1,...,z,} of T.Q and define Réjk and aéj by

[}, [of, 7)) = R pxf and  [2},23)(1) = alay.

Prove that the tangent space T.Q with the operations determined by
(25, 25, 1] = Ré,jkm and  [z;, ;] = “éjxl

is a right Bol algebra. This Bol algebra structure is the same as the
one provided by Proposition 1.2.

(4) [15] Let (Q, zy,e) be a right Bol algebra, {z1,...,x,} a basis of TcQ
and denote x}(f) by V;(f) for any formal function f. Define formal
functions le.k such that [z7,2}] = C]lkxf and T]lk = —C’;k so that
T(z},z3) = T]lkxf Use Exercise 3.1.6 (3) to prove that

Vo (ViT), + T5Th) = 0. (3.4)

(5) [15] Let F' be a formal geodesic loop on V. Prove that if the torsion
satisfies (3.4) then the right multiplication operators by primitive ele-
ments of k[F] form a Lie triple system. Use [12, Proof of Proposition
32] to conclude that the Sabinin structure inherited by V' corresponds
to that of a right Bol algebra (Exercise 2.2.4 (3)). Conclude that F
is a formal right Bol loop.

4. Beyond Lie’s theorems

4.1. Quantum loops

4.1.1. Hopf algebra deformations. A topologically free Hopf algebra H over
the ring of formal power series K = k[[h]] with coefficients in the base field k
is a topologically free K-module equipped with a product, coproduct, unit,
counit and antipode which satisfy the axioms of a Hopf algebra over K with
tensor products understood in a complete sense. If H/hH = U(g) as Hopf
algebras over k for some Lie algebra (g, [, |) then H is called a quantized
universal enveloping algebra or Hopf algebra deformation of U(g).
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4.1.2. Rigidity of universal enveloping algebra of the traceless octonions.
Given a Malcev algebra m over a field k, a coassociative bialgebra deforma-
tion of U(m) over K = kJ[[h]] is a topologically free K-module B endowed
with four maps of K-modules

(unit) t: K — B, 1 1p, (product) my: BB — B,
(counit) ep: B — K, (coproduct) Ap: B — B®B,

where ® stands for the completed tensor product in the h-adic topology,
such that

(1) (B, Ap,€n, mp, 1) satisfies the axioms of bialgebra over the commu-
tative ring K but with the algebraic tensor products replaced by their
completions,

(2) B/hB = U(m) as a k-vector space and, with this identification,
(3) mp =m(modh) and Aj, = A(mod h)

with o and A the multiplication and comultiplication of U(m) respectively.
Since B is topologically free and B/hB = U(m), we can identify B with
U(m)[[h]] as a K-module. The product p; and the comultiplication Ay,
are uniquely determined by their restrictions to U(m) ® U(m) and U(m)
respectively. We can write mp|ymeum) = m + hmi + h®mg + --- and
Aplym)y = A+hA1+h?Ag+- - - for some k-linear maps m;: U(m)@U (m) —
U(m) and A;: U(m) — U(m) ® U(m) (¢ > 1). The null deformation of
U(m) is obtained by extending K-linearly the structure maps of U(m).
Trivial deformations are those isomorphic to the null deformation under a
K-linear bialgebra isomorphism which is the identity modulo h.

Proposition 4.1. Define §: U(m) — U(m) ® U(m) by
Ap(a) — Ap"(a)

§(z) = Aq(z) — AP (x) = ; (mod h)
for any a € B that reduces to x(mod h). Then
i) 0 is skew-symmetric and }_ . ;. (6 @ 1)0 = 0;
i) (A®Dd=1®0)+ 0230 @1)A;
i) 6(x1z2) = d(z1)A(x2) + A(z1)d(22) for all z1,29 € U(m). O

Proposition 4.2. Let § = Ay — AP, Then §(m) Cm@m and 6 = O|m
satisfies:
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i) 0f: m* @ m* — m* is a Lie bracket on m* and

ii) dm([z,y]) = (ady @ Im + Iy ® ady)dm(y) — (ady ® I + I;m @ ady)om(z)
for all x,y € m. O

The traceless octonions [18] M(«, 5,7) = {z € O(«, 5,7) | t(z) = 0}
(a, B,v # 0) with the commutator product are up to isomorphism the only
central simple Malcev algebras which are not Lie algebras. In contrast with
finite-dimensional semisimple Lie algebras (or symmetrizable Kac-Moody
algebras) for which non cocommutative quantized universal enveloping al-
gebras exist, the simple Malcev algebras M(«, 3,7) show an exceptional
behavior.

Theorem 4.3. [6] We have that py(a,5,,) = 0. O

Corollary 4.4. Any coassociative bialgebra deformation of U(M(«, 3,7))
18 cocommutative. O

Corollary 4.5. Any coassociative bialgebra deformation of U(M(a, 3,7))

satisfying
Z((:cy(l))z)y(z) = Zx(y(l)(zy(g)))

18 trivial. O

4.2. Nilpotent loops

4.2.1. The dimension filtration. Let k be a field of characteristic zero,
(Q,xy,e) a loop and k@ the loop algebra of @) over k, which is a unital
cocommutative bialgebra with the comultiplication and counit determined
by A:z— z®x and €: z +— 1 for any x € Q. Let I = kere be the ideal of
kQ spanned by elements of the form = — e. The bialgebra structure of kQ
induces a bialgebra structure on the graded space Z(Q, k) = &% ,1"/1"H1
(I° = kQ by convention).

The unital bialgebra Z(Q, k) is connected so it determines a formal loop
on the space of primitive elements. This space admits a beautiful description
in terms of the so called dimension subloops. The nth dimension subloop
of ) over k is the intersection

Dy(Q,k)=QnN(e+1").

The filtration D1(Q, k) D D2(Q, k) D --- is called the dimension filtration
of @ over k. The quotient D, (Q,k)/D,+1(Q, k) is an abelian group so we
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can extend scalars to get a vector space
[e.9]
n=1

The map

D — I(Q.k)
tDp1(Q. k) — x—e4 "

is an inclusion of D into Z(Q, k).

Theorem 4.6 ([10]). Z(Q, k) is a unital connected bialgebra and the image
of D in Z(Q, k) coincides with the subspace of primitive elements. O

4.2.2. The commutator-associator filtration. Given a group (G, zy,e), the
ith term G of its lower central series

G=G12G22 -

is the subgroup generated by all commutators [z,y]=2"ly Loy with z € G,

and y € Gy, p+q > i. In case that G,,1 = {e} for some n then G is called
nilpotent.

Since [xp2q, ] € Gpigyr for any x, € Gy, 4 € G4 and z, € G, then the
commutator of G induces a bilinear product on the abelian group ®;G;/Gi+1
by

[Zp, Zq] = [¥q, %) Gptgt1-
This product defines a graded Lie ring structure on ®;G;/Giy1.

Given a loop (Q, zy, e), the commutator of x,y is defined as

[z,y] = (yz)\(zy)

and the associator of x,y and z is

(9, 2) = (x(y2))\((2y)2).

To define a series with abelian group factors so that the commutator and
the associator induce multilinear product one introduces the associator de-
viations of level one

($a Y, Zat)l = ((:E’ th)(y7 th))\($ya Z7t)7

(CC,y,Z,t)Q ((‘/L‘ayvt)(x7zvt))\($ayzat)’
(CC, Y, z, t)3 = ((x7 Y, Z)(CC, Y, t))\(I’ Y, Zt)'
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Given a deviation A: Q"2 — Q of level [ —1 and 1 < a; < [+ 2, an
associator deviation of level [ is defined by
Agy (o Ty, Tayy s vn ) =

(AC s zays o )AC S Za s ONAC S T Tag s )-

Hence, for any oy, ..., q; with 1 < «; < 142 there exist associator deviations

(1"17 “ee axl+3)a1,...,al

of level . The associator is thought of as the associator deviation of level
ZET0.

Define v1Q = @ and for n > 1 define v,Q to be the minimal normal
subloop of ) containing

* [1pQ,7,Q] with p+¢q > n;
o (1pQ,7Q, Q) with p+q+r > n;

hd (7p1 Q7 ce arypl+3Q)a1,.,.,al with p1+--- +Pl+3 = n.

The subloop 7,Q is called the nth commutator-associator subloop of () and
71Q 2 72Q D - -+ is the commutator-associator filtration of Q |7]. We say
that @ is nilpotent if there exists n such that v,11Q = {e}.

4.2.3. Jennings Theorem. Let F' be the free loop on a single generator z and
6: F — Z the homomorphism that sends x to 1. The degree of an element
w(x) € F is defined to be the integer o(w(x)). Given a loop (Q,zy,e),
the isolator VK of a normal subloop K is the minimal normal subloop of
() containing all z € @ such that w(z) € K for some word w of non-zero
degree.

Theorem 4.7 ([8]). For any field k of characteristic 0 and for any loop
(Q,xy,e), the isolator \/7,Q in Q coincides with the dimension subloop
D, (Q, k). O

The associative version of this theorem is due to Jennings [5].

4.2.4. Coquecigrues. A Leibniz algebra is a vector space equipped with
a bilinear product [, ] that satisfies the identity [[z,y],2] + [[y, 2], 2] +
[[z,z],y] = 0. In case that [, | is skew-symmetric we recover the defini-
tion of a Lie algebra.

In the same way that Lie algebras are the tangent spaces of Lie groups
at the identity element, it has been suggested that Leibniz algebras could
be integrated to some hypothetic objects called coquecigrues. One of the
several attempts of finding these coquecigrues is based on formal integration
of Lie algebra to formal group in the so called Loday-Pirashvili category [9].
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