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The varieties of Bol-Moufang quasigroups

de�ned by a single operation

Reza Akhtar, Ashley Arp, Michael Kaminski, Jasmine Van Exel,

Davian Vernon and Cory Washington

Abstract. A quasigroup identity is said to be of Bol-Moufang type if it involves three variables,
two of which occur once on each side and one of which appears twice; moreover, the order in
which the variables appear is the same on both sides, and there is only one binary operation in the
identity. Answering a question of Drapál, we classify all varieties of quasigroups of Bol-Moufang
type where the operation involved is ∗, /, or \, determining all inclusions among these and
providing all necessary counterexamples. This work extends that of Phillips and Vojt�echovský,
who described the relationships among the 26 varieties obtained when the operation is ∗. We �nd
that 52 varieties, distinct from each other and from the aforementioned 26, are obtained when
one allows / or \ as the operation. We determine all inclusions among these varieties, furnishing
all necessary counterexamples to complete the classi�cation.

1. Introduction

A quasigroup is a set G together with a binary operation ∗ such that the maps
L(a) : G → G and R(a) : G → G de�ned by [L(a)](x) = a∗x and [R(a)](x) = x∗a
are bijective for all a ∈ G. As such, there are operations \ : G → G and / : G → G
de�ned by a\c = b and c/b = a if only if a ∗ b = c. We often refer to ∗ as the
principal operation in the quasigroup. A quasigroup is called a loop if it has a
two-sided neutral element, i.e., an element e ∈ G such that e ∗ x = x = x ∗ e for
all x ∈ G. From the viewpoint of universal algebra, one may view the variety

of quasigroups as consisting of universal algebras (G, ∗, \, /) satisfying the four
identities:

a ∗ (a\b) = b, (b/a) ∗ a = b, a\(a ∗ b) = b, (b ∗ a)/a = b.

In this article, we classify varieties of quasigroups satisfying an additional iden-
tity, an identity of so-called Bol-Moufang type. Such identities involve three vari-
ables, two of which appear once on both sides of the equation and one of which
appears twice on both sides. We also require that the variables appear in the same
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order on both sides, and that only one operation (either ∗, \, or /) appears in the
identity. For example, x∗((y∗x)∗z) = (x∗y)∗(x∗z) is an identity of Bol-Moufang
type.

The equational perspective is useful in that it lends itself particularly well
to automated theorem proving. Indeed, we made considerable use of the auto-
mated theorem prover Prover9 [3] to deduce which implications among identities
were valid; virtually all counterexamples were found using the �nite model builder
Mace4 [3]. In hindsight, we realized that all the proofs could be written out by
hand, only one of them being somewhat long. Therefore, all proofs that appear in
this paper are �human" proofs, although some of them would have been di�cult
to �nd without the assistance of Prover9.

Our work builds upon that of Phillips and Vojt�echovský [5] who carried out this
classi�cation for varieties of quasigroups de�ned by identities of Bol-Moufang type
involving only the operation ∗. Using the action of the group S3 on the conjugates
of a quasigroup, we argue that an analogous classi�cation holds for varieties de�ned
solely by \ and for varieties de�ned by solely by /; hence, the problem is reduced
to an understanding of how a variety de�ned by an identity involving one of the
three operations is related (if at all) to a variety de�ned by an identity involving
another operation. By using the Phillips-Vojt�echovský classi�cation and the S3-
action, we reduce the problem to checking a much smaller number of implications.
We then provide necessary counterexamples to complete our classi�cation.

2. Notation and background

For simplicity of reference, we adopt and extend notation introduced by Phillips
and Vojt�echovský in [4] and [5] for labeling identities of Bol-Moufang type.

A xxyz
B xyxz
C xyyz
D xyzx
E xyzy
F xyzz

1 0(0(00))
2 0((00)0)
3 (00)(00)
4 (0(00))0
5 ((00)0)0

In labeling an identity, the �rst letter (S, L, or R) refers to the operation used
(star (∗), left division (\) or right division (/)); the next letter, selected from A
through F, refers to the variable ordering as labeled in the above chart, and the
two numbers at the end refer to the parenthesization patterns on the two sides
of the identity. For example, LA25 is the identity x\((x\y)\z) = ((x\x)\y)\z,
while SD34 is the identity (x ∗ y) ∗ (z ∗ x) = (x ∗ (y ∗ z)) ∗ x. Note also that
an identity employing a variable ordering in which x, y, and z are not revealed
in alphabetical order (e.g. zxyz) is equivalent to one described by the above
notation by appropriate permutation of x, y, and z. Thus, there are 180 identities
of Bol-Moufang type to consider, 60 for each operation.
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If I is an identity of Bol-Moufang type, its dual is the identity I∨ obtained
from I by reading from right to left; for example, (SD34)∨ is x ∗ ((z ∗ y) ∗ x) =
(x ∗ z) ∗ (y ∗ x); after switching y and z, we identify this as SD24. Thus the
variable orders A and F are duals of each other, as are B and E, while C and D
are self-dual. Similarly, patterns 1 and 5 are dual to each other, as are 2 and 4,
whereas 3 is self-dual. Since the other three operations de�ned on G (◦, //, and
\\) are de�ned by

x ◦ y = y ∗ x, x//y = y\x, and x\\y = y/x

an identity of Bol-Moufang type involving any one of these operations is equivalent
to an identity involving one of ∗, \, or /. This explains our restriction to identities
of the latter sort.

We say that an identity I implies another identity J and write I ⇒ J if J holds
in every quasigroup satisfying I � in other words, if the variety of quasigroups
de�ned by I is contained in the variety of quasigroups de�ned by J . We say that
I and J are equivalent if I ⇒ J and J ⇒ I, or equivalently if I and J de�ne the
same variety of quasigroups.

Let G be a quasigroup with principal operation ∗. We refer to the operations
in O = {∗, \, /◦, \\, //} as conjugates of the principal operation ∗. If � ∈ O is
any operation, we may consider the quasigroup (G, �) whose underlying set is
G and whose principal operation ∗� is de�ned by a ∗� b = a�b. We call these
quasigroups conjugates of the original quasigroup (G, ∗). There is a natural action
of the symmetric group S3 on O, summarized in Table 1; this extends to an action
of S3 on the conjugates of (G, ∗) by setting σ · (G, �) = (G, σ ·�). The table also
tells one how to interpret each of the conjugate operations in the various conjugate
quasigroups. In particular, given σ ∈ S3, let � be the operation in the �rst column
and in the row corresponding to σ. The entries of this row identify each of the six

operations ∗�, \�, /�, ◦�, \\�
, and //

�
with a corresponding operation in O.

For example, if σ = (13), we have σ ·(G, ·) = (G, \). The entry in the third row and
third column of the table tells us /\ = \\; that is, for any a, b ∈ G, a/\b = a\\b.

* \ / ◦ \\ //

1 * \ / ◦ \\ //
(1 2) ◦ \\ // * \ /
(1 3) \ * \\ // / ◦
(2 3) / // * \\ ◦ \
(1 2 3) // / ◦ \ * \\
(1 3 2) \\ ◦ \ / // *

Table 1. Action of S3 on O

Conjugacy is particularly important in that it allows us to reduce further the
number of implications among Bol-Moufang identities we need to consider. Ex-
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tending the action of S3 on O to an action on the set of all Bol-Moufang identities
involving a single operation, we have the following:

Lemma 2.1. Let I be an identity involving (only) one operation and J an identity

involving a single (potentially di�erent) operation. Then

(I ⇒ J) ⇐⇒ (σ · I ⇒ σ · J) for any σ ∈ S3.

Proof. Suppose I ⇒ J . If σ · I holds in some quasigroup (G, ∗), then I holds in
σ−1(G, ∗). Thus, J holds in σ−1(G, ∗), so σ · J holds in (G, ∗). The proof of the
reverse implication is similar.

Corollary 2.2. Any implication among identities of Bol-Moufang type is equiva-

lent to one of the form SUvw ⇒ LXab.

Proof. By Lemma 2.1, any implication whose premise LUvw is equivalent, by
application of the permutation σ = (1 3), to an implication with premise SUvw.
Similarly, any implication whose premise is RUvw is equivalent, by application
of (2 3), to an implication with premise SUvw. Now all implications of the form
SUvw ⇒ SXab have been determined by Phillips and Vojt�echovský [5], so it re-
mains only to consider implications of the form SUvw ⇒ LXab or SUvw ⇒ RXab.
However, by applying (1 2), we see that the latter is equivalent to S(Uvw)∨ ⇒
L(Xab)∨.

A convenient summary of rules for converting implications is given in Table 2.

Before After

LUvw ⇒ SXab SUvw ⇒ LXab
LUvw ⇒ LXab SUvw ⇒ SXab
LUvw ⇒ RXab SUvw ⇒ R(Xab)∨

RUvw ⇒ SXab SUvw ⇒ RXab
RUvw ⇒ RXab SUvw ⇒ SXab
RUvw ⇒ LXab SUvw ⇒ L(Xab)∨

SUvw ⇒ RXab S(Uvw)∨ ⇒ L(Xab)∨

Table 2. Conversion of implications

3. The main result

In this section we classify all valid implications among identities of Bol-Moufang
type. By Corollary 2.2, we may restrict attention to implications of the form
SUvw ⇒ LXab.

We will make heavy use of the Hasse diagram in Figure 1 which summarizes the
results of [5]. Each node corresponds to a distinct variety of quasigroups de�ned
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by a single Bol-Moufang identity involving (only) the operation ∗. Inside the node
is the abbreviated name of the variety, together with one identity which de�nes
it. The full name of the variety corresponding to each abbreviation, together with
the complete statement of the de�ning identity and what type of neutral element
(2-sided, left, right, or none) exists, may be found in Table 5. The Hasse diagram
is to be interpreted as follows: if there is a path from some variety to another
variety on a lower level, then the upper variety is contained in the lower variety;
that is, the identity de�ning the upper variety implies the one de�ning the lower
variety. Note that by Proposition 2.1, there is a corresponding Hasse diagram for
each of the other operations \ and /.

For convenience, we say that an implication SUvw ⇒ LXab is irreducible if
whenever V xy is an identity such that SUvw ⇒ SV xy ⇒ LXab, we must have
SUvw ⇔ SV xy, and whenever V xy is an identity such that SUvw ⇒ LV xy ⇒
LXab, we must have LV xy ⇔ LXab. It is clear that all valid implications may
be constructed from a list of valid irreducible implications and the relevant Hasse
diagram.

Theorem 3.1. The only valid irreducible implications of the form SUvw ⇒ LXab
are SA25 ⇒ LB25, SB15 ⇒ LA35, and SC24 ⇒ LA35.

Proof. We begin by arguing that all the implications described above are valid.
Note �rst that in a loop both sides of the identity LA35: (x\x)\(y\z)= ((x\x)\y)\z
are equal to y\z. Since SB15 and SC24 de�ne varieties of loops, each of these
implies LA35. From Table 2, SA25 ⇒ LB25 is equivalent to SF14 ⇒ RE14. The
proof of the latter is rather lengthy and is deferred to Section 4.

We now show that no other irreducible implications hold. We begin by giving
examples showing that the maximal identity SA12 in the Hasse diagram does
not imply any minimal identity LUvw when Uvw is equivalent to neither A35
nor B25. Observe that a quasigroup satisfying SA12 is necessarily a group. If
G = Z3 = {e, a, b} is a cyclic group of order 3 in which e denotes the neutral
element and some identity LUvw holds in G, then both sides of LUvw must be
equal when the element a is substituted for each of the variables x, y, and z.
Now if v = 1, the left hand side of LUvw is a\(a\(a\a)) = a\(a\e) = a\b = a.
Similar computations show that if v = 2, 3, or 5 we obtain e and if v = 4 we
obtain b. All this implies that the only identities LUvw which could possibly hold
in G are of form LU23, LU25 or LU35. Referencing Figure ??, we are reduced
to showing SA12 6⇒ LUvw where Uvw ∈ {A23, E25, F25}. In fact, none of these
three identities holds in S3, the symmetric group on three letters: to show that
LA23 does not hold, we take x = z = (1 2), y = (1 2 3), and to show that LE25
and LF25 do not hold we take x = y = (1 2), z = (1 2 3).

To show that SB23 does not imply LB25, we consider a nonassociative extra
loop (i.e., a loop satisfying SB23) de�ned by Goodaire et. al. in [2]. We describe
here a construction of this loop due to Chein [1]: given a group G, de�ne M(G, 2) =
G×{0, 1}, where (g, 0)(h, 0) = (gh, 0), (g, 0)(h, 1) = (hg, 1), (g, 1)(h, 0) = (gh−1, 1)
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and (g, 1)(h, 1) = (h−1g, 0). For our counterexample, we consider M(D4, 2), where
D4 is the dihedral group of order 8 de�ned by generators R and F satsifying
R4 = F 2 = 1 and RF = FR−1. Now de�ne elements of M(D4, 2) by x =
(R, 1), y = (R, 0) and z = (F, 1); direct computation then shows that LB25 does
not hold. The counterexamples associated to each of the remaining (potential)
implications are described in Table 3. The entries in every third column correspond
to quasigroups whose multiplication tables are catalogued in Section ; in each case
below the counterexample is obtained by taking x = y = z = 0.

Uvw Xab No. Uvw Xab No. Uvw Xab No. Uvw Xab No.
A13 A35 3 F13 A35 1 A35 A35 10 A23 B25 6
A15 A35 5 F14 A35 1 B45 A35 2 B25 B25 9
A23 A35 6 F15 A35 8 C15 A35 2 F14 B25 1
A25 A35 7 F34 A35 1 C45 A35 4 F34 B25 1

Table 3. Table of counterexamples

By converting the implications of Theorem 3.1 using Table 2, one obtains a
complete list of valid irreducible implications. The results are summarized below
in Table 4; each box consists of logically equivalent implications.

SA25 ⇒ LB25 LA25 ⇒ SB25 RA25 ⇒ LE14
SF14 ⇒ RE14 LF14 ⇒ RB25 RF14 ⇒ SE14
SB15 ⇒ LA35 LB15 ⇒ SA35 RB15 ⇒ LF13
SB15 ⇒ RF13 LB15 ⇒ RA35 RB15 ⇒ SF13
SC24 ⇒ LA35 LC24 ⇒ SA35 RC24 ⇒ LF13
SC24 ⇒ RF13 LC24 ⇒ RA35 RC24 ⇒ SF13

Table 4. Valid irreducible implications

4. Proof of SF14 ⇒ RE14

In this section we give a proof that SF14 implies RE14, based on output from
Prover9. Since SF14 has been shown to be equivalent to SD14 [5], we prove
instead SD14 ⇒ RE14, as the output from Prover9 is easier to parse. Although
the proof is not particularly intuitive, it is short enough to be written out, and
doing so ensures that all proofs in this article are �human" proofs.

For convenience, we write xy in place of x ∗ y and use juxtaposition notation
to save parentheses. The notation a 7→ b (where a and b are formal expressions
involving quasigroup elements and operations) means �substitute b for a".

We begin with the identity SD14:

(x · yz)x = x(y · zx).
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This readily implies
(x · yz)\(x(y · zx)) = x (1)

and
[x(y · zx)]/x = x · yz. (2)

On the other hand, substituting y 7→ y/z in SD14 gives

xy · x = x(y/z · zx). (3)

By replacing y 7→ y/(zx) in (2), we have (xy)/x = x[y/(zx) · z]. Substituting
y 7→ x and z 7→ y, we obtain

x = x · (x/(yx))y (4)

and dividing by x on the left yields

x\x = (x/yx)y. (5)

Returning to (1) and replacing z 7→ z/x we have x = [x ·y(z/x)]\[x ·y(z/x ·x)],
which simpli�es to

x = [x · y(z/x)]\[x · yz]. (6)

Replacing y 7→ x\y in (3), we have

yx = x[(x\y)/z · zx]. (7)

Putting x 7→ y/zy · z, y 7→ x, and z 7→ y in (7), we have

x(y/zy · z) = (y/zy · z)[((y/zy · z)\x)/y · y(y/zy · z)]

which by (4) simpli�es to (y/zy ·z)[((y/zy ·z)\x)/y ·y]] = x. Thus x = x(y/zy ·z) =
x(y\y) by (5), which establishes the existence of a right neutral element.

Using this we argue

[x/(y/z · x)]y = z\[z · [x/(y/z · x)]y] = [z · (x\x)]\[z · [x/(y/z · x)]y].

Now using (5), the above may be written as

[z · [x/(y/z · x)](y/z)]\[z · [x/(y/z · x)]y]

which by (6) reduces to z. Summarizing, we have

[x/(y/z · x)]y = z. (8)

Dividing this equation on the right by y on the right yields

x/(y/z · x) = z/y, (9)
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and if instead we substitute y 7→ yz, we obtain

x/yx · yz = z. (10)

Returning to (3) and substituting z 7→ z/(xz), we have xy · x = x(y/(z/xz) ·
(z/xz)x). By (5), the right hand side reduces to x(y/(z/xz) · z\z) = x(y/(z/xz)).
Thus, we have

x(y/(z/xz)) = xy · x. (11)

Using (11), (2), and (10) we reason

(y/zy)(zx · z) = (y/zy)(z(x/(y/zy)) = (y/zy · zx)/(y/zy) = x/(y/zy).

Thus we have
x/(y/zy) = (y/zy)(zx · z). (12)

We are �nally ready to prove RE14. Applying (9), we have (x/(y/z))/y =
(x/[x/((z/y)x)])/y, which by (12) equals [(x/((z/y)x)) · ((z/y)x) · (z/y)]/y. Using
(3) we may rewrite this as [(x/((z/y)x)) · ((z/y) · (x/w)(w · (z/y)))]/y, where
for convenience we write w = y/(z/y). By (10), the above expression reduces
to [(x/w) · (w · (z/y))]/y = [x/(y/(z/y)) · y]/y = x/(y/(z/y), which establishes
RE14.

5. Counterexamples

1. ∗ 0 1 2
0 1 0 2
1 2 1 0
2 0 2 1

2. ∗ 0 1 2
0 1 0 2
1 0 2 1
2 2 1 0

3. ∗ 0 1 2 3 4 5 6 7 8
0 1 2 4 0 6 3 8 5 7
1 2 4 6 1 8 0 7 3 5
2 0 1 2 3 4 5 6 7 8
3 7 5 3 8 0 6 1 4 2
4 6 8 7 4 5 2 3 1 0
5 3 0 1 5 2 7 4 8 6
6 8 7 5 6 3 4 0 2 1
7 5 3 0 7 1 8 2 6 4
8 4 6 8 2 7 1 5 0 3

4. ∗ 0 1 2 3 4 5
0 1 2 4 0 5 3
1 2 0 5 1 3 4
2 0 1 3 2 4 5
3 4 5 2 3 0 1
4 5 3 0 4 1 2
5 3 4 1 5 2 0

5. ∗ 0 1 2 3 4
0 1 4 3 0 2
1 3 0 4 2 1
2 0 1 2 3 4
3 2 3 1 4 0
4 4 2 0 1 3

6. ∗ 0 1 2 3
0 1 0 3 2
1 2 3 0 1
2 0 1 2 3
3 3 2 1 0
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7. ∗ 0 1 2 3 4 5
0 1 0 4 5 2 3
1 3 2 5 4 0 1
2 0 1 2 3 4 5
3 5 4 3 2 1 0
4 2 3 0 1 5 4
5 4 5 1 0 3 2

8. ∗ 0 1 2 3 4
0 1 2 4 3 0
1 3 0 2 4 1
2 0 4 3 1 2
3 4 1 0 2 3
4 2 3 1 0 4

9. ∗ 0 1 2 3 4 5
0 1 3 0 5 2 4
1 0 1 2 3 4 5
2 4 2 5 0 3 1
3 5 4 3 2 1 0
4 2 0 4 1 5 3
5 3 5 1 4 0 2

10. ∗ 0 1 2 3 4
0 1 3 0 4 2
1 0 1 2 3 4
2 4 0 1 2 3
3 2 4 3 1 0
4 3 2 4 0 1

Variety Abbrev. De�ning identity Name Neutral elt.
Groups GR x(yz) = (xy)z A12 2

RG1-quasigroups RG1 x((xy)z) = ((xx)y)z A25 L
LG1-quasigroups LG1 x(y(zz)) = (x(yz))z F14 R
RG2-quasigroups RG2 x(x(yz)) = (xx)(yz) A23 L
LG2-quasigroups LG2 (xy)(zz) = (x(yz))z F34 R
RG3-quasigroups RG3 x((yx)z) = ((xy)x)z B25 L
LG3-quasigroups LG3 x(y(zy)) = (x(yz))y E14 R

Extra q. EQ x((yx)z) = (xy)(xz) B23 2
Moufang q. MQ x(y(xz)) = ((xy)x)z B15 2
Left Bol q. LBQ x(y(xz)) = (x(yx))z B14 R
Right Bol q. RBQ x((yz)y) = ((xy)z)y E25 L
C-quasigroups CQ x(y(yz)) = ((xy)y)z C15 0

LC1-quasigroups LC1 (xx)(yz) = (x(xy))z A34 2
LC2-quasigroups LC2 x(x(yz)) = (x(xy))z A14 0
LC3-quasigroups LC3 x(x(yz)) = ((xx)y)z A15 L
LC4-quasigroups LC4 x(y(yz)) = (x(yy))z C14 R
RC1-quasigroups RC1 x((yz)z) = (xy)(zz) F23 2
RC2-quasigroups RC2 x((yz)z) = ((xy)z)z F25 0
RC3-quasigroups RC3 x(y(zz)) = ((xy)z)z F15 R
RC4-quasigroups RC4 x((yy)z) = ((xy)y)z C25 L
Left alternative q. LAQ x(xy) = (xx)y A45 L
Right alternative q. RAQ x(yy) = (xy)y C45 R

Flexible q. FQ x(yx) = (xy)x B45 0
Left nuclear q. LNQ (xx)(yz) = ((xx)y)z A35 L

Middle nuclear q. MNQ x((yy)z) = (x(yy))z C24 2
Right nuclear q. RNQ x(y(zz)) = (xy)(zz) F13 R

Table 5. De�nitions of varieties of quasigroups
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Figure 1. Varieties of Bol-Moufang type under ∗
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