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On WIP loops

Asif Ali and Hasib Khan

Abstract. A weak inverse property loop (WIP loop) is a loop L that satis�es x(yx)ρ = yρ or
(xy)λx = yλ for all x, y ∈ L. In this paper we prove some necessary and su�cient conditions
for a WIP loop to be LC, RC, left alternative, right alternative, and C-loop. We also construct
in�nite families of WIP loops of various orders.

1. Introduction

Let L be a loop with identity element 1, then L will be said to satisfy the weak

inverse property if whenever three elements x, y, z of L satisfy the relation xy·z = 1,
they also satisfy the relation x · yz = 1. The study of weak inverse property loops
(WIP loops) was initiated by J. M. Osborn [4] as a class of loops which contains
both IP loops and CIP loops. He proved that a WIP loop is a loop which satis�es
one of the following equivalent identities

x(yx)ρ = y or (xy)λx = yλ.

He further proved that the left, middle and right nuclei of a WIP loop coincide.
If L is a loop all of whose isotopes have the WIP and N is its nucleus, then N is
normal and L/N is a Moufang loop. Isotopy-isomorphy conditions of WIP loops
were considered in [2]. We prove some necessary and su�cient conditions for a
WIP loop to be LC, RC, left alternative, right alternative, and C-loop in section
3 and construct in�nite families of WIP loops of various orders in section 4.

2. Preliminaries

Let L be a loop. Then the sets

Nλ = {x ∈ L : x(yz) = (xy)z for every y, z ∈ L},
Nµ = {x ∈ L : y(xz) = (yx)z for every y, z ∈ L},
Nρ = {x ∈ L : y(zx) = (yz)x for every y, z ∈ L}

are called the left nucleus, middle nucleus and right nucleus respectively. N =
Nλ ∩Nµ ∩Nρ is called the nucleus.
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A loop L is called left alternative if xx · y = x · xy ∀x, y ∈ L, right alternative
if x · yy = xy · y ∀x, y ∈ L, and alternative if it is both left alternative and right
alternative.

C-loops are loops satisfying the identity x(y(yz)) = ((xy)y)z. Loops satisfying
the identity (xx)(yz)) = (x(xy))z are called LC-loops and loops satisfying the
identity (xy)(yz) = x(y(zz))z are called RC-loops. Loops which are both LC-
loops and RC-loops are C-loops. ARIF loops are de�ned to be �exible loops
satisfying (zx)(yxy) = (z(xyx))y.

3. Necessary and su�cient conditions

LC-loops, RC-loops, C-loops, ARIF loops are subclasses of WIP loop. We prove
here necessary and su�cient conditions for a WIP loop to satisfy these loops which
are its subclasses. We de�ne Lx : a −→ xa, Rx : a −→ ax, J : x −→ x−1 and
P = Rx ◦ Lx ∀ x ∈ L.

Theorem 3.1. Let L be a WIP loop of unique inverses. Then (JP )n = I for any

n ∈ 2Z+, where Z+ denotes the set of positive integers.

Proof. Let y ∈ L. Since P = Rx ◦ Lx, then for (JP )n = I, where n ∈ 2Z+.
Consider n = 2. Then

y(JP )2 = yJPJP = x((x(y−1x))−1x) = x(y−1x)−1 = y.

Thus (JP )2 = I. Now if any n ∈ 2Z+, then n = 2m for some m ∈ Z+, so
(JP )n = (JP )2m = ((JP )2)m = (I)m = I.

Corollary 3.2. (JP )n = I for all n ∈ Z+ if the loop is a WIP loop of exponent

2.

Proof. Let L be a WIP loop of exponent 2. Then

y(JP ) = y−1Rx ◦ Lx = x(y−1x)
= x(y−1x)−1 since L is of exponent 2
= y−1 since L is a WIP loop

= y.

Thus JP = I and hence (JP )n = I for all n ∈ Z+ if the loop is a WIP loop of
exponent 2.

Next we prove necessary and su�cient conditions for a WIP loop to be left
alternative, and right alternative.

Theorem 3.3. Let L be a WIP loop. Then L is left alternative if and only if

Lx = RxJLx2JP .



On WIP loops 13

Proof. Let L be a WIP loop satisfying Lx = RxJLx2JP. Then

Lx = RxJLx2JP

JR−1
x J = RxJLx2JP since Lx = JR−1

x J

R−1
x J = L−1

x Lx2JP since L−1
x = JRxJ

LxR−1
x P = Lx2(JP )2

LxR−1
x RxLx = Lx2I by Theorem 3.1

LxLx = Lx2

Conversely, if is x(xy) = x2y for all x, y ∈ L, then LxLx = Lx2 for all x ∈L.
Thus LxLxP−1 = Lx2P−1. From this, by Theorem 3.1, we obtain LxR−1

x =
Lx2(JP )2P−1, i.e., R−1

x = L−1
x Lx2JPJ . The last, by left and right cancellation

of J , implies Lx = RxJLx2JP .

Theorem 3.4. Let L be a WIP loop. Then L is right alternative if and only if

Rx = PJRx2JLx.

Proof. If L satis�es Rx = PJRx2JLx, then

JRxJ = JPJRx2JLxJ by multiplication of both sides by J

PL−1
x = PJPJRx2R−1

x by multiplication of both sides by P

RxRx = Rx2 .

Conversely, let L be right alternative. Then RxRx = Rx2 . Hence P−1RxRx

= P−1Rx2 . Thus L−1
x IRx = P−1Rx2 , which implies L−1

x Rx = IP−1Rx2 , and
consequently Rx = PJRx2JLx.

Theorem 3.5. A WIP loop L is an LC loop if and only if it satis�es the identity

JLx2Tz = LzTxJPLz, where Tx = R−1
x Lx.

Proof. Let L be an LC loop. Then xx · yz = (x · xy)z, which implies RzLx2 =
LxLxRz. Thus RzLx2Tz = LxLxRzTz, whence, putting L−1

x = JRxJ , we obtain
JLx2Tz = LzR

−1
x LxJRxJJLxLz. Thus JLx2Tz = LzTxJPLz.

Conversely, if L satis�es JLx2Tz = LzTxJPLz, then also JRzLx2R−1
z = TxJP ,

which implies RzLx2 = LxLxRz. Hence, L is an LC loop.

Theorem 3.6. [2, Theorem 4.2]
A loop L (WIP loop) is a C-Loop if and only if Rx = PJRx2JLx and JLx2Tz =
LzTxJPLz.

4. Various constructions of WIP loops

Here we give the construction of in�nite families of non-associative WIP loops by
extensions of loops.
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Lemma 4.1. Let µ : G×G → A be a factor set. Then (G, A, µ) is a WIP loop if

and only if

µ(h, h−1) + µ(g, g−1h−1) = µ(h, g) + µ(hg, g−1h−1) (D)

for all g, h ∈ G.

Proof. The loop (G, A, µ) is a WIP loop i� (g, a)[(h, b)(g, a)]−1 = (h, b)−1 hold for
every g, h ∈ G and every a, b ∈ A. Straight forward calculation with (A) shows
that this happens i� (D) holds.

We call a factor set µ satis�es (A) and (D) a W -factor set. We now use a
particular W-factor set to construct the above-mentioned families of WIP loops.

Proposition 4.2. Let n > 2 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of

order bigger than 2. Let G = {1, x, x2} be the cyclic group of order 3 with respect

to multiplication with neutral element 1. De�ne µ : G×G → A by

µ(h, g) =
{

α if (h, g) = (x, x),
0 otherwise.

Then (G, A, µ) is a non-alternative (hence non-associative) commutative WIP loop

with N = {(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = x. Then (D) becomes µ(h, h−1)+µ(x, x2h−1) = µ(h, x)+µ(x, x2h−1). If
h = 1, then µ(1, 1) + µ(x, x2) = µ(1, x) + µ(x, x2) and both sides of this equation
are equal to 0. If h = x, thenµ(x, x2) + µ(x, x) = µ(x, x) + µ(x, x) and both
sides of this equation are equal to α. Assume h = x2, then µ(x2, x) + µ(x, 1) =
µ(x2, x) + µ(1, xx) and both sides of this equation are equal to 0. Next assume
that g = x2, then (D) becomes µ(h, h−1)+µ(x2, xh−1) = µ(h, x2)+µ(hx2, xh−1).
If h = 1, then both sides of this equation are equal to 0. Assume h = x, then both
sides of this equation are equal to 0, Assume h = x2, then µ(x2, x) + µ(x2, x2) =
µ(x2, x2) + µ(x, x2) and both sides of this equation are equal to 0. Since α 6= 0,
we have that, (x, a)(x, a) · (x2, a) 6= (x, a) · (x, a)(x2, a). Thus (G, A, µ) is non-
alternative and hence non-associative. Also neither (x, a) ∈ N nor (x2, a) ∈ N for
all a ∈ A. Also we have that (1, a)((h, b)(g, c)) = ((1, a)(h, b))(g, c) for all h, g ∈ G
and a, b, c ∈ A. Which implies that (1, a) belongs to nucleus. Thus {(1, a); a ∈ A}
is the nucleus of the loop (G, A, µ).

Corollary 4.3. For each natural number n there exists a non-alternative commu-

tative WIP loop having nucleus of order n.

Proof. It remains to show that there exist non-alternative commutative WIP loop
having nucleus of order 1. This requirement is ful�lled by the following example.
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Example 4.4. A commutative, non-alternative WIP loop of order 10 having triv-
ial nucleus.

· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 8 9 6 7
2 2 3 0 1 6 7 4 5 9 8
3 3 2 1 0 8 9 7 6 4 5
4 4 5 6 8 1 0 9 2 7 3
5 5 4 7 9 0 1 2 8 3 6
6 6 8 4 7 9 2 3 0 5 1
7 7 9 5 6 2 8 0 3 1 4
8 8 6 9 4 7 3 5 1 2 0
9 9 7 8 5 3 6 1 4 0 2

Example 4.5. The smallest group A satisfying the assumption of Proposition
4.2 is the cyclic group {0, 1} of order 2. The construction of Proposition 4.2 with
α = 1 yields the smallest non-alternative commutative WIP loop of order 6.

· 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 3 2 5 4
2 2 3 5 4 0 1
3 3 2 4 5 1 0
4 4 5 0 1 2 3
5 5 4 1 0 3 2

Proposition 4.6. Let n > 3 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of

order bigger than 2. Let G = {1, u, v, w} denotes the Klein group with respect to

multiplication with neutral element 1. De�ne µ : G×G → A by

µ(x, y) =
{

α if (x, y) ∈ {(u, v), (v, w), (w, u)},
0 otherwise.

Then (G, A, µ) is a non-alternative, non-commutative WIP loop with nucleus N =
{(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = u, then (D) becomes µ(h, h−1) + µ(u, uh−1) = µ(h, u) + µ(hu, uh−1).
If h = 1, then both sides of this equation are equal to 0. Assume h = v, then
µ(v, v) + µ(u, w) = µ(v, u) + µ(w,w) and both sides of this equation are equal
to 0. Assume h = w, then µ(w,w) + µ(u, v) = µ(w, u) + µ(v, v) and both sides
of this equation are equal to α. Next assume that g = v, then (D) becomes
µ(h, h−1) + µ(v, vh−1) = µ(h, v) + µ(hv, vh−1). If h = 1, then both sides of this
equation are equal to 0. Assume h = u, µ(u, u) + µ(v, w) = µ(u, v) + µ(w,w) and
both sides of this equation are equal to α. Assume h = v, then µ(v, v) + µ(v, 1) =
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µ(v, v) + µ(1, 1) both sides of this equation are equal to 0. Assume h = w, then
µ(w,w)+µ(v, u) = µ(w, v)+µ(u, u) and both sides of this equation are equal to 0.
Next assume that g = w, then (D) becomes µ(h, h−1) + µ(w,wh−1) = µ(h, w) +
µ(hw,wh−1). If h = 1, then both sides of this equation are equal to 0. Assume
h = u, then this equation is equal to µ(u, u) + µ(w, v) = µ(u, w) + µ(v, v) and
both sides of this equation are equal to 0. Assume h = v, then µ(v, v)+µ(w, u) =
µ(v, w) + µ(u, u) and both sides of this equation are equal to α. Assume h = w,
then µ(w,w)+µ(w, 1) = µ(w,w)+µ(1, 1) and both sides of this equation are equal
to 0. Since α 6= 0, and we have that, (u, a)(u, a) · (v, a) 6= (u, a) · (u, a)(v, a) also we
have that, (w, a)(u, a)·(u, a) 6= (w, a)·(u, a)(u, a). Thus (G, A, µ) is non-alternative
and hence non-associative. Also (u, a), (v, a), (w, a) /∈ N for all a ∈ A. Also we
have that (1, a)((h, b)(g, c)) = ((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A.
Which implies that (1, a) belongs to the nucleus. Thus {(1, a) : a ∈ A} is the
nucleus of the loop (G, A, µ).

Corollary 4.7. For each n > 1 there exists a non-alternative non-commutative

WIP loop having nucleus of order n.

Proof. It remains to show that there exist a non-alternative non-commutative WIP
loop having nuclei of order 1 and 2. The �rst requirement follows by Example 4.8
while the second requirement follows by Example 4.9.

Example 4.8. A non-alternative non-commutative WIP loop having nucleus of
order 1.

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 4 6 2 7 3 5
2 2 7 5 0 3 1 4 6
3 3 5 0 4 6 2 7 1
4 4 6 3 1 7 0 5 2
5 5 3 7 2 0 6 1 4
6 6 4 1 7 5 3 2 0
7 7 2 6 5 1 4 0 3

Example 4.9. A non-alternative non-commutative WIP loop having nucleus of
order 2.

· 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 0 5 6 4 3
2 2 0 1 6 5 3 4
3 3 6 5 4 0 1 2
4 4 5 6 0 3 2 1
5 5 3 4 2 1 6 0
6 6 4 3 1 2 0 5
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Example 4.10. The smallest group A satisfying the assumption of Proposition
4.6 is the cyclic group {0, 1, 2}. The construction of Proposition 4.6 with α = 1
yields the smallest non-alternative commutative WIP loop of order 12.

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 0 4 5 3 7 8 6 10 11 9
2 2 0 1 5 3 4 8 6 7 11 9 10
3 3 4 5 0 1 2 11 9 10 6 7 8
4 4 5 3 1 2 0 9 10 11 7 8 6
5 5 3 4 2 0 1 10 11 9 8 6 7
6 6 7 8 9 10 11 0 1 2 5 3 4
7 7 8 6 10 11 9 1 2 0 3 4 5
8 8 6 7 11 9 10 2 0 1 4 5 3
9 9 10 11 8 6 7 3 4 5 0 1 2
10 10 11 9 6 7 8 4 5 3 1 2 0
11 11 9 10 7 8 6 5 3 4 2 0 1

GAP gives these extra informations about the above WIP loop. It is (1) power
associative, (2) not Moufang, (3) neither automorphic nor anti-automorphic, (4)
neither left nor right Bol.

Proposition 4.11. Let n > 3 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of

order bigger than 2. Let G = {1, u, v, w} denotes the Klein group with respect to

multiplication with neutral element 1. De�ne µ : G×G → A by

µ(x, y) =
{

α if (x, y) ∈ {(u, v), (v, u), (u, w), (w, u), (v, w), (w, v)},
0 otherwise.

Then (G, A, µ) is a non-alternative, commutative WIP loop with nucleus N =
{(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = u, then (D) becomes µ(h, h−1) + µ(u, uh−1) = µ(h, u) + µ(hu, uh−1).
If h = 1, then µ(h, h−1) + µ(u, u) = µ(1, u) + µ(u, u) both sides of this equation
are equal to 0. Assume h = u then µ(u, u) + µ(u, 1) = µ(u, u) + µ(1, 1) both
sides of this equation are equal to 0. Assume h = v, then µ(v, v) + µ(u, w) =
µ(v, u) + µ(w,w) and both sides of this equation are equal to α. Assume h = w,
then µ(w,w) + µ(u, v) = µ(w, u) + µ(v, v) and both sides of this equation are
equal to α. Next assume that g = v, then (D) becomes µ(h, h−1) + µ(v, vh−1) =
µ(h, v) + µ(hv, vh−1). If h = 1, then µ(1, 1) + µ(v, v) = µ(1, v) + µ(v, v) and both
sides of this equation are equal to 0. Assume h = u, then µ(u, u) + µ(v, w) =
µ(u, v) + µ(w,w) and both sides of this equation are equal to α. Assume h = v,
then µ(v, v) + µ(v, 1) = µ(v, v) + µ(1, 1) both sides of this equation are equal to
0. Assume h = w, then µ(w,w) + µ(v, u) = µ(w, v) + µ(u, u) and both sides
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of this equation are equal to α. Next assume that g = w, then (D) becomes
µ(h, h−1)+µ(w,wh−1) = µ(h, w)+µ(hw,wh−1). If h = 1, then µ(1, 1)+µ(w,w) =
µ(1, w) + µ(w,w) both sides of this equation are equal to 0. Assume h = u,
then µ(u, u) + µ(w, v) = µ(u, w) + µ(v, v) and both sides of this equation are
equal to α. Assume h = v, then µ(v, v) + µ(w, u) = µ(v, w) + µ(u, u) and both
sides of this equation are equal to α. Assume h = w, then µ(w,w) + µ(w, 1) =
µ(w,w) + µ(1, 1) and both sides of this equation are equal to 0. Since α 6= 0, and
we have that, (u, a)(u, a) · (v, a) 6= (u, a) · (u, a)(v, a). Also (w, a)(u, a) · (u, a) 6=
(w, a) · (u, a)(u, a). Thus (G, A, µ) is non-alternative and hence non-associative.
Also (u, a), (v, a), (w, a) /∈ N for all a ∈ A. Also we have that (1, a)((h, b)(g, c)) =
((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A. Which implies that (1, a) belongs
to the nucleus. Thus {(1, a) : a ∈ A} is the nucleus of the loop (G, A, µ).

Example 4.12. The smallest group A satisfying the assumption of Proposition
4.11 is the cyclic group {0, 1, 2}. The construction of Proposition 4.11 with α = 1
then yields the smallest non-alternative commutative WIP loop of order 12.

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 0 4 5 3 7 8 6 10 11 9
2 2 0 1 5 3 4 8 6 7 11 9 10
3 3 4 5 0 1 2 11 9 10 8 6 7
4 4 5 3 1 2 0 9 10 11 6 7 8
5 5 3 4 2 0 1 10 11 9 7 8 6
6 6 7 8 11 9 10 0 1 2 5 3 4
7 7 8 6 9 10 11 1 2 0 3 4 5
8 8 6 7 10 11 9 2 0 1 4 5 3
9 9 10 11 8 6 7 5 3 4 0 1 2
10 10 11 9 6 7 8 3 4 5 1 2 0
11 11 9 10 7 8 6 4 5 3 2 0 1

GAP [3] gives these extra informations about the above WIP loop. It is (1)
power associative, (2) not automorphic inverse property loop, (2) neither LC-loop
nor RC-loop.

Proposition 4.13. Let n > 2 be an integer and let A be an abelian group of order

n with respect to addition with neutral element 0 and α ∈ A be an element of order

bigger than 2. Let G = {1, x, x2, x3, x4} be the Cyclic group of order 5 with respect

to multiplication with neutral element 1. De�ne µ : G×G → A by

µ(h, g) =
{

α if (h, g) ∈ {(x2, x2), (x, x2), (x2, x)},
0 otherwise.

Then (G, A, µ) is a non-alternative commutative WIP loop with nucleus N =
{(1, a) : a ∈ A}.
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Proof. The map µ is clearly a factor set. To show that (G, A, µ) is a WIP loop, we
verify (D). Since µ is a factor set, there is nothing to prove when g = 1. Assume
that g = x, then (D) becomes µ(h, h−1) + µ(x, x4h−1) = µ(h, x) + µ(hx, x4h−1).
If h = 1, then µ(h, h−1) + µ(x, x4h−1) = µ(h, x) + µ(hx, x4h−1) and both sides of
this equation equals to 0. h = x, then µ(x, x4) + µ(x, x3) = µ(x, x) + µ(x2, x3)
then both sides of this equation are equal to 0,Assume h = x2, then µ(x2, x3) +
µ(x, x2) = µ(x2, x) + µ(x3, x2) and both sides of this equation are equal to α.
Assume h = x3, then µ(x3, x2) + µ(x, x) = µ(x3, x) + µ(x4, x) and both sides of
this equation are equal to 0 Assume h = x4, then µ(x4, x) + µ(x, 1) = µ(x4, x) +
µ(1, 1)and both sides of this equation are equal to 0 assume that g = x2, then
(D) becomes µ(h, h−1) + µ(x2, x3h−1) = µ(h, x2) + µ(hx2, x3h−1). If h = 1, then
µ(1, 1) + µ(x2, x3) = µ(1, x2) + µ(x2, x3) and both sides of this equation equals
to 0. Assume h = x, then µ(x, x4) + µ(x2, x2) = µ(x, x2) + µ(x3, x2) then both
sides of this equation are equal to α, Assume h = x2, then µ(x2, x3) + µ(x2, x) =
µ(x2, x2)+µ(x4, x) and both sides of this equation are equal to α. Assume h = x3,
then µ(x3, x2) + µ(x2, 1) = µ(x3, x2) + µ(1, 1) and both sides of this equation are
equal to 0. Assume h = x4, then µ(x4, x) + µ(x2, x4) = µ(x4, x2) + µ(x, x4) and
both sides of this equation are equal to 0. Assume that g = x3, then µ(h, h−1) +
µ(x3, x2h−1) = µ(h, x3) + µ(hx3, x2h−1). If h = 1, then µ(1, 1) + µ(x3, x2) =
µ(1, x3) + µ(x3, x2) and both sides of this equation equals to 0. Assume h = x,
then this equation equals to µ(x, x4) + µ(x3, x) = µ(x, x3) + µ(x4, x) then both
sides of this equation are equal to 0, Assume h = x2, then µ(x2, x3) + µ(x3, 1) =
µ(x2, x3) + µ(1, 1) and both sides of this equation are equal to 0. Assume h = x3,
then µ(x3, x2) + µ(x3, x4) = µ(x3, x3) + µ(x, x4) and both sides of this equation
are equal to 0. Assume h = x4, then µ(x4, x) + µ(x3, x3) = µ(x4, x3) + µ(x2, x3)
and both sides of this equation are equal to 0, Assume that g = x4, then (D)
becomes µ(h, h−1)+µ(x4, xh−1) = µ(h, x4)+µ(hx4, xh−1). If h = 1, then µ(1, 1)+
µ(x4, x) = µ(1, x4) + µ(x4, x) both sides of this equation equals to 0. Assume
h = x, then µ(x, x4)+µ(x4, 1) = µ(x, x4)+µ(1, 1) and both sides of this equation
are equal to 0, Assume h = x2, then µ(x2, x3) + µ(x4, x4) = µ(x2, x4) + µ(x, x4)
and both sides of this equation are equal to 0. Assume h = x3, then µ(x3, x2) +
µ(x3, x4) = µ(x3, x3) + µ(x, x4) and both sides of this equation are equal to 0.
Assume h = x4, then µ(x4, x) + µ(x4, x2) = µ(x4, x4) + µ(x3, x2) and both sides
of this equation are equal to 0. Since α 6= 0, we have that, (x3, a) · (x2, a)(x2, a) 6=
(x3, a)(x2, a)·(x2, a). Also (x2, a)·(x, a)(x3, a) 6= (x, 3a+α) = (x2, a)(x, a)·(x3, a).
Thus (G, A, µ) is non-alternative and hence non-associative WIP loop. Also neither
(x, a), (x2, a), (x3, a) ∈ N for all a ∈ A. Similarly (x4, a) /∈ A. Also we have that
(1, a)((h, b)(g, c)) = ((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A. Which
implies that (1, a) belongs to the nucleus. Thus {(1, a); a ∈ A} is the nucleus of
the loop (G, A, µ).

Example 4.14. The smallest group A satisfying the assumption of Proposition
4.13 is the cyclic group {0, 1, 2} of order 3. The construction of Proposition 4.13
with α = 1 yields the smallest non-alternative commutative WIP loop of order 10.
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· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 7 6 9 8
2 2 3 4 5 7 6 8 9 0 1
3 3 2 5 4 6 7 9 8 1 0
4 4 5 7 6 9 8 0 1 2 3
5 5 4 6 7 8 9 1 0 3 2
6 6 7 8 9 0 1 2 3 4 5
7 7 6 9 8 1 0 3 2 5 4
8 8 9 0 1 2 3 4 5 6 7
9 9 8 1 0 3 2 5 4 7 6

GAP shows that the following properties do not hold in this WIP loop: (1)
automorphic inverse property, (2) anti-automorphic inverse property, (3) LC, (4)
RC, (5) left Bol, (6) right Bol, (7) Moufang, (8) power alternative, (9) power
associative, (10) left nuclear square, (13) right nuclear square, (14) left inverse
and (15) right inverse property.
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