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Some results on E-inversive semigroups

Roman S. Gigon

Abstract. In the paper we study E-inversive semigroups. We show that E-inversive semigroups
are M-semigroups and we prove that M-biordered sets arise from E-inversive semigroups. More-
over, some connections between bi-ideals of an E-inversive semigroup .S and bi-order ideals, order
bi-ideals of the biordered set Eg of S are given. Further, some results of Janet Mills concerning
matrix congruences on orthodox semigroups are generalized to E-inversive E-semigroups. Also,
we prove that the class of all E-inversive semigroups is structurally closed.

1. Introduction and preliminaries

In the paper we present some results on E-inversive semigroups. The main result
of this article is Theorem 2.18 i.e. we show that every M-biordered set arises from
some E-inversive semigroup. Our proof of this result is quite simple. Proving this
result we used the characterization of the M-set of a semigroup (see Prop. 2.12)
and an important Easdown’s result (that is, every biordered set comes from some
semigroup). Moreover, we can show in a similar way Nambooripad’s Theorem
(i.e., each regular biordered set comes from some regular semigroup). The proofs
of this result were more complicated, see [2, 13]. Also, some equivalent conditions
for a semigroup to be E-inversive are given (Corollaries 2.4, 2.11). Further, some
connections between bi-ideals of an E-inversive semigroup S and order bi-ideals,
bi-order ideals of the biordered set Eg are presented in this work (see Prop. 2.14
and Th. 2.16). Moreover, we give some remarks concerning matrix congruences on
E-inversive (E-)semigroups (see Cor. 2.7 and Th. 2.10). Finally, we prove that the
class of E-inversive semigroups is structurally closed (Cor. 2.6).

Let S be a semigroup, a € S. The set W(a) = {x € S : © = zax} is called
the set of all weak inverses of a, and so the elements of W (a) will be called weak
inverse elements of a. A semigroup S is called E-inversive iff for every a € S there
exists € S such that az € Eg, where Eg (or briefly F) is the set of idempotents
of S (more generally, if A C S, then E4 denotes the set of all idempotents of A).
It is easy to see that a semigroup S is E-inversive if and only if W (a) is nonempty
for all @ € S. Hence if S is E-inversive, then for every a € S there is z € S such
that ax,za € Eg (see [10, 11]).

Further, by Reg(S) we shall mean the set of reqular elements of S (an element
a of S is called regular if a € aSa) and by V(a) = {z € S : a = aza,z = zaz} the
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set of all inverse elements of a. It is well known that an element a of S is regular
iff V(a) # 0, so a semigroup S is regular iff V(a) # () for every a € S |6]. Finally,
a semigroup S is said to be eventually reqular if every element of S has a regular
power [4]. Clearly, eventually regular semigroups are E-inversive.

In [5] Hall observed that the set Reg(S) of a semigroup S with Fg # @) forms a
regular subsemigroup of S iff the product of any two idempotents of S is regular.
In that case, S is said to be an R-semigroup. Also, we say that S is an E-semigroup
if ES2 C Es.

A subsemigroup B of a semigroup S is said to be a bi-ideal of S if BSB C B.
It is clear that there exists the least bi-ideal (X) containing a nonempty subset X
of S. One can easily seen that (X) is of the form: X U X% U XSX [1].

A nonempty subset A of a semigroup S is called a quasi ideal iff ASNSA C A.
Note that every quasi ideal A of S is a bi-ideal of S and each one-sided ideal of S is
a quasi ideal of S, so it is a bi-ideal of S. If ) £ C' C S, then (CUSC)N(CUCS)
is the smallest quasi ideal of S containing C.

Each subsemigroup eSe of a semigroup S, where e € Eg, will be called a local
subsemigroup of S. Furthermore, we say that a semigroup S with Eg # 0 is locally
E-inversive iff every local subsemigroup of S is E-inversive.

By a rectangular band we shell mean a semigroup M with the property aba = a
for all a,b € M. Note that in that case, M = Ej;. Also, we say that a congruence
p on a semigroup S is a matriz congruence if S/p is a rectangular band [9].

Some background material on biordered sets will be useful. For a definition of
a biordered set, its related axioms and concepts see [13, 3, 2]. Let S be a semigroup
with Fg = F # (). Define

Ww={(e,f/)EEXE: ef=¢}, W ={(e,f)e ExXE: fe=¢e},
<=wno", L=w'nWH™!, R=w nw"™
Dp={(e,f)e ExE:ef =eoref =for fe=eor fe= f}.

Then the partial algebra E with domain Dg is a biordered set, Th. 1.1 (al) [13].
It is easy to see that the relation < is the natural partial order on the set E, and
if e, f € E, then (e, f) € L [R] iff (e, f) € £ [R] (in a semigroup S), where £,R
are Green’s relations on S. Furthermore, the relations w' and w” are quasi-orders
on E. For p=w! or p=w" and any e € E, we put p(e) = {g € E: (g,¢) € p}.

Let E be a biordered set and e, f € E. We define the M-set M (e, f) of e, f by
M(e, f) =Wl (e)Nw"(f) ={g € E:g=ge= fg}. Also, define the sandwich-set
S(e, f) of e, f [13] by

S(e, f)={g € M(e,f): (vh € M(e, f)) (eh,eg) € ", (hf,gf) € w'}.

Moreover, we define E to be an M-biordered set iff M(e, f) # 0 for all e, f € E.
Let S be a semigroup with Eg # 0. We say that S is an M-semigroup if Es is
an M-biordered set. Finally, a subset F' of Eg is called an order bi-ideal of Eg iff
M(e,f)C Fforalle, feF.
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The following result is probably known:

Lemma 1.1. Let S be an R-semigroup, e, f € Eg. Then:

Sle,f) ={g € Mle, f):egf =eft ={g€ Me,f) : g e V(ef)} = fV(ef)e.

Proof. Denote the above four sets by A, B, C and D, respectively.

If g € B, then fge = g, so efgef = eqgf = ef,gefg = gg =g ie., g € Vief).
Thus B C C.

If g€ C, then g = fge and g € V(ef). Hence g € fV(ef)e. Thus C C D.

Let g = fxe for some x € V(ef). Then clearly g € M(e, f). If h € M(e, f)
(i.e. fh = h = he), then (eg)(eh) = efreech = efze(fh) = (efzef)h = efh = eh.
Thus (eh, eg) € w", and similarly (hf,gf) € &', so g € A. Consequently, D C A.

Finally, let g € A,z € V(ef). Then fze € D C A. In particular, eg R efxe
(by the definition of A). Hence

egf = el(ge)f = (eg)(ef) = eglefref) = (eg - efwe)f = efref = ef.
Thus g € B, as exactly required. O

Let S be an R-semigroup. A subset F' of Eg is called a biorder ideal if and
only if the following two conditions hold:

(i) Ve€Eg,feF)e< f=ecF;

(i) (Ve,f € F) S(e, f)NF #£10.

2. The main results

Proposition 2.1. Let S be a semigroup. The following conditions are equivalent:
(1) S is E-inversive;

(ii) every bi-ideal of S contains some idempotent of S;
(#i1) every quasi ideal of S contains some idempotent of S;
(iv) every ideal of S contains some idempotent of S.

Proof. (i) = (ii). Let B be a bi-ideal of S, b € B and x € W (b?). Then = = zbbx.
Hence (bzb)? = b(xbbz)b = bxb € BSB C B. Thus bxb € Ep.

(14) = (#i1) = (iv). This is evident.

(tv) = (7). Let a € S. By assumption SaS has at least one idempotent, that
is, xay = e for some z,y € S, e € Eg, so exaye = e. Hence yexayer = yex. Thus
yex € W(a). O

Lemma 2.2. Every E-inversive semigroup S s locally E-inversive.

Proof. Let a € eSe, where ¢ € Eg, x € W(a). Then = zax = z(eae)x. It follows
that exe = (exe)a(exe). Thus exe € W(a) in eSe, as exactly required. O

Corollary 2.3. Every bi-ideal of an E-inversive semigroup S is E-inversive.
Hence a semigroup S is E-inversive if and only if every bi-ideal of S is E-inversive.
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Proof. Let B be a bi-ideal of S and b € B. By Proposition 2.1, B contains some
idempotent of S, say e. By Lemma 2.2, eSe € BSB C B is E-inversive and so
(ebe)y € Eege for some y € eSe. Hence (eb)(ey) € Eese, say (eb)(ey) = f, where
ey € e(eSe) = eSe. Therefore f(eb)eyf = f, so eyf(eb)eyf = eyf. We conclude
that there exists x € W(eb) in B (for example: = = (ey)f € (eSe)(eSe) C B), so
x = zebx. Thus (ze)b(re) = ze and xze € Be C B. Consequently, B is E-inversive
(remark that even ze = ey fe € eSe). O

Let a semigroup S (with Es # 0) be locally E-inversive, b € S and e € Eg.
Consider the least bi-ideal, say B, of S containing the set {e,b}. Note that (¢) C B
i.e., eSe C B. From the proof of Corollary 2.3 and from Lemma 2.2 we obtain:

Corollary 2.4. A semigroup is E-inversive if and only if it is locally E-inversive.

In [7] S. Kopamu defined a countable family of congruences on a semigroup S,
as follows: for each ordered pair of non-negative integers (m,n), he put:

Omn ={(a,b) € SxS: (Ve € S yeS") zay = zby},

and he made the convention that S' = S and S° denotes the set containing the
empty word. In particular, ¢ is the identity relation on S. Let C be a class of
semigroups of the same type 7 (for example: the class of E-inversive semigroups);
call its elements C-semigroups. A semigroup S is called a structurally C-semigroup
it S/0,, € C for some integers m,n > 0. Further, denote by SC the class of all
structurally C-semigroups. It is clear that C C SC. Finally, we say that the class
C is structurally closed if C = SC [§].

Lemma 2.5. FEvery structurally E-inversive semigroup is locally E-inversive.

Proof. Let S be a structurally E-inversive semigroup, say S/, is E-inversive;
a € eSe, where e € Fg. Since the class of E-inversive semigroups is closed under
homomorphic images, then we may suppose that m, n are both positive integers.
Moreover, a = eae, (x,xax) € Oy, ,, for some z € S. Hence e™xe™ = e™xaxe™, that
is, exe = exaxe = ex(eae)xe and so exe = (exe)a(exe). Therefore exe € W(a) in
the semigroup eSe. Consequently, S is locally F-inversive. O

Combining the above lemma with Corollary 2.4 we obtain the following:
Corollary 2.6. The class of all E-inversive semigroups is structurally closed. [
By the trace trp of a congruence p on a semigroup S we mean p N (Eg X Eg).

Corollary 2.7. If p is a matriz congruence on an E-inversive semigroup S, then
every p-class of S is E-inversive.

Moreover, every matriz congruence on an E-inversive semigroup is uniquely
determined by its trace.
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Proof. The first part follows from Corollary 2.3 and the following easy observation:
if A is any p-class of S, where p is a matrix congruence on S, then A is a bi-ideal.

We show the second part. Let p;, po be matrix congruences on an E-inversive
semigroup S, trp; C trps, e € Fg. If a € epy, then there exists z € W(a) in ep;.
Hence az(trp; )e(trp; )za and so ax(trps)e(trps)xa. Therefore we get a py axxa ps e
ie., a € epa. Thus p; C pa. Consequently, if trp; = trpg, then p1 = po. O

Remark 2.8. The second part of the above corollary generalizes Theorem 2.1 [9].
One can modify all results of J. Mills in Section 2 of [9] for E-inversive E-semi-
groups. Denote by v the least matrix congruence on a semigroup S. It is clear
that the interval [¢), S x S] consists of all matrix congruences on S and it is a
complete sublattice of the lattice of all congruences on S. Denote it by MC(S5).
Moreover, if S is an E-semigroup, then the symbol MC(Eg) means the complete
lattice of matrix congruences on Eg.

For terminology and elementary facts about lattices the reader is referred to
the book [14] (Section I1.2). The following result will be useful (see Lemma I1.2.8
and Exercise 1.2.15 (iii) in [14]):

Lemma 2.9. If ¢ is an order isomorphism of a lattice L onto a lattice M, then ¢
is a lattice isomorphism. Moreover, every lattice ismomorhism of complete lattices
18 a complete lattice isomorphism. [

In particular, the following theorem is valid (see Theorems 2.5, 2.6 and Corol-
lary 2.7 in [9]):

Theorem 2.10. Let S be an E-inversive E-semigroup. Suppose also that the least
matriz congruence on Eg can be extended to a matriz congruence on S. Then each
matriz congruence on Eg can be extended uniquely to a matriz congruence on S.
In fact, if it is the case, then for any matriz congruence pg on Eg, the relation p
defined on S by:

(a,b) € p = (Fe, f€Es) (ave)pp(fb)

is the unique matrix congruence on S which extends pg. Thus there is an inclusion-
preserving bijection 0 between the lattice MC(S) and the lattice MC(Eg). In fact,
0 is defined by:

0:p—trp

for every p € MC(S). Furthermore, 6= is an inclusion-preserving bijection, too
(by the proof of the second part of Corollary 2.7), so 0 is an order isomorphism of
the lattice MC(S) onto the lattice MC(Es). Consequently, 0 is a complete lattice
isomorphism between the complete lattices MC(S) and MC(Eg), respectively.
Also, p is a matriz congruence on an E-inversive E-semigroup S if and only if
trp is a matriz congruence on Eg and every p-class of S contains some idempotent

of S. O
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Clearly, every semigroup S is an ideal (of S) and so S is a bi-ideal. Also, if A
is a left, [right or bi-] ideal of S, a € A, then the principle left [right or bi-] ideal of
S containing a is contained in A. Thus by Proposition 2.1 and Corollary 2.3 we
obtain the following:

Corollary 2.11. Let S be a semigroup. The following conditions are equivalent:
(1) S is E-inversive;
(ii) every left [right] (principle) ideal of S contains some idempotent of S,
(#i1) every (principle) ideal of S contains some idempotent of S

<

(iv) every (principle) quasi ideal of S contains some idempotent of S;
(v) every (principle) bi-ideal of S contains some idempotent of S;
(vi

(vit) every (principle) quasi ideal of S is E-inversive;

(viii) every (principle) left [right] ideal of S is E-inversive;

)

) )

) ( )

) ( )

) every (principle) bi-deal of S is E-inversive;
) ( )

) ( )

) ( )

(ixz) every (principle) ideal of S is E-inversive. O

Proposition 2.12. Every E-inversive semigroup S is an M-semigroup. In fact,

M(e, f) = fW(ef)e
foralle, f € Eg.

Proof. Let g € M(e, f), where e, f € Eg. Then g = fge. Also, gefg = gg = g and
so g € W(ef). Consequently, g € fW(ef)e.

Conversely, if g = fze for some z € W(ef), then gg = f(zefx)e = fze = g.
Hence g € Eg. Clearly, g = ge = fg. Thus g € M (e, f), as required. O

Remark 2.13. The free monoids are M-semigroups but they are not F-inversive.
Note that in [4] Edwards shows that eventually regular semigroups are M-semi-
groups and gives an example of an M-biordered set which does not arise from
eventually regular semigroups.

In the following three results are presented some connections between bi-ideals
of an F-inversive semigroup S and order bi-ideals, bi-order ideals of the biordered
set Eg.

Proposition 2.14. Let S be an R-semigroup. Then F is an order bi-ideal of Eg
if and only if F is a biorder ideal of Eg.

Proof. Let F be an order bi-ideal of Eg. Then S(g,h) C M(g,h) C F for every
g,h € F,s0 S(g,h) N F = S(g,h) # 0, since S is an R-semigroup (Lemma 1.1).
Also, if e € Eg, then for every f € F such that e < f (i.e., e = ef = fe) we have
e € W(f). Consequently, e = fef € fW(ff)f = M(f,f) C F. Therefore F is a
biorder ideal of Eg.

The proof of the opposite implication is similar to the proof of Theorem 1 [1]
and is omitted. O
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Lemma 2.15. Let B be a bi-ideal of an E-inversive semigroup S. Then Ep is an
order bi-ideal of Es.

Proof. Let B be a bi-ideal of S,g,h € Eg,e € M(g,h). Then e = hxg for some
x € W(gh) (Proposition 2.12), so e € BSB C Bi.e., e € Eg. Thus M(g,h) C Eg
for all g,h € Ep. Consequently, Eg is an order bi-ideal of Eg. O

The following theorem generalizes Theorem 2 [1].

Theorem 2.16. Let S be an E-inversive semigroup and B be a bi-ideal of S.
Then Eg is an order bi-ideal of Eg. Also, A= EgSEpg is an E-inversive bi-ideal
of S such that E4 = Epg.

Conversely, if F is an order bi-ideal of Eg, then B = FSF is an E-inversive
bi-ideal of S such that Fg = F.

Proof. Indeed, Ep is an order bi-ideal of Eg. It is clear that A is a bi-ideal of .S
and so A is E-inversive (Corollary 2.3). Also, F4 = Ep, since BSB C B.
We may show in a similar way the second part of the theorem. O

Finally, we show that every M-biordered set F arises from some FE-inversive
semigroup. Firstly, we have need the following important Easdown’s Theorem:

Theorem 2.17. (Corollary from Theorem 3.3 [3]) Every biordered set comes from
some semigroup. O

We say that an element a of a semigroup is E-inversive if W(a) # 0.
The following theorem is the main result of the paper.

Theorem 2.18. Each M -biordered set E arises from some E-inversive semigroup.

Proof. Let E be an M-biordered set. By Easdown’s Theorem there exists some
semigroup S with Fg = E. Since Eg is M-biordered, then M (e, f) is nonempty for
all e, f € FEg, so by Proposition 2.12, W(ef) # () for all e, f € Es. We show that
the set T (say) of all E-inversive elements of S forms an E-inversive subsemigroup
of S. Clearly, Es C T and so T # (). Moreover, if W(a), W(b) are nonempty,
then za,by € Eg for some z,y € S. Thus W(zaby) # 0 and so s = swabys for
some s € S. It follows that ysx = ysz(ab)ysxz. Therefore W (ab) # 0. We conclude
that E is the set of idempotents of an E-inversive semigroup T (since if ¢t € T' and
z€W(t)in S, then z € Reg(S) CT,sox € W(t)in T). O

Remark 2.19. A biordered set E is called regular if S(e, f) # () for all e, f € E.
By Hall’s result, Easdown’s Theorem and Lemma 1.1 we obtain Nambooripad’s

Theorem [13]:

Theorem 2.20. Every reqular biordered set comes from some reqular semigroup.
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