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Some results on E-inversive semigroups

Roman S. Gigo«

Abstract. In the paper we study E-inversive semigroups. We show that E-inversive semigroups
are M -semigroups and we prove that M -biordered sets arise from E-inversive semigroups. More-
over, some connections between bi-ideals of an E-inversive semigroup S and bi-order ideals, order
bi-ideals of the biordered set ES of S are given. Further, some results of Janet Mills concerning
matrix congruences on orthodox semigroups are generalized to E-inversive E-semigroups. Also,
we prove that the class of all E-inversive semigroups is structurally closed.

1. Introduction and preliminaries

In the paper we present some results on E-inversive semigroups. The main result
of this article is Theorem 2.18 i.e. we show that everyM -biordered set arises from
some E-inversive semigroup. Our proof of this result is quite simple. Proving this
result we used the characterization of the M -set of a semigroup (see Prop. 2.12)
and an important Easdown's result (that is, every biordered set comes from some
semigroup). Moreover, we can show in a similar way Nambooripad's Theorem
(i.e., each regular biordered set comes from some regular semigroup). The proofs
of this result were more complicated, see [2, 13]. Also, some equivalent conditions
for a semigroup to be E-inversive are given (Corollaries 2.4, 2.11). Further, some
connections between bi-ideals of an E-inversive semigroup S and order bi-ideals,
bi-order ideals of the biordered set ES are presented in this work (see Prop. 2.14
and Th. 2.16). Moreover, we give some remarks concerning matrix congruences on
E-inversive (E-)semigroups (see Cor. 2.7 and Th. 2.10). Finally, we prove that the
class of E-inversive semigroups is structurally closed (Cor. 2.6).

Let S be a semigroup, a ∈ S. The set W (a) = {x ∈ S : x = xax} is called
the set of all weak inverses of a, and so the elements of W (a) will be called weak

inverse elements of a. A semigroup S is called E-inversive i� for every a ∈ S there
exists x ∈ S such that ax ∈ ES , where ES (or brie�y E) is the set of idempotents
of S (more generally, if A ⊆ S, then EA denotes the set of all idempotents of A).
It is easy to see that a semigroup S is E-inversive if and only if W (a) is nonempty
for all a ∈ S. Hence if S is E-inversive, then for every a ∈ S there is x ∈ S such
that ax, xa ∈ ES (see [10, 11]).

Further, by Reg(S) we shall mean the set of regular elements of S (an element
a of S is called regular if a ∈ aSa) and by V (a) = {x ∈ S : a = axa, x = xax} the
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set of all inverse elements of a. It is well known that an element a of S is regular
i� V (a) 6= ∅, so a semigroup S is regular i� V (a) 6= ∅ for every a ∈ S [6]. Finally,
a semigroup S is said to be eventually regular if every element of S has a regular
power [4]. Clearly, eventually regular semigroups are E-inversive.

In [5] Hall observed that the set Reg(S) of a semigroup S with ES 6= ∅ forms a
regular subsemigroup of S i� the product of any two idempotents of S is regular.
In that case, S is said to be an R-semigroup. Also, we say that S is an E-semigroup

if ES
2 ⊆ ES .

A subsemigroup B of a semigroup S is said to be a bi-ideal of S if BSB ⊆ B.
It is clear that there exists the least bi-ideal (X) containing a nonempty subset X
of S. One can easily seen that (X) is of the form: X ∪X2 ∪XSX [1].

A nonempty subset A of a semigroup S is called a quasi ideal i� AS∩SA ⊆ A.
Note that every quasi ideal A of S is a bi-ideal of S and each one-sided ideal of S is
a quasi ideal of S, so it is a bi-ideal of S. If ∅ 6= C ⊆ S, then (C ∪SC)∩ (C ∪CS)
is the smallest quasi ideal of S containing C.

Each subsemigroup eSe of a semigroup S, where e ∈ ES , will be called a local

subsemigroup of S. Furthermore, we say that a semigroup S with ES 6= ∅ is locally
E-inversive i� every local subsemigroup of S is E-inversive.

By a rectangular band we shell mean a semigroupM with the property aba = a
for all a, b ∈M . Note that in that case, M = EM . Also, we say that a congruence
ρ on a semigroup S is a matrix congruence if S/ρ is a rectangular band [9].

Some background material on biordered sets will be useful. For a de�nition of
a biordered set, its related axioms and concepts see [13, 3, 2]. Let S be a semigroup
with ES = E 6= ∅. De�ne

ωl = {(e, f) ∈ E × E : ef = e}, ωr = {(e, f) ∈ E × E : fe = e},

6= ωl ∩ ωr, L = ωl ∩ (ωl)−1, R = ωr ∩ (ωr)−1,

DE = {(e, f) ∈ E × E : ef = e or ef = f or fe = e or fe = f}.

Then the partial algebra E with domain DE is a biordered set, Th. 1.1 (a1) [13].
It is easy to see that the relation 6 is the natural partial order on the set E, and
if e, f ∈ E, then (e, f) ∈ L [R] i� (e, f) ∈ L [R] (in a semigroup S), where L,R
are Green's relations on S. Furthermore, the relations ωl and ωr are quasi-orders
on E. For ρ = ωl or ρ = ωr and any e ∈ E, we put ρ(e) = {g ∈ E : (g, e) ∈ ρ}.

Let E be a biordered set and e, f ∈ E. We de�ne the M-set M(e, f) of e, f by
M(e, f) = ωl(e) ∩ ωr(f) = {g ∈ E : g = ge = fg}. Also, de�ne the sandwich-set

S(e, f) of e, f [13] by

S(e, f) = {g ∈M(e, f) : (∀h ∈M(e, f)) (eh, eg) ∈ ωr, (hf, gf) ∈ ωl}.

Moreover, we de�ne E to be an M-biordered set i� M(e, f) 6= ∅ for all e, f ∈ E.
Let S be a semigroup with ES 6= ∅. We say that S is an M-semigroup if ES is
an M -biordered set. Finally, a subset F of ES is called an order bi-ideal of ES i�
M(e, f) ⊆ F for all e, f ∈ F .
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The following result is probably known:

Lemma 1.1. Let S be an R-semigroup, e, f ∈ ES . Then:

S(e, f) = {g ∈M(e, f) : egf = ef} = {g ∈M(e, f) : g ∈ V (ef)} = fV (ef)e.

Proof. Denote the above four sets by A, B, C and D, respectively.
If g ∈ B, then fge = g, so efgef = egf = ef, gefg = gg = g i.e., g ∈ V (ef).

Thus B ⊂ C.
If g ∈ C, then g = fge and g ∈ V (ef). Hence g ∈ fV (ef)e. Thus C ⊂ D.
Let g = fxe for some x ∈ V (ef). Then clearly g ∈ M(e, f). If h ∈ M(e, f)

(i.e. fh = h = he), then (eg)(eh) = efxeeh = efxe(fh) = (efxef)h = efh = eh.
Thus (eh, eg) ∈ ωr, and similarly (hf, gf) ∈ ωl, so g ∈ A. Consequently, D ⊂ A.

Finally, let g ∈ A, x ∈ V (ef). Then fxe ∈ D ⊂ A. In particular, eg R efxe
(by the de�nition of A). Hence

egf = e(ge)f = (eg)(ef) = eg(efxef) = (eg · efxe)f = efxef = ef.

Thus g ∈ B, as exactly required.

Let S be an R-semigroup. A subset F of ES is called a biorder ideal if and
only if the following two conditions hold:

(i) (∀e ∈ ES , f ∈ F ) e 6 f =⇒ e ∈ F ;
(ii) (∀e, f ∈ F ) S(e, f) ∩ F 6= ∅.

2. The main results

Proposition 2.1. Let S be a semigroup. The following conditions are equivalent :
(i) S is E-inversive;
(ii) every bi-ideal of S contains some idempotent of S;
(iii) every quasi ideal of S contains some idempotent of S;
(iv) every ideal of S contains some idempotent of S.

Proof. (i) =⇒ (ii). Let B be a bi-ideal of S, b ∈ B and x ∈W (b2). Then x = xbbx.
Hence (bxb)2 = b(xbbx)b = bxb ∈ BSB ⊆ B. Thus bxb ∈ EB .

(ii) =⇒ (iii) =⇒ (iv). This is evident.
(iv) =⇒ (i). Let a ∈ S. By assumption SaS has at least one idempotent, that

is, xay = e for some x, y ∈ S, e ∈ ES , so exaye = e. Hence yexayex = yex. Thus
yex ∈W (a).

Lemma 2.2. Every E-inversive semigroup S is locally E-inversive.

Proof. Let a ∈ eSe, where e ∈ ES , x ∈W (a). Then x = xax = x(eae)x. It follows
that exe = (exe)a(exe). Thus exe ∈W (a) in eSe, as exactly required.

Corollary 2.3. Every bi-ideal of an E-inversive semigroup S is E-inversive.
Hence a semigroup S is E-inversive if and only if every bi-ideal of S is E-inversive.
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Proof. Let B be a bi-ideal of S and b ∈ B. By Proposition 2.1, B contains some
idempotent of S, say e. By Lemma 2.2, eSe ∈ BSB ⊆ B is E-inversive and so
(ebe)y ∈ EeSe for some y ∈ eSe. Hence (eb)(ey) ∈ EeSe, say (eb)(ey) = f , where
ey ∈ e(eSe) = eSe. Therefore f(eb)eyf = f , so eyf(eb)eyf = eyf . We conclude
that there exists x ∈ W (eb) in B (for example: x = (ey)f ∈ (eSe)(eSe) ⊆ B), so
x = xebx. Thus (xe)b(xe) = xe and xe ∈ Be ⊆ B. Consequently, B is E-inversive
(remark that even xe = eyfe ∈ eSe).

Let a semigroup S (with ES 6= ∅) be locally E-inversive, b ∈ S and e ∈ ES .
Consider the least bi-ideal, say B, of S containing the set {e, b}. Note that (e) ⊆ B
i.e., eSe ⊆ B. From the proof of Corollary 2.3 and from Lemma 2.2 we obtain:

Corollary 2.4. A semigroup is E-inversive if and only if it is locally E-inversive.

In [7] S. Kopamu de�ned a countable family of congruences on a semigroup S,
as follows: for each ordered pair of non-negative integers (m,n), he put:

θm,n = {(a, b) ∈ S × S : (∀x ∈ Sm, y ∈ Sn) xay = xby},

and he made the convention that S1 = S and S0 denotes the set containing the
empty word. In particular, θ0,0 is the identity relation on S. Let C be a class of
semigroups of the same type T (for example: the class of E-inversive semigroups);
call its elements C-semigroups. A semigroup S is called a structurally C-semigroup

if S/θm,n ∈ C for some integers m,n ≥ 0. Further, denote by SC the class of all
structurally C-semigroups. It is clear that C ⊆ SC. Finally, we say that the class
C is structurally closed if C = SC [8].

Lemma 2.5. Every structurally E-inversive semigroup is locally E-inversive.

Proof. Let S be a structurally E-inversive semigroup, say S/θm,n is E-inversive;
a ∈ eSe, where e ∈ ES . Since the class of E-inversive semigroups is closed under
homomorphic images, then we may suppose that m, n are both positive integers.
Moreover, a = eae, (x, xax) ∈ θm,n for some x ∈ S. Hence emxen = emxaxen, that
is, exe = exaxe = ex(eae)xe and so exe = (exe)a(exe). Therefore exe ∈ W (a) in
the semigroup eSe. Consequently, S is locally E-inversive.

Combining the above lemma with Corollary 2.4 we obtain the following:

Corollary 2.6. The class of all E-inversive semigroups is structurally closed.

By the trace trρ of a congruence ρ on a semigroup S we mean ρ ∩ (ES ×ES).

Corollary 2.7. If ρ is a matrix congruence on an E-inversive semigroup S, then
every ρ-class of S is E-inversive.

Moreover, every matrix congruence on an E-inversive semigroup is uniquely

determined by its trace.
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Proof. The �rst part follows from Corollary 2.3 and the following easy observation:
if A is any ρ-class of S, where ρ is a matrix congruence on S, then A is a bi-ideal.

We show the second part. Let ρ1, ρ2 be matrix congruences on an E-inversive
semigroup S, trρ1 ⊂ trρ2, e ∈ ES . If a ∈ eρ1, then there exists x ∈ W (a) in eρ1.
Hence ax(trρ1)e(trρ1)xa and so ax(trρ2)e(trρ2)xa. Therefore we get a ρ2 axxa ρ2 e
i.e., a ∈ eρ2. Thus ρ1 ⊂ ρ2. Consequently, if trρ1 = trρ2, then ρ1 = ρ2.

Remark 2.8. The second part of the above corollary generalizes Theorem 2.1 [9].
One can modify all results of J. Mills in Section 2 of [9] for E-inversive E-semi-
groups. Denote by ψ the least matrix congruence on a semigroup S. It is clear
that the interval [ψ, S × S] consists of all matrix congruences on S and it is a
complete sublattice of the lattice of all congruences on S. Denote it by MC(S).
Moreover, if S is an E-semigroup, then the symbol MC(ES) means the complete
lattice of matrix congruences on ES .

For terminology and elementary facts about lattices the reader is referred to
the book [14] (Section I.2). The following result will be useful (see Lemma I.2.8
and Exercise I.2.15 (iii) in [14]):

Lemma 2.9. If ϕ is an order isomorphism of a lattice L onto a lattice M , then ϕ
is a lattice isomorphism. Moreover, every lattice ismomorhism of complete lattices

is a complete lattice isomorphism.

In particular, the following theorem is valid (see Theorems 2.5, 2.6 and Corol-
lary 2.7 in [9]):

Theorem 2.10. Let S be an E-inversive E-semigroup. Suppose also that the least

matrix congruence on ES can be extended to a matrix congruence on S. Then each

matrix congruence on ES can be extended uniquely to a matrix congruence on S.
In fact, if it is the case, then for any matrix congruence ρE on ES, the relation ρ
de�ned on S by :

(a, b) ∈ ρ ⇐⇒ (∃ e, f ∈ES) (aψe)ρE(fψb)

is the unique matrix congruence on S which extends ρE . Thus there is an inclusion-

preserving bijection θ between the lattice MC(S) and the lattice MC(ES). In fact,

θ is de�ned by:

θ : ρ→ trρ

for every ρ ∈ MC(S). Furthermore, θ−1 is an inclusion-preserving bijection, too

(by the proof of the second part of Corollary 2.7), so θ is an order isomorphism of

the lattice MC(S) onto the lattice MC(ES). Consequently, θ is a complete lattice

isomorphism between the complete lattices MC(S) and MC(ES), respectively.
Also, ρ is a matrix congruence on an E-inversive E-semigroup S if and only if

trρ is a matrix congruence on ES and every ρ-class of S contains some idempotent

of S.
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Clearly, every semigroup S is an ideal (of S) and so S is a bi-ideal. Also, if A
is a left [right or bi-] ideal of S, a ∈ A, then the principle left [right or bi-] ideal of
S containing a is contained in A. Thus by Proposition 2.1 and Corollary 2.3 we
obtain the following:

Corollary 2.11. Let S be a semigroup. The following conditions are equivalent :
(i) S is E-inversive;

(ii) every left [right ] (principle) ideal of S contains some idempotent of S;
(iii) every (principle) ideal of S contains some idempotent of S;
(iv) every (principle) quasi ideal of S contains some idempotent of S ;
(v) every (principle) bi-ideal of S contains some idempotent of S ;

(vi) every (principle) bi-deal of S is E-inversive;
(vii) every (principle) quasi ideal of S is E-inversive;

(viii) every (principle) left [right ] ideal of S is E-inversive;
(ix) every (principle) ideal of S is E-inversive.

Proposition 2.12. Every E-inversive semigroup S is an M-semigroup. In fact,

M(e, f) = fW (ef)e

for all e, f ∈ ES .

Proof. Let g ∈M(e, f), where e, f ∈ ES . Then g = fge. Also, gefg = gg = g and
so g ∈W (ef). Consequently, g ∈ fW (ef)e.

Conversely, if g = fxe for some x ∈ W (ef), then gg = f(xefx)e = fxe = g.
Hence g ∈ ES . Clearly, g = ge = fg. Thus g ∈M(e, f), as required.

Remark 2.13. The free monoids areM -semigroups but they are not E-inversive.
Note that in [4] Edwards shows that eventually regular semigroups are M -semi-
groups and gives an example of an M -biordered set which does not arise from
eventually regular semigroups.

In the following three results are presented some connections between bi-ideals
of an E-inversive semigroup S and order bi-ideals, bi-order ideals of the biordered
set ES .

Proposition 2.14. Let S be an R-semigroup. Then F is an order bi-ideal of ES

if and only if F is a biorder ideal of ES.

Proof. Let F be an order bi-ideal of ES . Then S(g, h) ⊆ M(g, h) ⊆ F for every
g, h ∈ F , so S(g, h) ∩ F = S(g, h) 6= ∅, since S is an R-semigroup (Lemma 1.1).
Also, if e ∈ ES , then for every f ∈ F such that e 6 f (i.e., e = ef = fe) we have
e ∈ W (f). Consequently, e = fef ∈ fW (ff)f = M(f, f) ⊆ F . Therefore F is a
biorder ideal of ES .

The proof of the opposite implication is similar to the proof of Theorem 1 [1]
and is omitted.
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Lemma 2.15. Let B be a bi-ideal of an E-inversive semigroup S. Then EB is an

order bi-ideal of ES.

Proof. Let B be a bi-ideal of S, g, h ∈ EB , e ∈ M(g, h). Then e = hxg for some
x ∈W (gh) (Proposition 2.12), so e ∈ BSB ⊆ B i.e., e ∈ EB . Thus M(g, h) ⊆ EB

for all g, h ∈ EB . Consequently, EB is an order bi-ideal of ES .

The following theorem generalizes Theorem 2 [1].

Theorem 2.16. Let S be an E-inversive semigroup and B be a bi-ideal of S.
Then EB is an order bi-ideal of ES. Also, A = EBSEB is an E-inversive bi-ideal

of S such that EA = EB .

Conversely, if F is an order bi-ideal of ES, then B = FSF is an E-inversive
bi-ideal of S such that EB = F .

Proof. Indeed, EB is an order bi-ideal of ES . It is clear that A is a bi-ideal of S
and so A is E-inversive (Corollary 2.3). Also, EA = EB , since BSB ⊆ B.

We may show in a similar way the second part of the theorem.

Finally, we show that every M -biordered set E arises from some E-inversive
semigroup. Firstly, we have need the following important Easdown's Theorem:

Theorem 2.17. (Corollary from Theorem 3.3 [3]) Every biordered set comes from

some semigroup.

We say that an element a of a semigroup is E-inversive if W (a) 6= ∅.
The following theorem is the main result of the paper.

Theorem 2.18. EachM -biordered set E arises from some E-inversive semigroup.

Proof. Let E be an M -biordered set. By Easdown's Theorem there exists some
semigroup S with ES = E. Since ES isM -biordered, thenM(e, f) is nonempty for
all e, f ∈ ES , so by Proposition 2.12, W (ef) 6= ∅ for all e, f ∈ ES . We show that
the set T (say) of all E-inversive elements of S forms an E-inversive subsemigroup
of S. Clearly, ES ⊂ T and so T 6= ∅. Moreover, if W (a),W (b) are nonempty,
then xa, by ∈ ES for some x, y ∈ S. Thus W (xaby) 6= ∅ and so s = sxabys for
some s ∈ S. It follows that ysx = ysx(ab)ysx. Therefore W (ab) 6= ∅. We conclude
that E is the set of idempotents of an E-inversive semigroup T (since if t ∈ T and
x ∈W (t) in S, then x ∈ Reg(S) ⊂ T , so x ∈W (t) in T ).

Remark 2.19. A biordered set E is called regular if S(e, f) 6= ∅ for all e, f ∈ E.
By Hall's result, Easdown's Theorem and Lemma 1.1 we obtain Nambooripad's
Theorem [13]:

Theorem 2.20. Every regular biordered set comes from some regular semigroup.
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