Some results on *E*-inversive semigroups

Roman S. Gigoń

Abstract. In the paper we study *E*-inversive semigroups. We show that *E*-inversive semigroups are *M*-semigroups and we prove that *M*-biordered sets arise from *E*-inversive semigroups. Moreover, some connections between bi-ideals of an *E*-inversive semigroup *S* and bi-order ideals, order bi-ideals of the biordered set E_S of *S* are given. Further, some results of Janet Mills concerning matrix congruences on orthodox semigroups are generalized to *E*-inversive *E*-semigroups. Also, we prove that the class of all *E*-inversive semigroups is structurally closed.

1. Introduction and preliminaries

In the paper we present some results on E-inversive semigroups. The main result of this article is Theorem 2.18 i.e. we show that every M-biordered set arises from some E-inversive semigroup. Our proof of this result is quite simple. Proving this result we used the characterization of the M-set of a semigroup (see Prop. 2.12) and an important Easdown's result (that is, every biordered set comes from some semigroup). Moreover, we can show in a similar way Nambooripad's Theorem (i.e., each regular biordered set comes from some regular semigroup). The proofs of this result were more complicated, see [2, 13]. Also, some equivalent conditions for a semigroup to be E-inversive are given (Corollaries 2.4, 2.11). Further, some connections between bi-ideals of an E-inversive semigroup S and order bi-ideals, bi-order ideals of the biordered set E_S are presented in this work (see Prop. 2.14 and Th. 2.16). Moreover, we give some remarks concerning matrix congruences on E-inversive (E-)semigroups (see Cor. 2.7 and Th. 2.10). Finally, we prove that the class of E-inversive semigroups is structurally closed (Cor. 2.6).

Let S be a semigroup, $a \in S$. The set $W(a) = \{x \in S : x = xax\}$ is called the set of all *weak inverses* of a, and so the elements of W(a) will be called *weak inverse elements* of a. A semigroup S is called *E-inversive* iff for every $a \in S$ there exists $x \in S$ such that $ax \in E_S$, where E_S (or briefly E) is the set of idempotents of S (more generally, if $A \subseteq S$, then E_A denotes the set of all idempotents of A). It is easy to see that a semigroup S is *E*-inversive if and only if W(a) is nonempty for all $a \in S$. Hence if S is *E*-inversive, then for every $a \in S$ there is $x \in S$ such that $ax, xa \in E_S$ (see [10, 11]).

Further, by Reg(S) we shall mean the set of *regular elements* of S (an element a of S is called *regular* if $a \in aSa$) and by $V(a) = \{x \in S : a = axa, x = xax\}$ the

²⁰¹⁰ Mathematics Subject Classification: 20M10, 20M12

Keywords: E-inversive semigroup, M-semigroup, bi-ideal, matrix congruence.

R. S. Gigoń

set of all *inverse elements* of a. It is well known that an element a of S is regular iff $V(a) \neq \emptyset$, so a semigroup S is regular iff $V(a) \neq \emptyset$ for every $a \in S$ [6]. Finally, a semigroup S is said to be *eventually regular* if every element of S has a regular power [4]. Clearly, eventually regular semigroups are E-inversive.

In [5] Hall observed that the set Reg(S) of a semigroup S with $E_S \neq \emptyset$ forms a regular subsemigroup of S iff the product of any two idempotents of S is regular. In that case, S is said to be an *R*-semigroup. Also, we say that S is an *E*-semigroup if $E_S^2 \subseteq E_S$.

A subsemigroup B of a semigroup S is said to be a *bi-ideal* of S if $BSB \subseteq B$. It is clear that there exists the least bi-ideal (X) containing a nonempty subset X of S. One can easily seen that (X) is of the form: $X \cup X^2 \cup XSX$ [1].

A nonempty subset A of a semigroup S is called a *quasi ideal* iff $AS \cap SA \subseteq A$. Note that every quasi ideal A of S is a bi-ideal of S and each one-sided ideal of S is a quasi ideal of S, so it is a bi-ideal of S. If $\emptyset \neq C \subseteq S$, then $(C \cup SC) \cap (C \cup CS)$ is the smallest quasi ideal of S containing C.

Each subsemigroup eSe of a semigroup S, where $e \in E_S$, will be called a *local* subsemigroup of S. Furthermore, we say that a semigroup S with $E_S \neq \emptyset$ is *locally* E-inversive iff every local subsemigroup of S is E-inversive.

By a rectangular band we shell mean a semigroup M with the property aba = a for all $a, b \in M$. Note that in that case, $M = E_M$. Also, we say that a congruence ρ on a semigroup S is a matrix congruence if S/ρ is a rectangular band [9].

Some background material on *biordered sets* will be useful. For a definition of a *biordered set*, its related axioms and concepts see [13, 3, 2]. Let S be a semigroup with $E_S = E \neq \emptyset$. Define

$$\omega^{l} = \{ (e, f) \in E \times E : ef = e \}, \quad \omega^{r} = \{ (e, f) \in E \times E : fe = e \},$$
$$\leqslant = \omega^{l} \cap \omega^{r}, \quad L = \omega^{l} \cap (\omega^{l})^{-1}, \quad R = \omega^{r} \cap (\omega^{r})^{-1},$$
$$D_{E} = \{ (e, f) \in E \times E : ef = e \text{ or } ef = f \text{ or } fe = e \text{ or } fe = f \}.$$

Then the partial algebra E with domain D_E is a biordered set, Th. 1.1 (a1) [13]. It is easy to see that the relation \leq is the natural partial order on the set E, and if $e, f \in E$, then $(e, f) \in L$ [R] iff $(e, f) \in \mathcal{L}$ [\mathcal{R}] (in a semigroup S), where \mathcal{L}, \mathcal{R} are Green's relations on S. Furthermore, the relations ω^l and ω^r are quasi-orders on E. For $\rho = \omega^l$ or $\rho = \omega^r$ and any $e \in E$, we put $\rho(e) = \{g \in E : (g, e) \in \rho\}$.

Let E be a biordered set and $e, f \in E$. We define the *M*-set M(e, f) of e, f by $M(e, f) = \omega^l(e) \cap \omega^r(f) = \{g \in E : g = ge = fg\}$. Also, define the sandwich-set S(e, f) of e, f [13] by

$$S(e,f) = \{g \in M(e,f) : (\forall h \in M(e,f)) \ (eh,eg) \in \omega^r, (hf,gf) \in \omega^l\}.$$

Moreover, we define E to be an *M*-biordered set iff $M(e, f) \neq \emptyset$ for all $e, f \in E$. Let S be a semigroup with $E_S \neq \emptyset$. We say that S is an *M*-semigroup if E_S is an *M*-biordered set. Finally, a subset F of E_S is called an order bi-ideal of E_S iff $M(e, f) \subseteq F$ for all $e, f \in F$. The following result is probably known:

Lemma 1.1. Let S be an R-semigroup, $e, f \in E_S$. Then:

 $S(e,f) = \{g \in M(e,f) : egf = ef\} = \{g \in M(e,f) : g \in V(ef)\} = fV(ef)e.$

Proof. Denote the above four sets by A, B, C and D, respectively.

If $g \in B$, then fge = g, so efgef = egf = ef, gefg = gg = g i.e., $g \in V(ef)$. Thus $B \subset C$.

If $g \in C$, then g = fge and $g \in V(ef)$. Hence $g \in fV(ef)e$. Thus $C \subset D$.

Let g = fxe for some $x \in V(ef)$. Then clearly $g \in M(e, f)$. If $h \in M(e, f)$ (i.e. fh = h = he), then (eg)(eh) = efxeeh = efxe(fh) = (efxef)h = efh = eh. Thus $(eh, eg) \in \omega^r$, and similarly $(hf, gf) \in \omega^l$, so $g \in A$. Consequently, $D \subset A$.

Finally, let $g \in A, x \in V(ef)$. Then $fxe \in D \subset A$. In particular, $eg \mathcal{R} efxe$ (by the definition of A). Hence

$$egf = e(ge)f = (eg)(ef) = eg(efxef) = (eg \cdot efxe)f = efxef = ef.$$

Thus $g \in B$, as exactly required.

Let S be an R-semigroup. A subset F of E_S is called a *biorder ideal* if and only if the following two conditions hold:

(i) $(\forall e \in E_S, f \in F) \ e \leqslant f \Longrightarrow e \in F;$

(*ii*) $(\forall e, f \in F) \ S(e, f) \cap F \neq \emptyset$.

2. The main results

Proposition 2.1. Let S be a semigroup. The following conditions are equivalent:

- (i) S is E-inversive;
- (ii) every bi-ideal of S contains some idempotent of S;
- (iii) every quasi ideal of S contains some idempotent of S;
- (iv) every ideal of S contains some idempotent of S.

Proof. $(i) \Longrightarrow (ii)$. Let B be a bi-ideal of $S, b \in B$ and $x \in W(b^2)$. Then x = xbbx. Hence $(bxb)^2 = b(xbbx)b = bxb \in BSB \subseteq B$. Thus $bxb \in E_B$.

 $(ii) \Longrightarrow (iii) \Longrightarrow (iv)$. This is evident.

 $(iv) \Longrightarrow (i)$. Let $a \in S$. By assumption SaS has at least one idempotent, that is, xay = e for some $x, y \in S$, $e \in E_S$, so exaye = e. Hence yexayex = yex. Thus $yex \in W(a)$.

Lemma 2.2. Every E-inversive semigroup S is locally E-inversive.

Proof. Let $a \in eSe$, where $e \in E_S$, $x \in W(a)$. Then x = xax = x(eae)x. It follows that exe = (exe)a(exe). Thus $exe \in W(a)$ in eSe, as exactly required. \Box

Corollary 2.3. Every bi-ideal of an E-inversive semigroup S is E-inversive. Hence a semigroup S is E-inversive if and only if every bi-ideal of S is E-inversive. Proof. Let B be a bi-ideal of S and $b \in B$. By Proposition 2.1, B contains some idempotent of S, say e. By Lemma 2.2, $eSe \in BSB \subseteq B$ is E-inversive and so $(ebe)y \in E_{eSe}$ for some $y \in eSe$. Hence $(eb)(ey) \in E_{eSe}$, say (eb)(ey) = f, where $ey \in e(eSe) = eSe$. Therefore f(eb)eyf = f, so eyf(eb)eyf = eyf. We conclude that there exists $x \in W(eb)$ in B (for example: $x = (ey)f \in (eSe)(eSe) \subseteq B$), so x = xebx. Thus (xe)b(xe) = xe and $xe \in Be \subseteq B$. Consequently, B is E-inversive (remark that even $xe = eyfe \in eSe$).

Let a semigroup S (with $E_S \neq \emptyset$) be locally E-inversive, $b \in S$ and $e \in E_S$. Consider the least bi-ideal, say B, of S containing the set $\{e, b\}$. Note that $(e) \subseteq B$ i.e., $eSe \subseteq B$. From the proof of Corollary 2.3 and from Lemma 2.2 we obtain:

Corollary 2.4. A semigroup is E-inversive if and only if it is locally E-inversive.

In [7] S. Kopamu defined a countable family of congruences on a semigroup S, as follows: for each ordered pair of non-negative integers (m, n), he put:

 $\theta_{m,n} = \{(a,b) \in S \times S : (\forall x \in S^m, y \in S^n) \ xay = xby\},\$

and he made the convention that $S^1 = S$ and S^0 denotes the set containing the empty word. In particular, $\theta_{0,0}$ is the identity relation on S. Let C be a class of semigroups of the same type \mathcal{T} (for example: the class of *E*-inversive semigroups); call its elements *C*-semigroups. A semigroup S is called a structurally *C*-semigroup if $S/\theta_{m,n} \in C$ for some integers $m, n \geq 0$. Further, denote by SC the class of all structurally *C*-semigroups. It is clear that $C \subseteq SC$. Finally, we say that the class C is structurally closed if C = SC [8].

Lemma 2.5. Every structurally E-inversive semigroup is locally E-inversive.

Proof. Let S be a structurally E-inversive semigroup, say $S/\theta_{m,n}$ is E-inversive; $a \in eSe$, where $e \in E_S$. Since the class of E-inversive semigroups is closed under homomorphic images, then we may suppose that m, n are both positive integers. Moreover, $a = eae, (x, xax) \in \theta_{m,n}$ for some $x \in S$. Hence $e^m x e^n = e^m x a x e^n$, that is, exe = exaxe = ex(eae)xe and so exe = (exe)a(exe). Therefore $exe \in W(a)$ in the semigroup eSe. Consequently, S is locally E-inversive.

Combining the above lemma with Corollary 2.4 we obtain the following:

Corollary 2.6. The class of all E-inversive semigroups is structurally closed. \Box

By the trace tr ρ of a congruence ρ on a semigroup S we mean $\rho \cap (E_S \times E_S)$.

Corollary 2.7. If ρ is a matrix congruence on an *E*-inversive semigroup *S*, then every ρ -class of *S* is *E*-inversive.

Moreover, every matrix congruence on an E-inversive semigroup is uniquely determined by its trace.

Proof. The first part follows from Corollary 2.3 and the following easy observation: if A is any ρ -class of S, where ρ is a matrix congruence on S, then A is a bi-ideal.

We show the second part. Let ρ_1 , ρ_2 be matrix congruences on an *E*-inversive semigroup *S*, $\operatorname{tr}\rho_1 \subset \operatorname{tr}\rho_2$, $e \in E_S$. If $a \in e\rho_1$, then there exists $x \in W(a)$ in $e\rho_1$. Hence $ax(\operatorname{tr}\rho_1)e(\operatorname{tr}\rho_1)xa$ and so $ax(\operatorname{tr}\rho_2)e(\operatorname{tr}\rho_2)xa$. Therefore we get $a \rho_2 axxa \rho_2 e$ i.e., $a \in e\rho_2$. Thus $\rho_1 \subset \rho_2$. Consequently, if $\operatorname{tr}\rho_1 = \operatorname{tr}\rho_2$, then $\rho_1 = \rho_2$.

Remark 2.8. The second part of the above corollary generalizes Theorem 2.1 [9]. One can modify all results of J. Mills in Section 2 of [9] for *E*-inversive *E*-semigroups. Denote by ψ the least matrix congruence on a semigroup S. It is clear that the interval $[\psi, S \times S]$ consists of all matrix congruences on S and it is a complete sublattice of the lattice of all congruences on S. Denote it by $\mathcal{MC}(S)$. Moreover, if S is an *E*-semigroup, then the symbol $\mathcal{MC}(E_S)$ means the complete lattice of matrix congruences on E_S .

For terminology and elementary facts about lattices the reader is referred to the book [14] (Section I.2). The following result will be useful (see Lemma I.2.8 and Exercise I.2.15 (iii) in [14]):

Lemma 2.9. If φ is an order isomorphism of a lattice L onto a lattice M, then φ is a lattice isomorphism. Moreover, every lattice isomorphism of complete lattices is a complete lattice isomorphism.

In particular, the following theorem is valid (see Theorems 2.5, 2.6 and Corollary 2.7 in [9]):

Theorem 2.10. Let S be an E-inversive E-semigroup. Suppose also that the least matrix congruence on E_S can be extended to a matrix congruence on S. Then each matrix congruence on E_S can be extended uniquely to a matrix congruence on S. In fact, if it is the case, then for any matrix congruence ρ_E on E_S , the relation ρ defined on S by:

$$(a,b) \in \rho \iff (\exists e, f \in E_S) (a\psi e)\rho_E(f\psi b)$$

is the unique matrix congruence on S which extends ρ_E . Thus there is an inclusionpreserving bijection θ between the lattice $\mathcal{MC}(S)$ and the lattice $\mathcal{MC}(E_S)$. In fact, θ is defined by:

$$\theta: \rho \to tr\rho$$

for every $\rho \in \mathcal{MC}(S)$. Furthermore, θ^{-1} is an inclusion-preserving bijection, too (by the proof of the second part of Corollary 2.7), so θ is an order isomorphism of the lattice $\mathcal{MC}(S)$ onto the lattice $\mathcal{MC}(E_S)$. Consequently, θ is a complete lattice isomorphism between the complete lattices $\mathcal{MC}(S)$ and $\mathcal{MC}(E_S)$, respectively.

Also, ρ is a matrix congruence on an E-inversive E-semigroup S if and only if tr ρ is a matrix congruence on E_S and every ρ -class of S contains some idempotent of S.

Clearly, every semigroup S is an ideal (of S) and so S is a bi-ideal. Also, if A is a left [right or bi-] ideal of S, $a \in A$, then the principle left [right or bi-] ideal of S containing a is contained in A. Thus by Proposition 2.1 and Corollary 2.3 we obtain the following:

Corollary 2.11. Let S be a semigroup. The following conditions are equivalent: (i) S is E-inversive;

- (ii) every left [right] (principle) ideal of S contains some idempotent of S;
- (iii) every (principle) ideal of S contains some idempotent of S:
- (iv) every (principle) quasi ideal of S contains some idempotent of S;
- (v) every (principle) bi-ideal of S contains some idempotent of S;
- (vi) every (principle) bi-deal of S is E-inversive;
- (vii) every (principle) quasi ideal of S is E-inversive;
- (viii) every (principle) left [right] ideal of S is E-inversive;
- (ix) every (principle) ideal of S is E-inversive.

Proposition 2.12. Every E-inversive semigroup S is an M-semigroup. In fact,

$$M(e,f) = fW(ef)e$$

for all $e, f \in E_S$.

Proof. Let $g \in M(e, f)$, where $e, f \in E_S$. Then g = fge. Also, gefg = gg = g and so $g \in W(ef)$. Consequently, $g \in fW(ef)e$.

Conversely, if g = fxe for some $x \in W(ef)$, then gg = f(xefx)e = fxe = g. Hence $g \in E_S$. Clearly, g = ge = fg. Thus $g \in M(e, f)$, as required. \Box

Remark 2.13. The free monoids are *M*-semigroups but they are not *E*-inversive. Note that in [4] Edwards shows that eventually regular semigroups are *M*-semigroups and gives an example of an *M*-biordered set which does not arise from eventually regular semigroups.

In the following three results are presented some connections between bi-ideals of an E-inversive semigroup S and order bi-ideals, bi-order ideals of the biordered set E_S .

Proposition 2.14. Let S be an R-semigroup. Then F is an order bi-ideal of E_S if and only if F is a biorder ideal of E_S .

Proof. Let F be an order bi-ideal of E_S . Then $S(g,h) \subseteq M(g,h) \subseteq F$ for every $g,h \in F$, so $S(g,h) \cap F = S(g,h) \neq \emptyset$, since S is an R-semigroup (Lemma 1.1). Also, if $e \in E_S$, then for every $f \in F$ such that $e \leq f$ (i.e., e = ef = fe) we have $e \in W(f)$. Consequently, $e = fef \in fW(ff)f = M(f,f) \subseteq F$. Therefore F is a biorder ideal of E_S .

The proof of the opposite implication is similar to the proof of Theorem 1 [1] and is omitted. $\hfill \Box$

Lemma 2.15. Let B be a bi-ideal of an E-inversive semigroup S. Then E_B is an order bi-ideal of E_S .

Proof. Let B be a bi-ideal of $S, g, h \in E_B, e \in M(g, h)$. Then e = hxg for some $x \in W(gh)$ (Proposition 2.12), so $e \in BSB \subseteq B$ i.e., $e \in E_B$. Thus $M(g, h) \subseteq E_B$ for all $g, h \in E_B$. Consequently, E_B is an order bi-ideal of E_S .

The following theorem generalizes Theorem 2 [1].

Theorem 2.16. Let S be an E-inversive semigroup and B be a bi-ideal of S. Then E_B is an order bi-ideal of E_S . Also, $A = E_B S E_B$ is an E-inversive bi-ideal of S such that $E_A = E_B$.

Conversely, if F is an order bi-ideal of E_S , then B = FSF is an E-inversive bi-ideal of S such that $E_B = F$.

Proof. Indeed, E_B is an order bi-ideal of E_S . It is clear that A is a bi-ideal of S and so A is E-inversive (Corollary 2.3). Also, $E_A = E_B$, since $BSB \subseteq B$.

We may show in a similar way the second part of the theorem. \Box

Finally, we show that every M-biordered set E arises from some E-inversive semigroup. Firstly, we have need the following important Easdown's Theorem:

Theorem 2.17. (Corollary from Theorem 3.3 [3]) Every biordered set comes from some semigroup. \Box

We say that an element a of a semigroup is *E*-inversive if $W(a) \neq \emptyset$. The following theorem is the main result of the paper.

Theorem 2.18. Each M-biordered set E arises from some E-inversive semigroup.

Proof. Let E be an M-biordered set. By Easdown's Theorem there exists some semigroup S with $E_S = E$. Since E_S is M-biordered, then M(e, f) is nonempty for all $e, f \in E_S$, so by Proposition 2.12, $W(ef) \neq \emptyset$ for all $e, f \in E_S$. We show that the set T (say) of all E-inversive elements of S forms an E-inversive subsemigroup of S. Clearly, $E_S \subset T$ and so $T \neq \emptyset$. Moreover, if W(a), W(b) are nonempty, then $xa, by \in E_S$ for some $x, y \in S$. Thus $W(xaby) \neq \emptyset$ and so s = sxabys for some $s \in S$. It follows that ysx = ysx(ab)ysx. Therefore $W(ab) \neq \emptyset$. We conclude that E is the set of idempotents of an E-inversive semigroup T (since if $t \in T$ and $x \in W(t)$ in S, then $x \in Reg(S) \subset T$, so $x \in W(t)$ in T).

Remark 2.19. A biordered set *E* is called *regular* if $S(e, f) \neq \emptyset$ for all $e, f \in E$. By Hall's result, Easdown's Theorem and Lemma 1.1 we obtain Nambooripad's Theorem [13]:

Theorem 2.20. Every regular biordered set comes from some regular semigroup.

References

- F. Catino, On bi-ideals in eventually regular semigroups, Riv. Mat. Pura Appl. 4 (1989), 89 - 92.
- D. Easdown, A new proof that regular biordered sets come from regular semigroups, Proc. Roy. Soc. Edinburgh (Sec. A) 96 (1984), 109 - 116.
- [3] D. Easdown, Biordered sets come from semigroups, J. Algebra 96 (1985), 581-591.
- [4] P. M. Edwards, Eventually regular semigroups, Bull. Austral. Math. Soc. 28 (1983), 23-38.
- [5] T. E. Hall, On regular semigroups, J. Algebra 24 (1973), 1-24.
- [6] J. M. Howie, An introduction to semigroup theory, Academic Press, London (1984).
- [7] S. J. L. Kopamu, On semigroup species, Comm. Algebra 23 (1995), 5513-5537.
- [8] S. J. L. Kopamu, The concept of structural regularity, Portugaliae Math. 53 (1996), 435-456.
- [9] J. E. Mills, Matrix congruences on orthodox semigroups, Semigroup Forum 31 (1985), 87-97.
- [10] H. Mitsch and M. Petrich, Basic properties on E-inversive semigroups, Comm. Algebra 28 (2000), 5169 - 5182.
- [11] H. Mitsch and M. Petrich, Restricting idempotents in E-inversive semigroups, Acta Sci. Math. (Szeged) 67 (2001), 555 - 570.
- [12] K. S. S. Nambooripad, Structure of regular semigroups I: fundamental regular semigroups, Semigroup Forum 9 (1975), 354 - 363.
- [13] K. S. S. Nambooripad, Structure of regular semigroups I, Memoirs Amer. Math. Soc. 22 (1979).
- [14] M. Petrich, Inverse semigroups, Wiley, New York (1984).

Received August 28, 2011

Institute of Mathematics and Computer Science Wroclaw University of Technology Wyb. Wyspiańskiego 27 50-370 Wroclaw Poland E-mail: romekgigon@tlen.pl