
Quasigroups and Related Systems 20 (2012), 71− 80

Varieties of rectangular quasigroups

Aleksandar Krapeº

Abstract. For the given variety V of quaisgroups, the class of all rectangular V�quasigroups is
de�ned as the class of all groupoids isomorphic to L × Q × R, where Q ∈ V and L(R) is a left
(right) zero semigroup. The identities axiomatizing the new class are given, proving that it is a
variety in the language of the original variety.

1. Introduction

In the papers [6], [7] and [8], the so called rectangular loops and rectangular
quasigroups were de�ned.

De�nition 1.1. Groupoid is a rectangular quasigroup (loop) i� it is isomorphic to
the direct product of a left zero semigroup, a quasigroup (loop) and a right zero
semigroup.

Several di�erent axiomatizations for both these structures were given and the
problems of the axiomatization by independent systems of axioms were posed.

In their paper [5] M. Kinyon and J. D. Phillips solved these problems by giving
the following axioms:

(RQ1) x\xx = x

(RQ2) xx/x = x

(RQ3) x(x\y) = x\xy

(RQ4) (x/y)y = xy/y

(RQ5) (x\y)\((x\y) · zu) = (x\xz)u

(RQ6) (xy · (z/u))/(z/u) = x(yu/u)
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(RL) x\x(y\y) = (x/x)y/y

The system (RQ1)�(RQ6) axiomatizes rectangular quasigroups and, if we add
(RL) to it, we get axioms for rectangular loops.

In this paper we give some new axiomatizations of rectangular loops. More
importantly, if V is a quasigroup variety, we give an axiomatization of the variety
of rectangular V�quasigroups.

2. Axioms for rectangular V�quasigroups
We need to adjust the types of (equational) quasigroups and left (right) zero
semigroups. To achieve this we extend the language of groupoids with further
operations.

De�nition 2.1. Let L = {·, \, /} be the language of quasigroups and M a further
(possibly empty) set of operation symbols disjoint from L. The language L̂ = L∪M
is an extended language of quasigroups.

The language L1 = {·, \, /, e}, obtained from L by the addition of a single
constant, is the language of loops.

De�nition 2.2. A left (right) zero semigroup is an algebra in L̂ satisfying iden-
tities x\y = x/y = xy and xy = x(xy = y).

De�nition 2.3. Let V be a variety of quasigroups in an extended language L̂.
An algebra in the language L̂ is a rectangular V�quasigroup if it is isomorphic to
the direct product of a left zero semigroup, a quasigroup from the variety V and
a right zero semigroup.

There are three exceptions to the de�nition above. In the Section 3 (4) we con-
sider rectangular left (right) symmetric quasigroups which have only two binary
operations. But in that case one of the division operations coincide with multiplica-
tion, so this algebra is equivalent to the (proper) rectangular left (right) symmetric
quasigroup with three binary operations. Similarly, for TS�quasigroups in which
both division operations are equal to multiplication, rectangular TS�quasigroups
are just special groupoids.

Theorem 2.4. Let V be a variety of quasigroups satisfying additional identities

si = ti (i ∈ I) in an extended language L̂ and let x be a variable which does not

occur in either si or ti. Then the variety �V of rectangular V�quasigroups can be

axiomatized by (RQ1)�(RQ6) together with (for all i ∈ I):

(Vi) x · six = x · tix .

Proof. Left (right) zero semigroups as well as all V�quasigroups satisfy (RQ1)�
(RQ6) and all (Vi) (i ∈ I). So do their direct products i.e. rectangular V�
quasigroups.
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If an algebra satis�es (RQ1)�(RQ6) then it is a rectangular quasigroup. Since
all (Vi) are satis�ed, the quasigroup factor has to satisfy them too. But in quasi-
groups identities (Vi) are equivalent to si = ti and these de�ne V.

Theorem 2.5. Theorem 2.4 remains valid if we replace (Vi) by any of the following
identities:

x ◦ (si � x) = x ◦ (ti � x)

(x ◦ si) � x = (x ◦ ti) � x

x/(si\x) = (x/ti)\x

x ◦ (si � y) = x ◦ (ti � y)

(x ◦ si) � y = (x ◦ ti) � y

where x, y do not occur in si, ti and ◦, � ∈ {·, \, /}.

Proof. In the proof of Theorem 2.4 we can replace any (Vi) by some of the above
identities which are, in quasigroups, equivalent to si = ti. The line of reasoning
remains the same.

De�nition 2.6. head(t)(tail(t)) is the �rst (last) variable of the term t.

Theorem 2.7. The equality u = v is true in all rectangular V�quasigroups i�

head(u) = head(v) , tail(u) = tail(v) and u = v is true in all V�quasigroups.

Proof. In one direction the theorem is true because projections are epimorphisms
and so preserve identities. The converse is true because direct products also pre-
serve identities.

Theorem 2.8. Theorem 2.4 remains valid if we replace (Vi) by any of the following
identities:

si ◦ x = ti ◦ x (if head(si) = head(ti))

x ◦ si = x ◦ ti (if tail(si) = tail(ti))

si = ti (provided both head(si) = head(ti) and tail(si) = tail(ti))

where x does not occur in si, ti and ◦ ∈ {·, \, /}.

Example 2.9. Adding associativity x · yz = xy · z to identities (RQ1)�(RQ6)
gives yet another axiomatization of rectangular groups.

Example 2.10. Adding identity x · yx = x · zx to (RQ1)�(RQ6) gives a (way too
complicated) axiomatization of rectangular bands.

Example 2.11. Rectangular commutative quasigroups have identities (RQ1) �
(RQ6) and x(yz · x) = x(zy · x) as axioms.

However, note that commutative rectangular quasigroups are just commutative
quasigroups.
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Example 2.12. Rectangular medial quasigroups are axiomatized by (RQ1)�(RQ6)
and xy · uv = xu · yv.

Example 2.13. Commutative medial quasigroups are characterized by the axiom
xy ·uv = uy ·xv (among others). Rectangular commutative medial quasigroups are
rectangular quasigroups satisfying x(yz · uv) = x(uz · yv).

Example 2.14. Paramedial quasigroups are characterized by the identity xy·uv =
vy · ux. Rectangular paramedial quasigroups are axiomatized by adding identity
x · (yz · uv)x = x · (vz · uy)x to (RQ1)�(RQ6).

It is rather obvious that the following corollaries are true:

Corollary 2.15. If the variety V of quasigroups is de�ned by the identities si =
ti (i ∈ I) such that head(si) = head(ti) , tail(si) = tail(ti) for all i ∈ I, then the

class of rectangular quasigroups satisfying all identities si = ti (i ∈ I) is the class

of all rectangular V�quasigroups.

Corollary 2.16. If the variety V of quasigroups is de�ned by the identities si =
ti (i ∈ I) such that head(si) 6= head(ti) and tail(sj) 6= tail(tj) for some i, j ∈ I,
then the class of rectangular quasigroups satisfying all identities si = ti (i ∈ I) is

just the class of all V�quasigroups.

Example 2.17. Moufang loops are de�ned as loops satisfying any of the four
equivalent identities:

xy · zx = (x · yz)x

x(yz · x) = xy · zx

x(y · xz) = (xy · x)z

x(y · zy) = (xy · z)y.

K. Kunen recently proved in [9] that the existence of the neutral element follows
from any of these identities. Therefore, rectangular Moufang loops are axiomatized
by (RQ1)�(RQ6) and for example xy · zx = (x · yz)x.

Example 2.18. Let (S; ·) and (T ; ◦) be groupoids and f, g, h : S −→ T three
bijections. If f(xy) = g(x) ◦ h(y) we say that (T ; ◦) is an isotope of (S; ·). Isotopy
is an important invariant of quasigroups which generalizes isomorphism.

The result that every quasigroup is an isotope of some loop is a classical one
in quasigroup theory. The class of all isotopes of groups is also signi�cant and
constitutes a variety of quasigroups as proved by V. D. Belousov in [1]. The
de�ning identity of group isotopes is

x(y\(z/u)v) = (x(y\z)/u)v. (2.1)

By the theorem 2.8 the axioms for the class of all rectangular group isotopes are
(RQ1)�(RQ6) and (2.1).
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Note that the class of all isotopes of rectangular groups is strictly greater than

the class of all rectangular group isotopes. Namely, if S = {0, 1}, f =
(

0 1
1 0

)
and xy = f(x), then (S; ·) is an isotope of the left zero semigroup with two elements
but is not a rectangular quasigroup.

Example 2.19. The variety of rectangular quasigroups with an idempotent may
be axiomatized by (RQ1)�(RQ6) and ee = e.

Example 2.20. The variety of rectangular left loops is axiomatized by (RQ1)�
(RQ6) and any of the following 37 identities:

x ◦ ((y/y) � x) = x ◦ ((z/z) � x)

(x ◦ (y/y)) � x = (x ◦ (z/z)) � x

x/((y/y)\x) = (x/(z/z))\x

x ◦ ((y/y) � u) = x ◦ ((z/z) � u)

(x ◦ (y/y)) � u = (x ◦ (z/z)) � u

where ◦, � ∈ {·, \, /}.

Example 2.21. If the variety of left loops is de�ned in the language of loops i.e.
by the identity ex = x, then the variety of rectangular left loops is axiomatized by
(RQ1)�(RQ6) and

x · ey = xy. (2.2)

Example 2.22. The variety of rectangular loops is axiomatized by (RQ1)�(RQ6)
and any of the identities from the Example 2.20, together with the dual of one of
them (to ensure the existence of a right neutral in quasigroup). However, we can
apply the Theorem 2.5 to the single identity y\y = z/z which axiomatizes loops
within quasigroups, and add any of the following identities to (RQ1)�(RQ6) to
obtain axioms for rectangular loops.

x ◦ ((y\y) � x) = x ◦ ((z/z) � x)

(x ◦ (y\y)) � x = (x ◦ (z/z)) � x

x/((y\y)\x) = (x/(z/z))\x

x/((y/y)\x) = (x/(z\z))\x

x ◦ ((y\y) � u) = x ◦ ((z/z) � u)

(x ◦ (y\y)) � u = (x ◦ (z/z)) � u

where ◦, � ∈ {·, \, /}. This gives us a total of 1407 axiom systems for rectangular
loops.
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Example 2.23. In the language of loops, the variety of rectangular loops can be
axiomatized by (RQ1)�(RQ6), (2.2) and

xe · y = xy (2.3)

The identity (2.2) may be replaced by any of identities from the Example 2.20.
Likewise, the identity (2.3) may be replaced by the dual of some of these identities.
This gives us 75 further axiomatizations of rectangular loops.

However, it should be admitted that the axiom system of Kinyon and Phillips
is shorter (smaller language and/or less identities and/or less variables and/or
less symbols) and more appealing then any of the above 1482 systems. The only
exception is perhaps the system with identities (2.2) and (2.3).

3. Rectangular left symmetric quasigroups

The important class of left symmetric quasigroups is characterized by the identity
x · xy = y. Just as in numerous examples in the previous section, we can axiom-
atize rectangular left symmetric quasigroups by identities (RQ1)�(RQ6) and the
identity

x(y · yz) = xz (LS)

as prescribed by the Theorem 2.8.
However, in this case we can do more. Note that by the De�nition 2.2 x\y = xy

in both left and right zero semigroups. In left symmetric quasigroups this is
also true. Therefore, the identity x\y = xy is true in rectangular left symmetric
quasigroups as well. But then the operation \ can be eliminated from axioms and
from the language itself. We have:

Theorem 3.1. An algebra (S; ·, /) is a rectangular left symmetric quasigroup i�

it satis�es:

x · xx = x (LS1)

xx/x = x (LS2)

(x/y)y = xy/y (LS3)

xy · (xy · uv) = (x · xu)v (LS4)

(xy · (u/v))/(u/v) = x(yv/v). (LS5)

Proof. Axiom (RQ3) transforms into trivial identity and may be eliminated. Ax-
ioms (RQ1) and (RQ5) become axioms (LS1) and (LS4) respectively.

Only (LS) remains to be proved. We do it by the series of lemmas below.

Lemma 3.2. (x · xy)z = x(x · yz)

Proof. (x · xy)z = (x · xx) · ((x · xx) · yz) (by (LS4))

= x(x · yz) (by (LS1)) �
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Lemma 3.3. xy · (xy · z) = x · xz

Proof. xy · (xy · z) = xy · (xy · (z · zz)) (by (LS1))

= (x · xz) · zz (by (LS4))

= (x · xx) · ((x · xx) · (z · zz)) (by (LS4))

= x · xz (by (LS1)) �

Lemma 3.4. x(x · xy) = xy

Proof. x(x · xy) = (x · xx)y (by Lemma 3.2)

= xy (by (LS1)) �

Lemma 3.5. xy · x(x · zu) = xy · zu

Proof. xy · x(x · zu) = xy · (x · xz)u (by Lemma 3.2)

= xy · (xy · (xy · zu)) (by (LS4))

= xy · zu (by Lemma 3.4) �

Lemma 3.6. x · x(y · yz) = x · xz

Proof. x · x(y · yz) = (x · xy) · yz (by Lemma 3.2)

= (x · xy) · x(x · yz) (by Lemma 3.5)

= (x · xy) · (x · xy)z (by Lemma 3.2)

= x · xz (by Lemma 3.3) �

Lemma 3.7. x(y · yz) = xz

Proof.
x(y · yz) = x(x · x(y · yz)) (by Lemma 3.4)

= x(x · xz) (by Lemma 3.6)

= xz (by Lemma 3.4) �

The proof above is an adaptation of the proof found by the automated reasoning
program Prover9. Prover9 is the �rst order logic theorem prover developed by
W. W. McCune [11] which is capable of solving di�cult mathematical problems.
For instance, McCune in [10] solved the so called Robbins conjecture using Otter

(an earlier version of Prover9). See [12] for the gentle introduction to Otter with
the leaning to quasigroup theory.

McCune also wrote the model builder program Mace4 [11], which is used in the
following examples to verify the independence of the axioms (LS1)�(LS5).

Example 3.8. Table 1 is the smallest model that satis�es (LS2), (LS3), (LS4),
and (LS5), but not (LS1).

• 0 1
0 1 1
1 0 0

\ 0 1
0 1 1
1 0 0

Table 1. (LS2), (LS3), (LS4) and (LS5), but not (LS1). �
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Example 3.9. Table 2 is the smallest model that satis�es (LS1), (LS3), (LS4),
and (LS5), but not (LS2).

• 0 1
0 0 1
1 1 0

\ 0 1
0 1 0
1 0 1

Table 2. (LS1), (LS3), (LS4) and (LS5), but not (LS2). �

Example 3.10. Table 3 is the smallest model that satis�es (LS1), (LS2), (LS4),
and (LS5), but not (LS3).

• 0 1 2
0 1 0 2
1 2 1 0
2 0 2 1

\ 0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

Table 3. (LS1), (LS2), (LS4) and (LS5), but not (LS3). �

Example 3.11. Table 4 is the smallest model that satis�es (LS1), (LS2), (LS3),
and (LS5), but not (LS4).

• 0 1 2
0 0 1 0
1 1 2 1
2 2 0 2

\ 0 1 2
0 0 2 0
1 1 0 1
2 2 1 2

Table 4. (LS1), (LS2), (LS3) and (LS5), but not (LS4). �

Example 3.12. Table 5 is the smallest model that satis�es (LS1), (LS2), (LS3),
and (LS4), but not (LS5).

• 0 1
0 0 0
1 1 1

\ 0 1
0 0 0
1 0 1

Table 5. (LS1), (LS2), (LS3) and (LS4), but not (LS5). �

4. Right symmetric quasigroups

Right symmetric quasigroups are de�ned by the identity xy · y = x. From the
Theorem 3.1 it follows, by the duality principle for groupoids (see [2]), that the
class of all rectangular right symmetric quasigroups can be axiomatized by the
identities:

x\xx = x (RS1)

xx · x = x (RS2)
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x(x\y) = x\xy (RS3)

(x\y)\((x\y) · uv) = (x\xu)v (RS4)

(xy · uv) · uv = x(yv · v) (RS5)

in the language {·, \}. Moreover, the axioms are mutually independent.

If a quasigroup satis�es both left and right symmetry identities, i.e. if both
x · xy = y and xy · y = x are true, then such a quasigroup is called a totally

symmetric or TS�quasigroup. TS�quasigroups are commutative and both division
operations in them coincide with multiplication. Applying Theorem 3.1 and its
dual we get:

Theorem 4.1. A groupoid (S; ·) is a rectangular TS�quasigroup i�

x · xx = x (TS1)

xx · x = x (TS2)

xy · (xy · uv) = (x · xu)v (TS3)

(xy · uv) · uv = x(yv · v). (TS4)

Example 4.2. Table 6 is the smallest model that satis�es (TS2), (TS3) and (TS4),
but not (TS1).

• 0 1
0 1 1
1 0 0

• 0 1 2
0 0 2 0
1 1 1 1
2 2 0 2

Table 6. (TS2), (TS3) Table 7. (TS1), (TS2)
and (TS4), but not (TS1). and (TS4), but not (TS3).

Example 4.3. Table 7 is the smallest model that satis�es (TS1), (TS2), and
(TS4), but not (TS3).

Independence of (TS2) and (TS4) is proved by models dual to those in Exam-
ples 4.2 and 4.3 respectively.

Acknowledgement. The author would like to thank M. K. Kinyon for his help
and comments on the early version of this paper.



80 A. Krapeº

References

[1] V. D. Belousov, Balanced identities in quasigroups (Russian), Mat. Sb. 70(112)
(1966), 55− 97.

[2] A. H. Cli�od and G. B. Preston, The algebraic theory of semigroups, vol. 1,
AMS, Providence, (1964).

[3] Z. Daroóczy and Zs. Páles (eds.), Functional equations � Results and advances,
Kluwer Academic Publishers, Dordrecht, Boston, London, (2002).

[4] Z. Kadelburg (ed.), Proc. 10th Congress Yugoslav Math., Univ. Belgrade Fac.
Math., Belgrade, (2001).

[5] M. K. Kinyon and J. D. Phillips, Rectangular quasigroups and loops, Comput.
Math. Appl. 49 (2005), 1679− 1685.

[6] A. Krapeº, Rectangular loops, Publ. Inst. Math (Belgrade) (N.S.) 68(82) (2000),
59− 66.

[7] A. Krapeº, Rectangular quasigroups, in the book [4], 169− 171.

[8] A. Krapeº, Generalized associativity on rectangular quasigroups, in the book [3],
335− 349.

[9] K. Kunen, Moufang quasigroups, J. Algebra 183 (1996), 231− 234.

[10] W. W. McCune, Solution of the Robbins problem, J. Automated Reasoning 19
(1997), 263− 276.

[11] W. W. McCune, Prover9 version 2008�06A,
(http://www.cs.unm.edu/ mccune/prover9/).

[12] J. D. Phillips, See Otter digging for algebraic pearls, Quasigroups and Related

Systems 10 (2003), 95− 114.

Received September 4, 2011
Matemati£ki institut
Kneza Mihaila 36
11001 Beograd, p.p. 367
Serbia
E-mail: sasa@mi.sanu.ac.rs


